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Summary

The past 30 years have witnessed major developments in vibration based damage detection and iden-

tification, also collectively referred to as damage diagnosis. Moreover, the past 10 years have seen a

rapid increase in the amount of research related to Structural Health Monitoring (SHM) as quantified

by the significant escalation in papers published on this subject. Thus, the increased interest in this

engineering field and its associated potential constitute the main motive for this thesis.

The goal of the thesis is the development and introduction of novel advanced functional and

sequential statistical time series methods for vibration based damage diagnosis and SHM. After the

introduction of the first chapter, Chapter II provides an experimental assessment and comparison

of vibration based statistical time series methods for Structural Health Monitoring (SHM) via their

application on a lightweight aluminum truss structure and a laboratory scale aircraft skeleton struc-

ture. A concise overview of the main non-parametric and parametric methods is presented, including

response-only and excitation-response schemes. Damage detection and identification are based on

univariate (scalar) versions of the methods, while both scalar (univariate) and vector (multivariate)

schemes are considered. The methods’ effectiveness for both damage detection and identification is

assessed via various test cases corresponding to different damage scenarios, multiple experiments and

various sensor locations on the considered structures. The results of the chapter confirm the high

potential and effectiveness of vibration based statistical time series methods for SHM.

Chapter III investigates the identification of stochastic systems under multiple operating condi-

tions via Vector-dependent Functionally Pooled (VFP) models. In many applications a system operates

under a variety of operating conditions (for instance operating temperature, humidity, damage loca-

tion, damage magnitude and so on) which affect its dynamics, with each condition kept constant for

a single commission cycle. Typical examples include mechanical structures operating under different

environmental conditions, aircrafts under different flight conditions (altitude, velocity etc.), structures

under different structural health states (various damage locations and magnitudes). In this way, dam-

age location and magnitude may be considered as parameters that affect the operating conditions and

as a result the structural dynamics. This chapter’s work is based on the novel Functional Pooling

(FP) framework, which has been recently introduced by the Stochastic Mechanical Systems & Au-

tomation (SMSA) group of the Mechanical Engineering and Aeronautics Department of University of

Patras. The main characteristic of Functionally Pooled (FP) models is that their model parameters

and innovations sequence depend functionally on the operating parameters, and are projected on ap-

propriate functional subspaces spanned by mutually independent basis functions. Thus, the fourth

chapter of the thesis addresses the problem of identifying a globally valid and parsimonious stochastic

system model based on input-output data records obtained under a sample of operating conditions

characterized by more than one parameters. Hence, models that include a vector characterization of

the operating condition are postulated. The problem is tackled within the novel FP framework that

postulates proper global discrete-time linear time series models of the ARX and ARMAX types, data

pooling techniques, and statistical parameter estimation. Corresponding Vector-dependent Function-

ally Pooled (VFP) ARX and ARMAX models are postulated, and proper estimators of the Least

ix



x Summary

Squares (LS), Maximum Likelihood (ML), and Prediction Error (PE) types are developed. Model

structure estimation is achieved via customary criteria (Bayesian Information Criterion) and a novel

Genetic Algorithm (GA) based procedure. The strong consistency of the VFP-ARX least squares and

maximum likelihood estimators is established, while the effectiveness of the complete estimation and

identification method is demonstrated via two Monte Carlo studies.

Based on the postulated VFP parametrization a vibration based statistical time series method

that is capable of effective damage detection, precise localization, and magnitude estimation within

a unified stochastic framework is introduced in Chapter IV. The method constitutes an important

generalization of the recently introduced Functional Model Based Method (FMBM) in that it allows,

for the first time in the statistical time series methods context, for complete and precise damage lo-

calization on continuous structural topologies. More precisely, the proposed method can accurately

localize damage anywhere on properly defined continuous topologies on the structure, instead of pre-

defined specific locations. Estimator uncertainties are taken into account, and uncertainty ellipsoids

are provided for the damage location and magnitude. To achieve its goal, the method is based on

the extended class of Vector-dependent Functionally Pooled (VFP) models, which are characterized

by parameters that depend on both damage magnitude and location, as well as on proper statistical

estimation and decision making schemes. The method is validated and its effectiveness is experimen-

tally assessed via its application to damage detection, precise localization, and magnitude estimation

on a prototype GARTEUR-type laboratory scale aircraft skeleton structure. The damage scenarios

considered consist of varying size small masses attached to various continuous topologies on the struc-

ture. The method is shown to achieve effective damage detection, precise localization, and magnitude

estimation based on even a single pair of measured excitation-response signals.

Chapter V presents the introduction and experimental assessment of a sequential statistical time

series method for vibration based SHM capable of achieving effective, robust and early damage de-

tection, identification and quantification under uncertainties. The method is based on a combination

of binary and multihypothesis versions of the statistically optimal Sequential Probability Ratio Test

(SPRT), which employs the residual sequences obtained through a stochastic time series model of the

healthy structure. In this work the full list of properties and capabilities of the SPRT are for the first

time presented and explored in the context of vibration based damage detection, identification and

quantification. The method is shown to achieve effective and robust damage detection, identification

and quantification based on predetermined statistical hypothesis sampling plans, which are both ana-

lytically and experimentally compared and assessed. The method’s performance is determined a priori

via the use of the analytical expressions of the Operating Characteristic (OC) and Average Sample

Number (ASN) functions in combination with baseline data records, while it requires on average a

minimum number of samples in order to reach a decision compared to most powerful Fixed Sample

Size (FSS) tests. The effectiveness of the proposed method is validated and experimentally assessed

via its application on a lightweight aluminum truss structure, while the obtained results for three

distinct vibration measurement positions prove the method’s ability to operate based even on a single

pair of measured excitation-response signals.

Finally, Chapter VI contains the concluding remarks and future perspectives of the thesis.



Nomenclature

Important conventions and symbols

– Bold-face upper/lower case symbols designate matrix/column-vector quantities, respectively.

– Matrix transposition is indicated by the superscript T .

– Definition is indicated by
∆
=.

– A functional argument in parentheses designates function of a real variable; for instance x(t) is

a function of analog time t ∈ R.

– A functional argument in brackets designates function of an integer variable; for instance x[t] is

a function of normalized discrete time (t = 1, 2, . . .). The conversion from discrete normalized

time to analog time is based on (t− 1)Ts, with Ts designating the sampling period.

– A functional argument including the imaginary unit designates complex function; for instance

X(jω) is a complex function of ω.

– A hat designates estimator/estimate of the indicated quantity; for instance θ̂ is an estimate of

θ.

– The subscripts “o” and “u” designate quantities associated with the nominal (healthy) and

current (unknown) state of the structure, respectively.

Symbols

A[B,k] : AutoRegressive (AR) polynomial
B[B,k] : eXogenous (X) polynomial
C[B,k] : Moving Average (MA) polynomials
arg min : minimizing argument
arg max : maximizing argument
a, b, c, s : AR, X, MA, and innovations variance projection coefficients vectors
ai, bi, ci : AR, X and MA i-th parameter, respectively
ai(k), bi(k), ci(k) : AR, X and MA i-th parameter under k operating parameter vector
ai,j , bi,j , ci,j : AR, X and MA coefficients of projection
d : parameter vector dimensionality
ek[t] : residual sequence under k operating parameter vector at time t
F : Fisher information matrix
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zV [t] : excitation–response signal pair under structural state V at time t
ZV : complete (∀t) excitation–response signal pair under structural state V
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γ2(ω) : coherence function
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δ : decision rule
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σ2
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Operators
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E{·} : statistical expectation
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ACF : AutoCovariance Function
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OLS : Ordinary Least Squares
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PE : Prediction Error
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SUR : Seemingly Unrelated Regressions
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VFP : Vector-dependent Functionally Pooled
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Chapter 1

Introduction

1.1 The general problem

1.1.1 Structural damage diagnosis

The past 30 years have witnessed major developments in vibration based damage detection and iden-

tification, also collectively referred to as damage diagnosis. Moreover, the past 10 years have seen a

rapid increase in the amount of research related to Structural Health Monitoring (SHM) as quantified

by the significant escalation in papers published on this subject. Thus, the increased interest in this

engineering field and its associated potential constitute the main motive for this thesis.

Damage diagnosis in vibrating structures, such as aerospace and mechanical structures, build-

ings, bridges and offshore platforms, is of paramount importance for reasons associated with proper

operation, improved maintenance, reduced costs and increased safety. The process of implementing a

damage diagnosis strategy is referred to as Structural Health Monitoring (SHM – Doebling et al. 1996,

Doebling et al. 1998, Farrar et al. 2001, Farrar and Worden 2007, Fassois and Sakellariou 2007, Fas-

sois and Sakellariou 2009, Rytter 1993). This process involves the observation of a system/structure

over time using periodical measurements, the extraction of damage sensitive quantities (features) from

these measurements, and the statistical analysis of these quantities in order to determine the current

structural health state. Damage may be defined as changes to the material and/or geometric prop-

erties of these systems, including changes to the boundary conditions and system connectivity, which

adversely affect the system’s performance (Farrar and Worden 2007). Implicit in this definition is

the concept that damage is not meaningful without a comparison between two different states of the

system, one of which is assumed to represent the initial, often undamaged (healthy), state.

Damage diagnosis is carried out in conjunction with five closely related disciplines that in-

clude SHM, condition monitoring (CM – Bently and Hatch 2003), non-destructive evaluation (NDE

– Doebling et al. 1996, Doebling et al. 1998, Doherty 1987, Shull 2002, Staszewski et al. 2004), sta-

tistical process control (SPC – Montgomery 1997, Sohn et al. 2000, Fugate et al. 2001, Zepico-Valle

et al. 2011), and damage prognosis (DP – Farrar et al. 2003, Farrar and Lieven 2007). Typically,

SHM is associated with online-global damage diagnosis in structural systems such as aeronautical,

engineering, civil and marine structures. CM is analogous to SHM, but addresses damage diagnosis

in rotating and reciprocating machinery, such as those used in manufacturing and power generation.

NDE is usually carried out off-line in a local manner after the damage has been located. There are

exceptions to this rule, as NDE is also used as a monitoring or SHM tool for in situ structures such

as pressure vessels, rails and wind turbines (Shull 2002, Razi et al. 2011, Zak et al. 2012). NDE is

therefore primarily used for damage characterization and as a severity check when there is a priori

1
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knowledge of the damage location. SPC is process based rather than structure based and uses a vari-

ety of sensors to monitor changes in a process, one cause of which can result from structural damage.

Once damage has been detected, DP is used to predict the remaining useful life of a system. This

thesis primarily addresses the issue of vibration based SHM with potential applications to CM.

The need for global damage detection at the earliest possible time is pervasive throughout the

aeronautical, mechanical, civil and manufacturing engineering communities. Such detection requires

the need to perform some form of SHM and is motivated by the increased potential life and safety, as

well as the economic impact of this technology. Therefore, the ability to monitor the health state of

structures is becoming increasingly important. Most current structural and mechanical system main-

tenance is done in a time-based mode. SHM is the technology that will allow the current time-based

maintenance philosophies to evolve into potentially more cost effective condition-based maintenance

philosophies (Farrar and Worden 2007). The concept of condition-based maintenance is that a sens-

ing system on the structure will monitor the system response and notify the operator that damage

has been detected. Life-safety and economic benefits associated with such a philosophy will only be

realized if the monitoring system provides sufficient warning such that corrective action can be taken

before the damage evolves to a failure level. The trade-off associated with implementing such a philos-

ophy is that it requires a more sophisticated monitoring hardware to be deployed on the system and

it requires a sophisticated data analysis procedure that can be used to interrogate the measured data.

Furthermore, SHM has the potential to extend the maintenance cycles and, hence, keep the system

operating without interruptions for longer time intervals.

A system of classification for damage diagnosis methods, as presented in Rytter (1993), defines

four levels of damage diagnosis, as follows:

• Level 1: Damage detection – Determination that damage is present in the structure

• Level 2: Damage localization – Determination of the geometric location of the damage

• Level 3: Damage quantification – Quantification of the severity of the damage

• Level 4: Remaining life estimation – Prediction of the remaining service life of the structure

The relevant literature for this thesis can be classified mostly as Level 1, Level 2, or Level 3

methods, as these levels are most often related directly to structural dynamics testing and modeling

issues. Level 4 is generally categorized within the fields of fracture mechanics, fatigue life analysis,

or structural design assessment and, as such, is not addressed in the structural vibration or modal

analysis literature. Hence, the current thesis focuses on the first three damage diagnosis levels.

1.1.2 Identification of systems under multiple operating conditions

System identification deals with the problem of building mathematical models of dynamic systems

based on experimental data obtained from the system. Since dynamic systems are abundant in our

environment, the techniques of system identification have a wide application area, such as the identifi-

cation of dynamic properties of aeronautical, mechanical and civil structures, identification of systems

and control, performance study of aerospace and automotive vehicles, modeling of stock prices in

economics, and analysis of dynamic biological functions. The foundation of modern system identifica-

tion is based on the combination of linear systems theory, time series analysis and asymptotic theory

(Söderström and Stoica 1989, Mendel 1995, Andersen 1997, Ljung 1999, Lütkepohl 2005).

There are two categories of model structures: (i) non-parametric and (ii) parametric. Non-

parametric model structures are characterized by the property that the resulting models are curves
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or functions that do not explicitly employ a finite-dimensional parameter vector, since they use

direct techniques without first selecting a confined set of possible models (Ljung 1999, Chapter

6),(Söderström and Stoica 1989, Chapter 3). Non-parametric methods include time domain models,

such as the autocorrelation (ACF) and cross-correlation (CCF) functions, as well as frequency domain

models, such as the power spectral density (PSD) and the frequency response function (FRF). On the

other hand, parametric model structures suppose that a set of candidate models is selected and it is

parametrized as a model structure using a parameter vector θ (Ljung 1999, Chapter 7),(Söderström

and Stoica 1989, Chapter 6). The search for the best model within the set becomes a problem of

determining or estimating θ. Typical parametric model structures include among others the AutoRe-

gressive Moving Average (ARMA), AutoRegressive with eXogenous excitation (ARX), AutoRegressive

Moving Average with eXogenous excitation (ARMAX), and state space models.

Classical system identification aims at deriving a model representing a system under a specific

operating condition. Yet, in many applications a system may operate under different operating con-

ditions at different occasions (time periods), during different service intervals or commission cycles,

with the dynamics depending in a pseudo-static fashion on certain operating parameter(s). As is

often the case in practice, each operating condition may affect the system and its dynamics. Typical

examples include aeronautical, civil and mechanical structures under different environmental condi-

tions such as temperature and humidity, aircrafts under different flight conditions such as altitude and

velocity, rotating machinery operating at various speeds, hydraulic systems operating under different

temperatures or fluid pressures, mechanical systems under different load or lubrication conditions,

physiological systems under different conditions, and so on.

With respect to the aims of the current thesis, system identification under different operating

conditions is related to the identification of structures under different structural health states, such as

various damage locations and/or damage magnitudes. In this way, damage location and magnitude

may be considered as parameters that affect the operating conditions and as a result the underlying

structural dynamics. In such cases, it is important to identify a global and compact (parsimonious)

model describing a structure under any admissible operating condition, based on input and noise-

corrupted output vibration data records corresponding to a sample of those conditions. Hence, part of

this thesis aims at achieving effective and accurate (statistically efficient) identification of a global and

compact parametric, linear, time invariant, stochastic time series model describing structures under

different health states characterized by varying damage locations and damage magnitudes.

1.2 Critical review of the state-of-the-art

1.2.1 Structural damage diagnosis

Over the past several years, a wide variety of local non-destructive testing tools have been developed

(Farrar et al. 2001, Doebling et al. 1996, Doebling et al. 1998). Although recent advances in NDE

methods propose a global solution with respect to damage diagnosis (Shull 2002, Lim et al. 2006,

Kirikera et al. 2007, Razi et al. 2011, Zak et al. 2012), the majority of the methods based on ultrasound,

acoustic, radiography, eddy current, and thermal field principles, generally require access to the vicinity

of the suspected damage location, while they are typically time consuming and costly. The need for

global damage diagnosis methods that can be applied to realistic structures has led to the development

of methods that examine changes in the structural vibration characteristics. Vibration based methods

for damage diagnosis are among the most accurate and effective (Doebling et al. 1998, Farrar et al.

2001, Montalvão et al. 2006, Alvandi and Cremona 2006, Fassois and Sakellariou 2007, Fassois and

Sakellariou 2009, Fan and Qiao 2011). They offer a number of potential advantages, such as no
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requirement for visual inspection, “automation” capability, “global” coverage (in the sense of covering

large areas of the structure), and the ability to work at a “system level”.

Statistical time series methods for SHM form an important, rapidly evolving, category within

the broader vibration based family of methods. They are fundamentally of the inverse type, as the

models used are data based rather than physics based, and inherently account for uncertainties. They

offer a number of potential advantages such as (Fassois and Sakellariou 2007, Fassois and Sakellariou

2009, Basseville et al. 2004, Mevel et al. 2003, Sakellariou and Fassois 2008, Kopsaftopoulos and

Fassois 2010a, Bodeux and Golinval 2001):

(i) No requirement for complicated, large size physical or analytical, such as tuned Finite Element

(FE), models.

(ii) No requirement for complete structural models; in fact they may operate on partial models based

on a limited number, or even a single pair, of excitation and/or response signals.

(iii) Inherent accounting for uncertainties (measurement, environmental, operational and so on)

through statistical tools.

(iv) Statistical decision making with specified performance characteristics.

Statistical time series methods utilize (i) random excitation and/or response signals (time series),

(ii) statistical model building, and (iii) statistical decision making for inferring the health state of a

structure. As with all vibration based methods, the fundamental principle upon which they are

founded is that small changes (damage) in a structure cause discrepancies in its vibration response,

which may be detected and associated with a specific cause (damage type). Non-parametric time

series methods for SHM are those based on corresponding time series representations, such as power

spectral estimates (Ljung 1999, Söderström and Stoica 1989, Fassois and Sakellariou 2007, Fassois and

Sakellariou 2009), and have received limited attention in the literature (Fassois and Sakellariou 2007,

Fassois and Sakellariou 2009, Kopsaftopoulos and Fassois 2010a, Kopsaftopoulos and Fassois 2011b,

Benedetti et al. 2011). Parametric time series methods for SHM are those based on corresponding time

series representations, such as the AutoRegressive Moving Average (ARMA) representation (Ljung

1999, Söderström and Stoica 1989, Fassois and Sakellariou 2007, Fassois and Sakellariou 2009). This

type of methods has attracted considerable attention and their principles have been used in a number

of studies (Fassois and Sakellariou 2007, Fassois and Sakellariou 2009, Kopsaftopoulos and Fassois

2010a, Kopsaftopoulos and Fassois 2011b).

Nevertheless, and despite the fact that statistical time series methods generally tend to treat

damage detection (Level 1) effectively, no mature solutions yet exist for the damage localization (Level

2) and quantification (magnitude estimation – Level 3) subproblems. To date, vibration based damage

diagnosis methods that have shown premise to detect, locate (identify), and quantify damage are based

on the basic idea that modal parameters (natural frequencies, mode shapes and modal damping)

are functions of the physical properties of the structure (mass, damping and stiffness) (Doebling

et al. 1998, Farrar et al. 2001, Montalvão et al. 2006, Farrar and Jauregui 1998a, Farrar and Jauregui

1998b). Therefore, changes in the physical properties will cause detectable changes in the modal

properties. The majority of these methods is established on, or presumes, access to detailed and large

size Finite Element (FE) models and utilize intensive model updating techniques (for tuning the model

to the obtained data records) and pre- and post-damage data records (Farrar et al. 2001, Zimmerman

et al. 2001, Nauerz and Fritzen 2001, Liberatore and Carman 2004, Perera et al. 2007). Furthermore, as

complete FE models are utilized, these techniques require a significant number of measurement sensors

and thus tend to be computationally and experimentally elaborate, while problems may be introduced
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by the measurement constraints imposed by actual testing conditions (Farrar et al. 2001, Farrar and

Jauregui 1998a, Farrar and Jauregui 1998b, Zimmerman et al. 2001). Moreover, some of these methods

appear to be inconsistent and unable to clearly identify the damage location when they are applied

to less severe damage cases, while it may be ambiguous at times to determine whether they indicate

damage at more than one location (Montalvão et al. 2006, Farrar and Jauregui 1998a).

As statistical time series and related methods are data based (inverse type) rather than physics

based, they offer the important advantage of being based on simple, partial models of the structural

dynamics, which are identified based on a potentially “small” number of vibration signals – sometimes

even on a single signal or a single signal pair (Fassois and Sakellariou 2007, Fassois and Sakellariou

2009). They may be thought of as generalizations of earlier techniques using deterministic models

and identification techniques – a classical early approach being that of damage detection based on

natural frequency changes in modal models. Statistical time series type methods utilize statistical

models and identification techniques taking uncertainties into account, they may operate on normal

operating vibration signals, in an output-only mode, and also on structures of any size and geometry.

They may be thought of as including the related class of statistical pattern recognition type methods

(Worden 1997, Sohn et al. 2001, Mattson and Pandit 2006a, Manson et al. 2003, Lee et al. 2006,

Xi et al. 2000, Jung and Koh 2009). This family of methods utilizes techniques related to time

series and outlier analysis (Sohn et al. 2001, Mattson and Pandit 2006a, Manson et al. 2003), neural

network analysis (Manson et al. 2003, Lee et al. 2006), and analysis of statistical parameters (Xi

et al. 2000, Jung and Koh 2009). Neither sophisticated FE models nor modal parameters are employed

in the implementation of these methods, while they are reportedly capable of achieving effective

damage detection. Nevertheless, while damage detection may be potentially treated effectively by

many of these methods, the damage localization problem is typically treated as a classification problem,

meaning that a damage location is selected among a finite number of potential damage locations.

This is a simplification and a much simpler problem than precise damage localization over properly

defined continuous topologies on a structure – that is to say infinite possible damage locations – which

essentially corresponds to the actual SHM problem. Furthermore, damage magnitude estimation

is generally not possible (except for maybe some “rough” characterization) – a method offering an

approach for properly tackling this problem was only recently introduced by the Stochastic Mechanical

Systems & Automation (SMSA) laboratory of the Mechanical Engineering & Aeronautics Department

at University of Patras (Sakellariou 2005, Sakellariou and Fassois 2008, Sakellariou et al. 2002).

The vast majority of the previously outlined literature on vibration based statistical time series

methods for SHM is based on Fixed Sample Size (FSS) hypothesis testing procedures, which are used

during the statistical decision making phase for inferring the actual health state of the structure.

FSS hypothesis testing employs a constant amount of observations, which is determined a priori of

the experimental data acquisition. On the other hand, hypothesis testing may be also treated via

sequential analysis, which is a method of statistical inference whose characteristic feature is that the

number of observations required by the procedure is not determined in advance of the experiment.

The decision to terminate the experiment depends, at each stage, on the results of the observations

previously made, thus the number of observations required by the test is not pre-determined, but a

random variable. If samples can be taken one at a time and the information from them accumulated,

one would expect to be in a better position to make decisions than if no attempt were made to

look at the data until a sample of fixed size had been taken. A merit of the sequential method, as

applied to testing statistical hypotheses, is that test procedures can be constructed which require, on

average, a substantially smaller number of observations than equally reliable test procedures based

on a predetermined (fixed) number of observations (Wald 1947, Ghosh and Sen 1991, Lehmann and

Romano 2008). Moreover, a potential advantage of a damage diagnosis method which is based on

sequential analysis for testing hypotheses is its straightforward extension for online implementation,
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which may be of great interest with respect to SHM applications.

Although statistical hypothesis testing methods based on sequential analysis were introduced

over half a century ago, the engineering applications based on sequential testing have been limited to

the surveillance of nuclear power plant components (Humenik and Gross 1990, Gross and Humenik

1991), while some numerical investigations of its performance with respect to anomaly detection in

nuclear reactor noise signals have been presented in Schoonewelle et al. (1995), Schoonewelle et al.

(1996) and Glöckler (1991). Furthermore, in the context of vibration based damage diagnosis and

SHM, only a limited number of studies taking advantage of the sequential hypothesis testing merits

exists (Sohn et al. 2003, Oh and Sohn 2009).

1.2.2 Identification of systems under multiple operating conditions

In recent years limited attention has been paid to the identification of “global” models representing

systems under multiple or varying operating conditions. System identification traditionally aims at

deriving a model capable of representing a system at a specific operating condition. Yet, in many

cases, a system may operate under different, though constant, conditions at different time intervals

and data records, each one corresponding to a distinct such condition, are obtained. In such cases, it

is important to identify a global and compact (parsimonious) model describing the system under any

admissible operating condition, based on input and noise-corrupted output data records corresponding

to a sample of those conditions.

The most significant efforts for the development of models for the identification of dynamical

systems under multiple operating conditions are found in sciences of statistics, economics and econo-

metrics, where several families of models have been proposed in the past (Dielman 1989, Greene 2003,

Lois 1989). Nevertheless, in all cases either the model structure preserves the restrictive assumption

of equal number of parameters among all operating conditions or employs an individual set of pa-

rameters for each distinct operating condition, hence being incapable of accurately representing the

system in an intermediate operating condition, for which data is not available, and as a result for

all the admissible operating conditions. Indicative such model structures include among others the

linear regression models based on aggregated data (Dielman 1989), which are very simple system rep-

resentations that combine information from different operating conditions in single linear regression

expressions, the Classical Pooling (CP) models (Dielman 1989, Lois 1989) summarizing data infor-

mation from all operating conditions in a single mathematical representation of the linear regression

form, without aggregation, preserving a common set of parameters for all operating conditions, and

the Seemingly Unrelated Regressions (SUR) models (Dielman 1989, Greene 2003, Lois 1989), which

are considered as extensions of the CP models implementing an individual set of parameters for each

operating condition and accounting for correlated disturbances of different operating conditions at

the same time instant (for a brief review of these model structures see Sakellariou (2005)). All these

types of models do not explicitly account for each operating condition, but rather attempt to either

“average out” their effects by providing representations characterized by constant parameters, or to

provide a measure of model “spread” by treating the model parameters as random variables.

A “feasible” approach for solving this identification problem could be along the lines of the

“multi-model” principle. The problem could be handled using a number of “pseudo-independent”

conventional mathematical models and customary identification techniques that could artificially split

the problem into a number of seemingly unrelated subproblems. Each model could be then obtained

based on data records corresponding to each operating condition. Models corresponding to other

(intermediate) operating conditions would not be readily available, but could be “interpolated” based

on those identified. Nevertheless, such a two-stage “multi-model” approach is statistically suboptimal
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and leads to decreased accuracy. The reasons for this are: First, the artificial splitting of the problem

into disjoint subproblems (separate identification for each data record) leads to the estimation of an

unnecessarily high number of parameters (due to the fact that each model is identified separately from

any other), a fact violating the principle of statistical parsimony and leading to decreased accuracy.

Second, any interrelations that may exist among the different data records are neglected, a fact

leading to further loss of information. Third, the separate (subsequent) treatment of the parameter

interpolation stage leads to further (unnecessary) estimation errors.

In order to effectively handle such problems, a novel Functional Pooling (FP) framework has

been recently introduced by the Stochastic Mechanical Systems & Automation (SMSA) laboratory

of the Mechanical Engineering & Aeronautics Department at University of Patras (Kopsaftopoulos

and Fassois 2006a, Sakellariou 2005, Sakellariou and Fassois 2007, Sakellariou and Fassois 2007b, Hios

and Fassois 2009b). This framework circumvents the above difficulties and allows for effective and

accurate (statistically efficient) identification of a global and parsimonious model describing the system

under any admissible operating condition. It is based on the novel concept of functional pooling that

introduces functional dependencies (in terms of the operating parameter) in the postulated model

structure. It is this specific characteristic that, unlike in conventional pooling used in fields such as

econometrics (Dielman 1989, Lois 1989, Greene 2003) where the effects of “operating conditions” are

“smoothed out”, allows for both precise and parsimonious modeling.

The class of FP models could be in the most general terms considered to belong to the broader

family of Linear Parameter Varying (LPV) models (for details in LPV model identification see Toth

(2010), Bamieh and Giarre (2003) and the references therein). Nevertheless and despite their su-

perficial resemblance, these two model classes address somewhat different identification issues with

quite different perspectives. LPV identification is achieved via two major approaches: (i) the local

approach and (ii) the global approach. In the local approach LTI models are identified in a number

of (local) operating points corresponding to constant scheduling signals and the resulting local linear

models are interpolated (possibly by using data from an additional global experiment) to an LPV

model (Toth 2010). For the interpolation various techniques and approaches have been introduced,

varying from interpolation on pole estimates to the technique where each local (LTI) model is con-

verted to a state space model in canonical form, and subsequently the coefficients in this model are

interpolated. The local approach would, nevertheless, suffer from a number of problems as it would

fail to provide a single global and parsimonious model valid under all admissible operating conditions,

while it would be suboptimal, characterized by reduced statistical accuracy, as it would result in a

large number of estimated parameters and ineffective use of the information available in the totality of

the data records. For instance, the interrelations among the different data records would be ignored,

as a result of separating the problem into seemingly unrelated subproblems. In the global approach

though one has to determine a global LPV model structure and an identification criterion and data

from a single global experiment are employed in order to estimate an LPV model (Toth 2010).

In the FP framework the only essential practical, but necessary, condition for identifying parsi-

monious global system models is the availability of data records from each operating condition (point)

with each such condition corresponding to a specific value of one (or more) measurable variable. Fur-

thermore, this framework circumvents the aforementioned difficulties that the LPV local approach

faces and allows for effective and accurate (statistically efficient) identification of a global and par-

simonious model describing the system under any admissible operating condition. Moreover, the

interrelations among the different data records belonging to the various operating conditions are fully

taken into account, as the FP model structure employs appropriate data pooling techniques. Fur-

thermore, an extremely important difference is that the LPV global approach employs data obtained

from a single experiment, which is not the case in the FP framework, as it employs data records

obtained under a sample of the operating conditions. From all the above it is obvious that, despite



8 Chapter 1. Introduction

their phenomenal similarities, the FP and LPV model structures constitute distinct representations

that have important differences and therefore should be clearly distinguished.

1.3 Thesis goals

The main goals of this thesis may be summarized as follows:

(i) Experimental assessment and critical comparison of the main vibration based statistical time

series methods for SHM via their application to paradigm laboratory structures. Discussion of

the methods’ main features, operational characteristics and applicability under uncertainties, as

well as investigation of their pros and cons.

(ii) Evolution and improvement of the recently introduced FP framework for the identification of

stochastic dynamic systems under multiple/varying operating conditions. Postulation of the

Vector-dependent Functionally Pooled (VFP) parametrization that includes a vector characteri-

zation of the admissible operating conditions and development of effective parameter estimation

and model structure selection methods. Investigation of the asymptotic properties of the devel-

oped estimators and Monte Carlo assessment.

(iii) Extension, generalization, and experimental validation and assessment of the recently intro-

duced stochastic Functional Model Based Method (FMBM), which is now based on the novel

VFP model structure, and is – for the first time – capable of achieving unified and effective dam-

age detection (Level 1), along with complete and precise localization (Level 2) and magnitude

estimation (Level 3).

(iv) Introduction and experimental validation and assessment of a sequential, statistically optimal,

time series method for vibration based SHM. The method is able to achieve robust and effec-

tive damage detection (Level 1), along with damage identification (Level 2) and quantification

(Level 3) under uncertainties. It operates under predetermined type I (false alarm) and II

(missed damage) error probabilities achieving early detection of damage. Moreover, the method

is characterized by computational simplicity and thus may be easily implemented for online SHM

in “real” structures.

The thesis chapters and their specific contribution are analytically presented in the next section.

1.4 Thesis chapters and main contribution

The thesis chapters are summarized in Table 1.1.

1.4.1 Chapters II: Experimental Assessment of Vibration Based Statistical Time
Series Methods for Structural Health Monitoring

The goal of this chapter is to provide an experimental assessment and comparison of vibration based

statistical time series methods for Structural Health Monitoring (SHM) via their application to a

lightweight aluminum truss structure and a scale aircraft skeleton structure.

In spite of the progress achieved so far, the literature on vibration based statistical time series

methods for SHM remains relatively sparse. In particular, no application studies that experimentally
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Chapter Title

II Experimental Assessment of Vibration Based Statistical Time Series Methods

for Structural Health Monitoring

III Identification of Stochastic Systems Under Multiple Operating Conditions:

The Vector-dependent Functionally Pooled (VFP) Parametrization

IV A Stochastic Functional Model Based Method for Vibration Based Damage Detection,

Localization, and Magnitude Estimation

V A Sequential Statistical Time Series Method for Vibration Based Structural

Health Monitoring

Table 1.1: Thesis chapters.

compare and assess the various methods are available. The goal of the present chapter is the ex-

perimental comparison and assessment of a number of univariate (scalar) and multivariate (vector)

statistical time series methods via their application on a lightweight laboratory aluminum truss struc-

ture and a scale aircraft skeleton structure. Two non-parametric methods, namely a Power Spectral

Density (PSD) and a Frequency Response Function (FRF) based method, as well as five parametric

methods, namely a model parameter based, a residual variance, a residual likelihood function, a resid-

ual uncorrelatedness and a Sequential Probability Ratio Test (SPRT) based method, are reviewed

and experimentally assessed. The damage cases considered correspond to loosening of various bolts

connecting certain of the elements of the structures. Random force excitation is provided via an elec-

tromechanical shaker, while the vibration responses are measured at various positions via dynamic

strain gauges and accelerometers.

Both univariate (scalar response) and multivariate (vector responses) versions of the methods

are used, while assessment results are presented for two laboratory structures, namely an aluminum

truss structure and a scale aircraft skeleton structure. The methods’ main features and operational

characteristics are discussed along with practical issues, while their effectiveness is demonstrated via

various test cases corresponding to different experiments, damage scenarios, and vibration measure-

ment positions.

Original contributions:

• Experimental assessment and critical comparison of non-parametric and parametric statisti-

cal time series methods for SHM, employing both scalar (univariate) and vector (multivariate)

schemes.

• Discussion of the methods’ main features, operational characteristics, and performance under

experimental uncertainties and multiple experiments under various damage scenarios.

• Identification of the main advantages and disadvantages of the methods under practical situation

in order to determine future research focus.

The part of the chapter concerning the experimental assessment of the scalar methods for SHM in

a truss aluminum structure has been published in the Mechanical Systems & Signal Processing journal

(Kopsaftopoulos and Fassois 2010a), while the part of the chapter concerning the vector methods

assessment in a scale aircraft skeleton structure has been published in the Journal of Theoretical and

Applied Mechanics (invited paper) journal (Kopsaftopoulos and Fassois 2011b). Preliminary results of
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the methods’ assessment have been published in the proceedings of four conferences (Kopsaftopoulos

and Fassois 2008, Kopsaftopoulos et al. 2010, Kopsaftopoulos and Fassois 2010b, Kopsaftopoulos and

Fassois 2010c).

1.4.2 Chapter III: Identification of Stochastic Systems Under Multiple Operating
Conditions: The Vector-dependent Functionally Pooled (VFP) Parametri-
zation

The goal of this chapter is the identification of stochastic systems under multiple operating conditions

via Vector-dependent Functionally Pooled (FP) models. In many applications a system operates

under a variety of operating conditions which affect its dynamics, with each condition kept constant

for a single commission cycle. Hence, damage location and damage magnitude may be considered

as parameters that affect the operating conditions and thus may be effectively parametrized. This

chapter’s work is based on the novel Functional Pooling (FP) framework, which has been recently

introduced by the SMSA group, and specifically in Sakellariou (2005), Sakellariou and Fassois (2007)

and Sakellariou and Fassois (2007b).

Thus, the third chapter of the thesis addresses the problem of identifying a globally valid and

parsimonious system model based on input-output data records obtained under a sample of operat-

ing conditions characterized by more than one parameters (for instance operating temperature and

humidity or damage location and magnitude). Thus, models that include a vector characterization

of the operating conditions (referred to as operating parameter vector) are postulated. The problem

is tackled within the novel Functional Pooling (FP) framework that postulates proper global models

of the ARX and ARMAX types, data pooling techniques, and statistical parameter estimation. Cor-

responding Vector-dependent Functionally Pooled (VFP) ARX and ARMAX models are postulated,

and proper estimators of the Least Squares (LS), Maximum Likelihood (ML), and Prediction Error

(PE) types are developed. Model structure estimation is achieved via customary criteria (Bayesian

Information Criterion) and a Genetic Algorithm (GA) based procedure. The strong consistency of

the estimators is established, whereas the effectiveness of the complete estimation and identification

method is demonstrated via Monte Carlo experiments.

Original contributions:

• Extension of the FP models employing a scalar operating parameter to the Vector-dependent

FP (VFP) models employing the operating parameter vector.

• Establishment of the strong consistency of the proposed estimators.

• Model structure estimation is achieved via a Genetic Algorithm (GA) based procedure.

• The innovations sequence variance is projected to a functional subspace, so now it may be

available not only for the sample of operating conditions (available data records), but it may be

efficiently estimated for all admissible operating conditions.

• Assessment of the proposed estimators and structure selection procedures via Monte Carlo ex-

periments.

The VFP-ARX model estimation and identification part has been published in conference pro-

ceedings (Kopsaftopoulos and Fassois 2006a). The complete VFP parametrization journal paper

version is under preparation for publication (Kopsaftopoulos and Fassois 2011a).
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1.4.3 Chapter IV: A Stochastic Functional Model Based Method for Vibration
Based Damage Detection, Localization, and Magnitude Estimation

The aim of this chapter is the introduction and experimental validation and assessment of a stochastic

Functional Model Based Method (FMBM) that is – for the first time – capable of achieving effective

damage detection along with complete and precise localization and magnitude estimation.

The proposed method constitutes an important generalization of the original FMBM (Sakellariou

2005, Sakellariou and Fassois 2008), with its main innovative element being its unique ability to achieve

– for the first time within the context of statistical time series type methods – complete and precise

damage localization over continuous topologies (infinite number of potential locations) on a structure,

combined with damage magnitude estimation. Furthermore, estimator uncertainties are fully taken

into account in all phases of the diagnostic procedure, and uncertainty ellipsoids are provided for

combined damage location and magnitude. Like the original FMBM, the method utilizes a partial

and reduced size identified model, and is capable of operating on a “low” number of measurement

sensors – even on a single pair for “small” structures – and any type of vibration response signals

(acceleration, velocity, displacement).

The method is based in the new extended class of Vector-dependent Functionally Pooled (VFP)

models developed in the previous thesis chapter, as well as on proper statistical estimation and de-

cision making schemes. VFP models allow for the analytical inclusion of both damage location and

magnitude in the dynamics, thus permit the extension of the notion of damage mode/fault mode to

include damage not only of all possible magnitudes, but also of all possible locations in a specific con-

tinuous topology on a structure. More precisely, the proposed method can accurately localize damage

anywhere on properly defined continuous topologies on the structure, instead of pre-defined specific

locations. The method is validated and its effectiveness is experimentally assessed via its application

to damage detection, precise localization, and magnitude estimation on a prototype GARTEUR-type

laboratory scale aircraft skeleton structure. The damage scenarios considered consist of varying size

small masses attached at various continuous topologies on the structure. The method is shown to

achieve effective damage detection, precise localization, and magnitude estimation based on even a

single pair of measured excitation-response signals.

Original contributions:

• The feasibility of achieving precise damage localization and magnitude estimation based on only

a single excitation-response signal pair is, for the first time, investigated and demonstrated.

• Localization and damage magnitude uncertainties are explicitly considered and estimated, with

uncertainty ellipsoids corresponding to specified probability levels being constructed.

• The method’s operation and effectiveness is examined for both “local” and “remote” (with respect

to the sensor location) damage. This is critical in view of the need for effective diagnosis with

the smallest possible number the available sensors.

• The effectiveness of the method in properly detecting and “negatively” localizing (that is ex-

cluding all considered structural topologies) damage that does not belong to any of the modelled

types/topologies (referred to as unmodelled damage) is examined.

This chapter has been accepted for publication in the Mechanical Systems & Signal Processing

journal (Kopsaftopoulos and Fassois 2011e). Initial results have been published in Kopsaftopoulos

and Fassois (2006b) and Kopsaftopoulos and Fassois (2007).
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1.4.4 Chapter V: A Sequential Statistical Time Series Method for Vibration Based
Structural Health Monitoring

The goal of the final chapter is the development of a sequential statistically optimal time series method

for vibration based Structural Health Monitoring (SHM). The method is based on the statistically

optimal Sequential Probability Ratio Test (SPRT) introduced by Wald (1947), which is for the first

time employed for vibration based damage detection, identification and quantification. SPRT utilizes

likelihood ratio hypotheses tests on model residuals, which – as the Neyman-Pearson lemma implies

– for a given amount of information they are the most powerful tests (Ghosh and Sen 1991, Lehmann

and Romano 2008).

The method is able to achieve effective damage detection, along with damage identification

and quantification, based on sequential multihypothesis testing. Furthermore, unlike conventional

hypothesis testing, the method operates under predetermined type I (false alarm) and II (missed

damage) error probabilities, while the number of observations required to reach a decision is a random

variable, rather than a fixed quantity. The method’s performance is determined a priori via the

analytical expressions of the Operating Characteristic (OC) and the Average Sample Number (ASN)

functions, while it requires on average the minimum number of samples in order to reach a decision

compared with fixed sample size most powerful tests.

The method’s effectiveness is validated and experimentally assessed via its application to damage

detection, identification and quantification on a lightweight aluminum truss structure using a single

pair of measured excitation-response signals.

Original contributions:

• Use – for the first time in the context of vibration based SHM – of the statistically optimal

multihypothesis SPRT in order to propose a complete SHM method able to achieve early, robust

and effective damage detection, identification and quantification under uncertainties.

• The method’s performance is determined a priori via the use of the operating characteristic and

average sample number functions, selected type I (false alarm) and II (missed damage) error

probabilities, and available data records of the structure.

• Assessment of the operating characteristic function, average sample number function, and per-

formance characteristics of the method via a Monte Carlo study.

• Assessment of the method’s performance under experimental uncertainties using multiple exper-

iments under various damage scenarios via its application on a paradigm laboratory structure.

• Potential online SHM implementation, as the method may be based on simple conventional time

series models (ARX, ARMAX, state space, and so on) and is characterized by computational

simplicity.

Initial results of this chapter have been published in the Journal of Theoretical and Applied

Mechanics (Kopsaftopoulos and Fassois 2011b) and in conference proceedings (Kopsaftopoulos and

Fassois 2011d). The complete journal version is under preparation for publication (Kopsaftopoulos

and Fassois 2011c).



Chapter 2

Experimental Assessment of Vibration
Based Statistical Time Series Methods
for Structural Health Monitoring

The goal of the second chapter is to provide an experimental assessment and comparison of vibration

based statistical time series methods for Structural Health Monitoring (SHM) via their application

on a lightweight aluminum truss structure and a scale aircraft skeleton structure. An overview of the

principles and techniques of the main non-parametric and parametric methods is provided, including

response-only and excitation-response schemes. Damage detection and identification are based both

on scalar (univariate) and vector (multivariate) versions of the methods, while results for various

vibration measurement positions on the structures are presented. The non-parametric and parametric

identification is presented, while the damage diagnosis methods’ effectiveness is assessed via multiple

experiments under various damage scenarios. The results of the chapter confirm the high potential

and effectiveness of statistical time series methods for SHM.

13
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2.1 Introduction

Vibration based structural damage detection, identification (localization) and magnitude estimation,

also collectively referred to as damage diagnosis, is of paramount importance for reasons associated

with proper operation, maintenance and safety. The process of implementing a damage diagnosis

strategy is referred to as Structural Health Monitoring (SHM). This process involves the observation

of a structure/system over time using periodical measurements, the extraction of damage sensitive

quantities (features) from these measurements, and the statistical analysis of these quantities in order

to determine the current structural state.

Over the past several years, a wide variety of local non-destructive testing tools have been

developed (Farrar et al. 2001, Doebling et al. 1996, Doebling et al. 1998). These are mainly based

on ultrasound, acoustic, radiography, eddy current, and thermal field principles, and require access

to the vicinity of the suspected damage location, while they are typically time consuming and costly.

Aiming at overcoming the aforementioned drawbacks, SHM methods attempt to achieve damage

diagnosis on a more “global” basis, with no requirement for visual inspection and potential automation

capability. Among them, vibration based methods (Farrar et al. 2001, Doebling et al. 1996, Doebling

et al. 1998, Montalvão et al. 2006, Fan and Qiao 2011, Salawu 1997) appear promising, as they tend

to be time effective and less expensive than many alternatives.

Statistical time series methods for SHM form an important, rapidly evolving, category within the

broader vibration based family of methods (Fassois and Sakellariou 2007, Fassois and Sakellariou 2009,

Basseville et al. 2004, Mevel et al. 2003, Sakellariou and Fassois 2008, Kopsaftopoulos and Fassois 2007,

Bodeux and Golinval 2001, Kopsaftopoulos and Fassois 2010a, Kopsaftopoulos and Fassois 2011b, Loh

et al. 2011, Gul and Catbas 2011). They utilize (i) random excitation and/or response signals (time

series), (ii) statistical model building, and (iii) statistical decision making for inferring the health state

of a structure. As with all vibration based methods, the fundamental principle upon which they are

founded is that small changes (damage) in a structure cause discrepancies in its vibration response,

which may be detected and associated with a specific cause (damage type).

Statistical time series methods for SHM are fundamentally of the inverse type, as the models used

are data based rather than physics based. Furthermore, they offer a number of important advantages,

including inherent accounting for uncertainties, no need to interrupt normal operation, no requirement

for physics-based or finite element type models, no requirement for complete modal models, and

statistical decision making with specified performance characteristics. On the other hand, as complete

structural models are not employed, time series methods may identify damage only to the extent

allowed by the type of model used. Other limitations include the need for proper “training”, adequate

user expertise and potentially limited physical insight. For an extended overview of the principles and

techniques of statistical time series methods for SHM, the interested reader is referred to the recent

overviews of Fassois and Sakellariou (2007) and Fassois and Sakellariou (2009).

Statistical time series methods for SHM use scalar or vector random signals from the structure in

its healthy state, as well as from a number of potential damage states, identifying suitable (parametric

or non-parametric) statistical time series models describing the structure in each state, and extracting

a statistical quantity (characteristic quantity) characterizing the structural state in each case (baseline

phase). Damage diagnosis is then accomplished via statistical decision making consisting of comparing,

in a statistical sense, the current characteristic quantity with that of each potential state as determined

in the baseline phase (inspection phase).

Non-parametric time series methods for SHM are those based on corresponding time series rep-

resentations, such as power spectral estimates (Fassois and Sakellariou 2007, Fassois and Sakellariou

2009). This type of methods has received limited attention in the literature. Sakellariou et al. (2001)
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present the application of a Power Spectral Density (PSD) based method to fault detection in a railway

vehicle suspension. The method is applied within a statistical framework, utilizing interval spectral

estimates and statistical decision making schemes, while its effectiveness is assessed via experimental

data. Furthermore, the application of a PSD analysis based method to a simply supported aluminum

beam is presented by Liberatore and Carman (2004), although the effectiveness of the method is

demonstrated in conjunction with an analytical model, without employing statistical tools. Rizos

et al. (2008) treat the problem of damage detection in stiffened aircraft panels via a non-parametric

Frequency Response Function (FRF) based method. The FRF estimates are demonstrated to exceed

their normal variability bounds under skin damage, while the method accounts for uncertainties and

statistical variabilities. Finally, Hwang and Kim (2004) present an FRF based method, whose effec-

tiveness is numerically demonstrated via simulation examples based on Finite Element (FE) models

of a simple cantilever and a helicopter rotor blade. Although no statistical framework is incorporated,

the method is reported to achieve a satisfactory level of precision with respect to damage diagnosis.

Parametric time series methods for SHM are those based on corresponding time series represen-

tations, such as the AutoRegressive Moving Average (ARMA) representation (Fassois and Sakellariou

2007, Fassois and Sakellariou 2009, Ljung 1999, Söderström and Stoica 1989, Lütkepohl 2005). This

type of methods has attracted considerable attention and their principles have been used in a number

of studies. Sohn et al. (2001) and Sohn et al. (2003) use the prediction errors of a so-called AutoRe-

gressive and AutoRegressive with eXogenous inputs (AR-ARX) model, a sequential hypothesis testing

technique (sequential probability ratio test), and extreme value statistics for damage diagnosis. The

method is assessed via numerical simulations and its application to an eight degree-of-freedom mass-

spring system, data obtained from a patrol boat, and a three-storey building model. In a related work,

Sohn and Farrar (2001) employ the standard deviation ratio of the residual errors from a two-stage

AR-ARX model, obtained from healthy measured signals, as the damage sensitive feature. Under

the normality assumption this feature is shown to follow F distribution based on which a hypothesis

test is developed to infer the structural health state of an eight degree-of-freedom mass-spring sys-

tem. Adams and Farrar (2002) discuss the use of the autoregressive and exogenous coefficients of a

frequency domain ARX model and their implementation for damage diagnosis. The model coefficients

are utilized for detecting damage with some level of statistical confidence by applying a standard

statistical measure (Mahalanobis distance), while the proposed method is applied to data obtained

from a three-storey building model.

Furthermore, the first three autoregressive coefficients of an ARMA model constitute the feature

vector employed by Nair et al. (2006) and Nair and Kiremidjian (2007) to tackle damage detection.

A Gaussian mixture model is used to model the feature vector, while damage is detected via the

gap statistic. The postulated method is applied to analytical and experimental data from the ASCE

benchmark structure. Carden and Brownjohn (2008) propose a damage detection method based on

the ARMA model residual sum of squares and a statistical classifier utilizing a χ2 distribution. The

experimental assessment of the method is achieved via its application to the IASC-ASCE four-storey

frame structure, the Z24 bridge, and the Malaysia-Singapore Second Link bridge. Fugate et al. (2001)

fit an AR model to the measured data obtained from a healthy structure and the corresponding model

residuals are used as damage sensitive features. Next, statistical process control methods, such as the

X-bar and S control charts, are employed to monitor the mean and variance of the selected features in

order to detect damage. For demonstration, the method is applied to vibration test data acquired from

a concrete bridge column. An estimate of the standard deviation along with higher-order moments

of the residuals obtained from vector AR models are used to detect damage by Mattson and Pandit

(2006b). A damage detection threshold level is identified from available training data, while the method

is assessed via data obtained from an eight degree-of-freedom test bed. Gao and Lu (2009) present

a formulation that enables the construction of residual generators, via state-space representations, as



16 Chapter 2. Experimental assessment of vibration based statistical time series methods for SHM

damage indicators. Then, damage detection is transformed into a disturbance decoupling problem, so

that a geometric technique can be employed to detect damage. Numerical results and experimental

examples on a laboratory test frame are used to assess the effectiveness of the method. A two-stage

damage diagnosis strategy is proposed by Zheng and Mita (2007). Damage existence is determined in

the first stage using a damage indicator defined as the distance between two ARMA models, while,

in a second stage, damage localization is achieved via pre-whitening filters. The method does not

incorporate a statistical framework, while it is applied to a five-storey steel structure. Sakellariou

and Fassois (2006) employ Output Error (OE) models and statistical hypothesis testing procedures

utilizing the corresponding model parameter vectors, in order to achieve damage diagnosis in structures

under earthquake excitation. Damage identification (localization) is achieved via a geometric method,

where the parameter vector is used as an initial feature vector, while the method’s effectiveness is

assessed via a six-storey building model.

A method based on subspace identification and state space model residuals is reported in Bas-

seville et al. (2004) and Mevel et al. (2003), while methods based on the novel class of stochastic

Functionally Pooled (FP) models are reported in Sakellariou and Fassois (2008) and Kopsaftopoulos

and Fassois (2007). The FP model based methods are capable of offering an effective solution to

the damage detection, localization and magnitude estimation (quantification) subproblems within a

unified framework. Nevertheless, these methods are somewhat more elaborate.

In spite of the progress achieved so far, the literature on vibration based statistical time series

methods for SHM remains relatively sparse. In particular, no application studies that experimentally

compare and assess the various methods are available. The goal of the present study precisely is

the experimental comparison and assessment of a number of univariate (scalar) statistical time series

methods to a lightweight laboratory aluminum truss structure. The damage cases considered corre-

spond to loosening of various bolts connecting certain of the truss elements. Random force excitation

is provided via an electromechanical shaker, while the vibration responses are measured at various

positions via dynamic strain gauges. Two non-parametric methods, namely a Power Spectral Density

(PSD) and a Frequency Response Function (FRF) based method, as well as four parametric methods,

namely a model parameter based, a residual variance, a residual likelihood function, and a residual

uncorrelatedness based method, are briefly reviewed and experimentally assessed.

As already indicated, univariate (scalar response) versions of the methods are used, while results

are presented for three distinct vibration response positions designated as Y1, Y2 and Y3. The meth-

ods’ main features and operational characteristics are discussed along with practical issues, while their

effectiveness is demonstrated via various test cases corresponding to different experiments, damage

scenarios, and vibration measurement positions.

The main issues addressed in the study are:

(a) Assessment of the methods in terms of their damage detection capability under various damage

scenarios and different vibration measurement locations (classified as either “local” or “remote”

with respect to damage location).

(b) Assessment of the ability of the methods to accurately identify (classify) the damage type through

“local” or “remote” sensors.

(c) Comparison of the performance characteristics of scalar and vector statistical time series methods

with respect to damage diagnosis: false alarm, missed damage, and damage misclassification

rates are investigated.

The rest of the chapter is organized as follows: The experimental set-up is presented in Section

2.4, while the general workframe of statistical time series methods for SHM is briefly outlined in Section
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Baseline Phase

Structural state So (healthy structure) SA (damage type A)† SB (damage type B)† . . .
Vibration signals zo[t] = (xo[t], yo[t]) zA[t] = (xA[t], yA[t]) zB[t] = (xB[t], yB[t]) . . .

Zo = (Xo, Yo) ZA = (XA, YA) ZB = (XB, YB) . . .
Charact. quantity Qo QA QB . . .

Inspection Phase

Structural state Su (current structure in unknown state)
Vibration signals zu[t] = (xu[t], yu[t])

Zu = (Xu, Yu)
Charact. quantity Qu
†Normally various damage magnitudes are considered.

Table 2.1: Workframe setup: structural state, vibration signals used, and the characteristic quantity
(baseline and inspection phases).

2.2. A concise overview of the methods is given in Section 2.3, and the experimental assessment and

comparison is presented in Sections 2.4 and 2.5. Concluding remarks are finally summarized in Section

2.6.

2.2 Workframe of statistical time series methods for SHM

Let So designate the structure under consideration in its nominal (healthy) state, SA, SB, . . . the

structure under damage of type (mode) A,B, . . . and so on, and Su the structure in unknown (to be

determined) state. Each damage type may include a continuum of damages which are characterized by

common nature or location (for instance, damage in a specific structural element) but varying degree

of damage.

Statistical time series methods are commonly based on discretized excitation x[t] and/or response

y[t] (for t = 1, 2, . . . , N) random vibration data records. Note that t refers to discrete time, with the

corresponding actual time being (t− 1)Ts, where Ts stands for the sampling period. Let the complete

excitation and response signals be presented as X and Y , that is Z = (X,Y ). Like before, a subscript

(o,A,B, . . . , u) is used for designating the corresponding state of the structure that provided the

signals.

Note that all collected signals need to be suitably pre-processed (Doebling et al. 1998, Fassois

and Sakellariou 2007, Fassois 2001). This may include low or band-pass filtering within the frequency

range of interest, signal subsampling (in case the originally used sampling frequency is too high),

sample mean subtraction, as well as proper scaling (in the linear dynamics case). The latter is not

only used for numerical reasons, but also for counteracting –to the extent possible– different operating

(including excitation levels) and/or environmental conditions.

The obtained signals are subsequently analyzed by parametric or non-parametric time se-

ries methods and appropriate models are identified and properly validated (Fassois and Sakellariou

2007, Fassois and Sakellariou 2009, Ljung 1999). Such models are identified on the basis of data

Zo, ZA, ZB, . . . in the baseline phase and based on Zu in each inspection phase. From each estimated

model, the corresponding estimate of a characteristic quantity Q is extracted (Q̂o, Q̂A, Q̂B, . . . in the

baseline phase; Q̂u in the inspection phase – see Table 2.1).

Damage detection is then based on proper comparison of the true (but not precisely known)

Qu to the true (but also not precisely known) Qo via a binary statistical hypothesis test that uses

the corresponding estimates – see Table 2.2. Damage identification is similarly based on the proper
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Figure 2.1: Workframe for statistical time series methods for Structural Health Monitoring.

comparison Qu to each one of QA, QB, . . . via statistical hypothesis testing procedures that also use

the corresponding estimates (Table 2.2). Damage magnitude estimation, when considered, is based on

interval estimation techniques. The general workframe for statistical time series methods for SHM is

depicted in Figure 2.1.

Note that the design of a binary statistical hypothesis test is generally based on the probabilities

of type I and type II error, or else the false alarm (α) and missed damage (β) probabilities. The designs

presented in this work are based on the former, but in selecting α it should be born in mind that as

α decreases (increases) β increases (decreases).

2.3 Concise overview of selected statistical time series methods for
SHM

A concise overview of selected statistical time series methods for SHM is presented – for further details

the reader is referred to Fassois and Sakellariou (2007) and Fassois and Sakellariou (2009). Statistical

Damage detection

Ho : Qu ∼ Qo null hypothesis – healthy structure
H1 : Qu � Qo alternative hypothesis – damaged structure

Damage identification

HA : Qu ∼ QA hypothesis A – damage type A
HB : Qu ∼ QB hypothesis B – damage type B

...
...

Table 2.2: Statistical hypothesis testing problems for the damage detection and identification tasks.
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time series methods may be classified as non-parametric or parametric, depending on the way the

characteristic quantity Q is constructed (Fassois and Sakellariou 2007, Fassois and Sakellariou 2009).

Non-parametric methods utilize a statistic based on non-parametric time series representations, such

as spectral models (Fassois and Sakellariou 2007, Fassois and Sakellariou 2009). On the other hand,

parametric methods utilize a statistic Q based on parametric time series representations, such as

AutoRegressive with eXogenous excitation (ARX) or other representations (Fassois 2001, Ljung 1999,

Söderström and Stoica 1989). Depending on whether the response only or the excitation and the

response signals are employed, the methods are also classified as response-only or excitation-response,

respectively.

2.3.1 Non-parametric methods

2.3.1.1 A Power Spectral Density (PSD) based method

Damage detection and identification is tackled via changes in the Power Spectral Density (PSD) of

the measured vibration response signals when the excitation is not available (response-only case). The

method’s characteristic quantity thus is Q = Syy(ω) = S(ω), with ω designating frequency. The main

idea is based on the comparison of the current (unknown) structural response’s PSD Su(ω) to that of

the healthy structure’s So(ω) – or, in fact, to that corresponding to any other structural condition.

The following hypothesis testing problem is then set up for damage detection:

Ho : Su(ω) = So(ω) (null hypothesis – healthy structure)
H1 : Su(ω) 6= So(ω) (alternative hypothesis – damaged structure).

(2.1)

As the true PSDs, Su(ω), So(ω), are unknown, their estimates Ŝu(ω), Ŝo(ω) obtained via the Welch

method (with K non-overlapping segments; refer to Table 2.3) are used (Kay 1988, pp. 3 and 76).

Then, the following quantity follows (for each frequency ω) F distribution with (2K, 2K) degrees of

freedom (Fassois and Sakellariou 2007, Fassois and Sakellariou 2009):

F =
Ŝo(ω)/So(ω)

Ŝu(ω)/Su(ω)
∼ F (2K, 2K). (2.2)

Under the null (Ho) hypothesis the true PSDs coincide (Su(ω) = So(ω)) and F = Ŝo(ω)/Ŝu(ω). This

should then be in the range [fα/2, f1−α/2] with probability 1− α, and decision making is as follows at

a selected α risk level (type I error probability of α):

fα
2
(2K, 2K) ≤ F ≤ f1−α

2
(2K, 2K) (∀ ω) =⇒ Ho is accepted (healthy structure)

Else =⇒ H1 is accepted (damaged structure),
(2.3)

with fα/2, f1−α/2 designating the F distribution’s α/2 and 1− α/2 critical points.

Note that damage identification may be similarly achieved by performing hypotheses testing

similar to the above for damages from each potential damage type (see Table 2.2).

2.3.1.2 A Frequency Response Function (FRF) based method

This method is similar, but requires the availability of both the excitation and response signals

(excitation-response case) and uses the FRF magnitude as its characteristic quantity Q = |H(jω)|.
The main idea is the comparison of the FRF magnitude |Hu(jω)| of the current state of the structure
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Quantity Power Spectral Density Cross Spectral Density Frequency Response Function

(PSD) (CSD) (FRF)

Estimator Ŝyy(ω) = 1
K

∑K
i=1 Ŷ

i
L(jω)Ŷ iL(−jω) Ŝyx(ω) = 1

K

∑K
i=1 Ŷ

i
L(jω)X̂i

L(−jω) Ĥ(jω) = Ŝyx(jω)/Ŝxx(ω)

Ŷ iL(jω) = 1√
L

∑L
t=1 a[t]ŷi[t]e−jωTs X̂i

L(jω) = 1√
L

∑L
t=1 a[t]x̂i[t]e−jωTs

ŷi[t] = yi[t]− µ̂y x̂i[t] = xi[t]− µ̂x
(ith segment of length L) (ith segment of length L)

Properties 2KŜyy(ω)/Syy(ω) ∼ χ2(2K) E{|Ŝyx(jω)|} ≈ |Syx(jω)| E{|Ĥ(jω)|} ≈ |H(jω)|

var[|Ŝyx(jω)|] ≈ |Syx(jω)|2

γ2(ω)K
var[|Ĥ(jω)|] ≈ 1−γ2(ω)

γ2(ω)2K

Comments Welch method (no overlap)

K : number of data segments For N → ∞, a[t] = 1

a[t] : time window γ2(ω) → 1 or K → ∞

Remarks:

ω ∈ [0, 2π/Ts] stands for frequency in radian per second; j stands for the imaginary unit; K stands for the

number of segments used in Welch spectral estimation.

γ2(ω) stands for the coherence function (Bendat and Piersol 2000, p. 196).

The frequency-domain estimator distributions may be approximated as Gaussian for small relative errors

(that is γ2(ω) → 1 or K → ∞) (Bendat and Piersol 2000, pp. 274–275).

MATLAB functions: pwelch.m for Ŝyy, csd.m for Ŝyx, tfestimate.m for Ĥ, mscohere.m for γ̂2

Table 2.3: Estimation of non-parametric statistical time series models.

to that of the healthy structure |Ho(jω)|. The following hypothesis testing problem is then set up for

damage detection:

Ho : δ|H(jω)| = |Ho(jω)| − |Hu(jω)| = 0 (null hypothesis – healthy structure)
H1 : δ|H(jω)| = |Ho(jω)| − |Hu(jω)| 6= 0 (alternative hypothesis – damaged structure).

(2.4)

As the true FRFs, Hu(jω) and Ho(jω), are unknown, their respective estimates, Ĥu(jω) and Ĥo(jω),

obtained as indicated in Table 2.3, are used. The FRF estimator may, asymptotically (N → ∞),

be considered as approximately following Gaussian distribution (Bendat and Piersol 2000, p. 338).

Under the null (Ho) hypothesis the true FRF magnitudes coincide (|Hu(jω)| = |Ho(jω)|), hence

δ|Ĥ(jω)| = |Ĥo(jω)| − |Ĥu(jω)| ∼ N (0, 2σ2
o(ω)). The variance σ2

o(ω) = var[|Ĥo(jω)|] is generally

unknown, but may be estimated in the baseline phase (Table 2.3).

Equality of the two FRF magnitudes may be then examined at the selected α (type I) risk level

through the statistical test:

Z =
∣∣δ|Ĥ(jω)|

∣∣/
√

2σ̂2
o(ω) ≤ Z1−α

2
(∀ ω) =⇒ Ho is accepted (healthy structure)

Else =⇒ H1 is accepted (damaged structure),
(2.5)

with Z1−α/2 designating the standard normal distribution’s 1− α/2 critical point.

Damage identification may be similarly achieved by performing hypotheses testing similar to

the above for damages from each potential damage type (see Table 2.2).
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2.3.2 Parametric methods

2.3.2.1 A model parameter based method

This method bases damage detection and identification on a characteristic quantity Q = f(θ) which

is function of the parameter vector θ of a parametric time series model (Q = θ in the typical case).

Let θ̂ designate a proper estimator of the parameter vector θ (Fassois 2001),(Ljung 1999, pp.

212–213). For sufficiently long signals the estimator is (under mild assumptions) Gaussian distributed

with mean equal to its true value θ and a certain covariance Pθ (Ljung 1999, p. 303), hence θ̂ ∼
N (θ,Pθ).

Damage detection is based on testing for statistically significant changes in the parameter vector

θ between the nominal and current state of the structure through the hypothesis testing problem

(Fassois and Sakellariou 2007, Fassois and Sakellariou 2009):

Ho : δθ = θo − θu = 0 (null hypothesis – healthy structure)
H1 : δθ = θo − θu 6= 0 (alternative hypothesis – damaged structure).

(2.6)

The difference between the two parameter vector estimators also follows Gaussian distribution (Fassois

and Sakellariou 2007), that is δθ̂ = θ̂o − θ̂u ∼ N (δθ, δP ), with δθ = θo − θu and δP = P o + P u,

where P o,P u designate the corresponding covariance matrices. Under the null (Ho) hypothesis δθ̂ =

θ̂o− θ̂u ∼ N (0, 2P o) and the quantity χ2
θ = δθ̂

T · δP−1 · δθ̂ (with δP = 2P o) follows χ2 distribution

with d (parameter vector dimensionality) degrees of freedom (Fassois and Sakellariou 2007, Fassois

and Sakellariou 2009),(Ljung 1999, p. 558).

As the covariance matrix P o corresponding to the healthy structure is unavailable, its estimated

version P̂ o is used. Then, the following test is constructed at the α (type I) risk level:

χ2
θ ≤ χ

2
1−α(d) =⇒ Ho is accepted (healthy structure)

Else =⇒ H1 is accepted (damaged structure),
(2.7)

with χ2
1−α(d) designating the χ2 distribution’s 1− α critical point.

Damage identification may be based on the multiple hypotheses testing problem of Table 2.2

comparing the parameter vector θ̂u belonging to the current state of the structure to those corre-

sponding to different damage types θ̂A, θ̂B, . . ..

2.3.2.2 Residual based methods

These methods (Fassois and Sakellariou 2007, Fassois and Sakellariou 2009) attempt damage detection

and identification using characteristic quantities that are functions of residual sequences obtained

by driving the current signal(s) Zu through suitable predetermined –in the baseline phase– models

Mo,MA,MB, . . ., each one corresponding to a particular state of the structure (healthy and damaged

structure under specific damage types). The general idea is that the residual sequence obtained by

a model that truly reflects the actual (current) state of the structure will possess certain distinct

properties, and will be thus possible to distinguish. An advantage of the methods is that model

identification is not repeated in the inspection phase.

Let MV designate the model representing the structure in its V state (V = o or V = A,B, . . .).

The residual series obtained by driving the current signals Zu through each one of the aforemen-

tioned models are designated as eou[t], eAu[t], eBu[t], . . . and are characterized by respective variances

σ2
ou, σ

2
Au, σ

2
Bu, . . . –notice that the first subscript designates the model employed and the second the
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Figure 2.2: Schematic for residual based statistical time series methods for SHM (the inspection phase
is depicted outside the dashed boxes).

structural state corresponding to the current excitation and/or response signal(s) used. The character-

istic quantities obtained from the corresponding residual series are designated as Qou, QAu, QBu, . . ..

The characteristic quantities obtained using the baseline data records are designated as QV V (V = o

or V = A,B, . . .).

A schematic for the residual based statistical time series methods for SHM is illustrated in Figure

2.2.

Residual variance based method

In this method the characteristic quantity is the residual variance. Damage detection is based

on the fact that the residual series eou[t], obtained by driving the current signal(s) Zu through the

model Mo corresponding to the nominal (healthy) structure should be characterized by variance σ2
ou,

which becomes minimal (specifically equal to σ2
oo) if and only if the current structure is healthy. The

following hypothesis testing problem is then set up:

Ho : σ2
oo = σ2

ou (null hypothesis – healthy structure)
H1 : σ2

oo < σ2
ou (alternative hypothesis – damaged structure).

(2.8)

Under the null (Ho) hypothesis the residuals eou[t] are (just like the residuals eoo[t]) iid zero mean

Gaussian with variance σ2
oo (Fassois and Sakellariou 2007). Hence, the quantities Nuσ̂

2
ou/σ

2
oo and (No−

d)σ̂2
oo/σ

2
oo follow central χ2 distributions with Nu and No − d degrees of freedom, respectively. Note

that No and Nu designate the number of samples used in estimating the residual variance in the healthy

and current cases, respectively (typically No = Nu = N), and d designates the dimensionality of the

model parameter vector. Consequently, the statistic σ̂2
ou/σ̂

2
oo follows F distribution with (Nu, No − d)

degrees of freedom . The following test is then constructed at the α (type I) risk level:

F = σ̂2
ou
σ̂2
oo
≤ f1−α(Nu, No − d) =⇒ Ho is accepted (healthy structure)

Else =⇒ H1 is accepted (damaged structure).
(2.9)

Damage identification may be achieved based on the multiple hypotheses testing problem of

Table 2.2.

Residual likelihood function based method
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In this method damage detection is based on the likelihood function under the null (Ho) hypoth-

esis of a healthy structure (Fassois and Sakellariou 2007, Fassois and Sakellariou 2009),(Gertler 1998,

pp. 119–120). The hypothesis testing problem considered is:

Ho : θo = θu (null hypothesis – healthy structure)
H1 : θo 6= θu (alternative hypothesis – damaged structure),

(2.10)

with θo,θu designating the parameter vectors corresponding to the healthy and current structure,

respectively. Assuming serial independence of the residual sequence, the Gaussian likelihood function

Ly(Y,θ/X) for the data Y given X is obtained (Fassois and Sakellariou 2007, Fassois and Sakellariou

2009)(Box et al. 1994, p. 226).

Under the null (Ho) hypothesis, the residual series eou[t] generated by driving the current sig-

nal(s) through the nominal model is (just like eoo[t]) iid Gaussian with zero mean and variance σ2
oo.

Decision making may be then based on the likelihood function under Ho evaluated for the current

data, by requiring it to be larger or equal to a threshold l (which is to be selected) in order for the

null (Ho) hypothesis to be accepted:

Ly(Y,θo/X) ≥ l =⇒ Ho is accepted (healthy structure)
Else =⇒ H1 is accepted (damaged structure).

(2.11)

Under the null (Ho) hypothesis, the statistic Nσ̂2
ou/σ̂

2
oo follows χ2 distribution with N degrees of

freedom (Fassois and Sakellariou 2007, Fassois and Sakellariou 2009). This leads to the re-expression

of the above decision making rule as follows:

χ2
N = Nσ̂2

ou
σ̂2
oo
≤ χ2

1−α(N) =⇒ Ho is accepted (healthy structure)

Else =⇒ H1 is accepted (damaged structure),
(2.12)

with χ2
1−α(N) designating the χ2 distribution’s 1 − α critical point. Note that the above decision

making is similar to that of the previous (residual based variance) method.

In the case of vector time series models the corresponding vector residual series eou[t] is iid

Gaussian with zero mean and covariance matrix Σo. Under the null (Ho) hypothesis the above

decision making rule may be re-expressed as follows:

∑N
t=1(eTou[t,θo] ·Σo · eou[t,θo]) ≤ l =⇒ Ho is accepted (healthy structure)

Else =⇒ H1 is accepted (damaged structure).
(2.13)

Damage identification may be achieved by computing the likelihood function for the current

signal(s) for the various values of θ (θA,θB, . . .) and accepting the hypothesis that corresponds to the

maximum value of the likelihood.

Residual uncorrelatedness based method

This method is based on the fact that the residual sequence eou[t] obtained by driving the current

signal(s) Zu through the nominal model will be uncorrelated (white) if and only if the current structure

is in its nominal (healthy) state (Fassois and Sakellariou 2007, Fassois and Sakellariou 2009). Damage

detection may be then based on the hypothesis testing problem:

Ho : ρ[τ ] = 0 τ = 1, 2, . . . , r (null hypothesis – healthy structure)
H1 : ρ[τ ] 6= 0 for some τ (alternative hypothesis – damaged structure),

(2.14)

with ρ[τ ] designating the normalized autocovariance function (see Table 2.3) of the eou[t] residual

sequence.
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Under the null (Ho) hypothesis, eou[t] is iid Gaussian with zero mean and the statistic χ2
ρ =

N(N + 2)
∑r

τ=1(N − τ)−1ρ̂2[τ ] follows χ2 distribution with r degrees of freedom and ρ̂[t] designating

the estimator of ρ[t] (Box et al. 1994, p. 314). Decision making is then based on the following test at

the α (type I) risk level:

χ2
ρ = N(N + 2)

∑r
τ=1(N − τ)−1ρ̂2[τ ] ≤ χ2

1−α(r) =⇒ Ho is accepted (healthy structure)

Else =⇒ H1 is accepted (damaged structure).
(2.15)

Damage identification may be achieved by similarly examining which one of the eV u[t] (V = A,B, . . .)

residual series is uncorrelated.

2.3.2.3 The Sequential Probability Ratio Test (SPRT) based method

This method employs the Sequential Probability Ratio Test (SPRT) (Wald 2004, Ghosh and Sen 1991)

in order to detect a change in the standard deviation σ of the model scalar residual sequence (e[t] ∼
N (0, σ2), t = 1, . . . , N) (parametric method). An SPRT of strength (α, β), with α, β designating the

type I (false alarm) and II (missed damage) error probabilities, respectively, is used for the following

hypothesis testing problem:

Ho : σou ≤ σo (null hypothesis – healthy structure)
H1 : σou ≥ σ1 (alternative hypothesis – damaged structure)

(2.16)

with σou designating the standard deviation of a scalar residual signal obtained by driving the current

excitation and response signals through the healthy structural model, and σo, σ1 user defined values.

The basis of the SPRT is the logarithm of the likelihood ratio function based on n samples:

L(n) = log
f(e[1], . . . , e[n]|H1)

f(e[1], . . . , e[n]|Ho)
=

n∑

t=1

log
f(e[t]|H1)

f(e[t]|Ho)
= n · log

σo
σ1

+
σ2

1 − σ2
o

2σ2
oσ

2
1

·
n∑

t=1

e2[t] (2.17)

with L(n) designating the decision parameter of the method and f(e[t]|Hi) the probability density

function (normal distribution) of the residual sequence under hypothesis Hi (i = 0, 1).

The following test is then constructed at the (α, β) risk levels:

L(n) ≤ B =⇒ Ho is accepted (healthy structure)
L(n) ≥ A =⇒ H1 is accepted (damaged structure)

B < L(n) < A =⇒ no decision is made (continue the test)
(2.18)

with B = log[β/(1− α)] and A = log[(1− β)/α]. Following a decision, L(n) is reset to zero.

Damage identification may be achieved by performing SPRTs similar to the above separately

for damages of each potential type.

2.4 Application on a lightweight truss structure

In this section the experimental comparison and assessment of several univariate (scalar) statistical

time series methods on a lightweight laboratory aluminum truss structure is presented. The damage

cases considered correspond to loosening of various bolts connecting certain of the truss elements.

Random force excitation is provided via an electromechanical shaker, while the vibration responses

are measured at various positions via dynamic strain gauges. Two non-parametric methods, namely

a Power Spectral Density (PSD) and a Frequency Response Function (FRF) based method, as well

as four parametric methods, namely a model parameter based, a residual variance, a residual likeli-

hood function, and a residual uncorrelatedness based method, are briefly reviewed and experimentally

assessed.
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Figure 2.3: The aluminum truss structure and the experimental set-up: The force excitation (Point
X), the vibration measurement positions (Points Y1 – Y3), and the considered damage types (A, B,
C, D, and E).

2.4.1 The lightweight truss structure

The truss structure is depicted in Figure 2.3, suspended through a set of cords. It consists of twenty

eight elements with rectangular cross sections (15 × 15 mm) jointed together via steel elbow plates

and bolts. All parts are constructed from standard aluminum with the overall dimensions being

1400× 700× 800× 700 mm.

2.4.2 The damage types and the experiments

The damages considered correspond to complete loosening of various bolts at different joints of the

structure. Five distinct types are specifically considered (Figure 2.3): The first damage type, referred

to as damage type A, corresponds to the loosening of bolt A1 joining together an horizontal with a

vertical element. The second damage type, referred to as damage type B, corresponds to the loosening

of bolts A1 and B1 joining together an horizontal with a vertical element. Damage type B affects the

same elements as damage type A, but it is more severe, as loosening of two bolts is involved. The third

damage type, referred to as damage type C, corresponds to the loosening of bolts C1 and C2 joining

together an horizontal with a diagonal element. The fourth damage type, referred to as damage type

D, corresponds to the loosening of bolt D1 joining together an horizontal with a vertical element.

Finally, the fifth damage type, referred to as damage type E, corresponds to the loosening of bolt E1

joining together a vertical with a diagonal element. All damage types considered are summarized in

Table 2.4.

The force excitation is a random Gaussian signal applied vertically at Point X (Figure 2.3) via

an electromechanical shaker (MB Dynamics Modal 50A, max load 225 N) equipped with a stinger, and

measured via an impedance head (PCB 288D01, sensitivity 98.41 mV/lb). The vibration responses

are measured at different points via dynamic strain gauges (PCB ICP 740B02, 0.005 − 100 kHz,

50 mV/µε; sampling frequency fs = 256 Hz, signal bandwidth 0.5 − 100 Hz). The force and strain

signals are driven through a signal conditioning device (PCB 481A02) into the data acquisition system

(SigLab 20-42). In this study damage detection and identification results based on each one of the

three vibration response signals (Points Y1, Y2 and Y3 – Figure 2.3) and obtained via scalar versions

of the methods are presented. This allows examination of the potential of the methods to achieve

damage detection and identification even through a single vibration signal measurement.
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Structural State Description Total Number of Experiments

Healthy — 40 (1 baseline )
Damage type A loosening of bolt A1 32 (1 baseline )
Damage type B loosening of bolts A1 and B1 32 (1 baseline )
Damage type C loosening of bolts C1 and C2 32 (1 baseline )
Damage type D loosening of bolt D1 32 (1 baseline )
Damage type E loosening of bolt E1 32 (1 baseline )

Sampling frequency: fs = 256 Hz, Signal bandwidth: [0.5− 100] Hz
Signal length N in samples (s): Non-parametric methods: N = 30 720 (120 s)

Parametric methods: N = 10 000 (39 s)

Table 2.4: The considered damage types, number of experiments, and vibration signal details.

A significant number of test cases is considered in the experimental assessment: In each test case

a specific experiment (out of a total of 40 experiments for the healthy structure and 32 experiments

for each damage state, with one from each category reserved for the baseline phase – Table 2.4) and

vibration response measurement position (Points Y1 – Y3, Figure 2.3) are employed. Experimental

details are presented in Table 2.4. Notice that the sample mean is subtracted from each signal and

scaling by the signal’s sample standard deviation is implemented.

The experimental assessment of the univariate statistical time series methods is based on a

number of test cases, each corresponding to a single (out of several possible) structural states (damage

scenarios – see Table 2.4), a single experiment (Table 2.4), and a single vibration response measurement

position (out of Points Y1, Y2, Y3 – Figure 2.3). Note that 40 experiments are run for the healthy

structure and 32 for each considered damage state (damage types A, B,. . . , E).

In subsections 2.4.3 and 2.4.4 representative results for the first vibration measurement position

(Point Y1, Figure 2.3) are presented, while in subsection 2.4.5 summary results for all three vibration

measurement positions are presented.

2.4.3 Baseline phase: structural identification under various structural states
(measurement position Y1)

2.4.3.1 Non-parametric methods

Non-parametric identification of the structure is based onN = 30 720 (≈ 120 s) sample-long excitation-

response signals. An L = 2048 sample-long Hamming data window with zero overlap is used (number of

segments K = 15) for PSD (MATLAB function pwelch.m) and FRF (MATLAB function tfestimate.m)

Welch based estimation (see Tables 2.3 and 2.5).

The obtained response PSD and FRF magnitude estimates for the healthy and damaged states

of the structure (Point Y1) are depicted in Figure 2.4. As it may be observed, the healthy and damaged

curves are rather similar in the 0.5−30 Hz range, where the first twelve modes are included. Significant

differences between the healthy and damage types C, D and E curves are seen in the 30−58 Hz range,

where the next three modes are included. Finally, discrepancies are more evident for damage types C

and E in the 58− 100 Hz range, where the next eight modes are included.

The data sets used for obtaining the above response PSD and FRF estimates for the healthy and

damaged structural states are considered as the only baseline (reference) data sets throughout this

work and are used for obtaining the nominal characteristic quantities Qo for each time series method.

The healthy baseline data set is used for the damage detection task, while the damaged baseline data
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Figure 2.4: (a) Power Spectral Density (PSD) and (b) Frequency Response Function (FRF) magnitude
estimates for the healthy and damaged structural states (response Y1).

sets are used for the damage identification task.

2.4.3.2 Parametric methods

Parametric identification of the structural dynamics is based on N = 10 000 (≈ 39 s) sample-long

excitation and single response signals which are used for estimating AutoRegressive with eXogenous

excitation (ARX) models (MATLAB function arx.m). The modeling strategy consists of the succes-

sive fitting of ARX(na, nb) models (with na, nb designating the AR and X orders, respectively; in

this study na = nb = n) until a suitable model is selected. Model parameter estimation is achieved

by minimizing a quadratic Prediction Error (PE) criterion leading to a Least Squares (LS) estimator

(Fassois 2001),(Ljung 1999, p. 206). Model order selection, which is crucial for successful identifica-

tion, may be based on a combination of tools, including the Bayesian Information Criterion (BIC)

(Figure 2.5a), which is a statistical criterion that penalizes model complexity (order) as a counter-

action to a decreasing quality criterion (Fassois 2001),(Ljung 1999, pp. 505–507), monitoring of the

RSS/SSS (Residual Sum of Squares / Signal Sum of Squares) criterion (Figure 2.5b), monitoring

of the residual autocorrelation function (MATLAB function autocorr.m) (Ljung 1999, p. 512), and

use of “stabilization diagrams” (Figure 2.6) which depict the estimated modal parameters (usually

frequencies) as a function of increasing model order (Fassois 2001, Ljung 1999).

Data length N = 30 720 samples (≈120 s)
Method Welch
Segment length L = 2048 samples
No of non-overlapping segments K = 15 segments
Window type Hamming
Frequency resolution ∆f = 0.125 Hz

Table 2.5: Non-parametric estimation details.
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Figure 2.5: Order selection criteria for ARX(n, n) type parametric models in the healthy case (re-
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Figure 2.6: Frequency stabilization diagram for ARX(n, n) type models in the healthy case (response
Y1).

An approximate plateau in the BIC and RSS/SSS sequences is achieved for model order n > 70

(Figure 2.5). Furthermore, as indicated in the frequency stabilization diagram of Figure 2.6, model

orders of n > 90 are adequate for most natural frequencies to get stabilized. Notice the color bar in

Figure 2.6, which demonstrates the damping ratios for each frequency for increasing model order.

The above identification procedure leads to an ARX(103, 103) model (vibration measurement

position Y1), which is selected as adequate for the model parameter, residual variance, and likelihood

function based methods. The identified ARX(103, 103) representation has 207 parameters with the

Sample Per Parameter (SPP) number being equal to 48.3. For the residual uncorrelatedness based

method an ARX(138, 138) model is selected, as the corresponding model residuals need to be as white

as possible in order for the method to work effectively. The identified ARX(138, 138) representation

has 277 parameters (SPP = 36.1). The selected models and estimation details are summarized in

Table 2.6. Note that the identification procedure generally leads to different ARX models (including

somewhat different model orders) for each vibration measurement position.

2.4.4 Inspection phase (measurement position Y1)

2.4.4.1 PSD based method

Typical PSD based damage detection results are presented in Figure 2.7. Evidently, correct detection

at the α = 10−4 risk level is obtained in each case, as the test statistic is shown not to exceed the

critical points (dashed horizontal lines) in the healthy case, while it exceeds them in the damaged

cases. Observe that damage types C (two bolts loosened) and D (one bolt loosened) are easiest to
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Figure 2.7: PSD based method (response Y1): Indicative damage detection results for six representa-
tive test cases (one healthy and five damaged) at the α = 10−4 risk level. The actual structural state
is shown above each plot box. A damage is detected if the test statistic exceeds the critical points
(dashed horizontal lines).

detect (note the logarithmic scale on the vertical axis of Figure 2.7), while damage type A (one bolt

loosened) is hardest (the test statistic is within the critical points for most frequencies).

Representative damage identification results at the α = 10−4 risk level are presented in Figure

2.8, with the actual damage being of type A. When testing the hypothesis of damage type A, the test

statistic does not exceed the critical points, while it clearly does so when testing the hypothesis of any

other damage type.

2.4.4.2 FRF based method

Figure 2.9 presents typical FRF based damage detection results. Evidently, correct detection at the

α = 10−5 risk level is achieved in each case, as the test statistic is shown not to exceed the critical

points (dashed horizontal lines) in the healthy case, while it exceeds them in the damaged cases.

Again, damage types C and D appear as easiest to detect, while damage types A and B are hardest.

Indicative damage identification results at the α = 10−5 risk level are presented in Figure 2.10,

with the actual damage being of type C. When testing the hypothesis of damage type C, the test

Method Selected Model Number of estimated parameters SPP

Model parameter ARX(103, 103) 207 parameters 48.3

Residual variance ARX(103, 103) 207 parameters 48.3

Residual likelihood ARX(103, 103) 207 parameters 48.3

Residual uncorrelatedness ARX(138, 138) 277 parameters 36.1

Parameter estimation method: Weighted Least Squares (WLS), QR implementation

Table 2.6: Selected models and estimation details (response Y1).
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Figure 2.8: PSD based method (response Y1): Indicative damage identification results for five damage
test cases at the α = 10−4 risk level, with the actual damage being of type A. Each considered test
case is shown above each plot box. A damage type is identified as current when the test statistic does
not exceed the critical points (dashed horizontal lines).
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Figure 2.9: FRF magnitude based method (response Y1): Indicative damage detection results for
six representative test cases (one healthy and five damaged) at the α = 10−5 risk level. The actual
structural state is shown above each plot box. A damage is detected if the test statistic exceeds the
critical points (dashed horizontal lines).

statistic does not exceed the critical points, while it clearly does so when testing the hypothesis of any

other damage type.
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Figure 2.10: FRF magnitude based method (response Y1): Indicative damage identification results
for five damage test cases at the α = 10−5 risk level, with the actual damage being of type C. Each
considered test case is shown above each plot box. A damage type is identified as current when its
test statistic does not exceed the critical points (dashed horizontal lines).

2.4.4.3 Model parameter based method

The model parameter based method (excitation-response case) is based on the identified ARX(103, 103)

models from the baseline phase, as well as on identified ARX(103, 103) models from the current (un-

known) data records Zu (inspection phase).

Figure 2.11 depicts typical scalar model parameter estimates (a1 and bo) based on ARX(103, 103)

models for two healthy and five damaged states of the structure. The dark lines represent the scalar

parameter estimates for each test case, while the shaded boxes designate their corresponding±3 sample

standard deviation confidence intervals. It may be observed that the parameter estimates obtained

from models representing damaged structural states significantly differ from the parameter estimates

obtained from healthy models. Moreover, the interval estimates obtained from the healthy models

overlap, implying rather small changes.

Figures 2.12 and 2.13 present typical parametric damage detection and identification results,

respectively, obtained by the model parameter based method at the α = 10−12 risk level. Evidently,

correct detection (Figure 2.12) is obtained in each case, as the test statistic is shown not to exceed

the critical point in the healthy case, while it exceeds it in the damaged cases; note the logarithmic

scale on the vertical axis which indicates significant difference between the healthy and damaged test

statistics. Moreover, Figure 2.13 demonstrates the ability of the method to accurately identify the

actual damage type.

2.4.4.4 Residual based methods

Residual variance based method

This method tackles damage detection and identification based on the identified (in the baseline
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Figure 2.11: Model parameter based method (response Y1): Model parameter estimates for two
healthy and five damage states (the dark lines represent point estimates and the shaded boxes ±3
sample standard deviation confidence intervals).
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Figure 2.12: Model parameter based method (response Y1): Indicative damage detection results for
six representative test cases (one healthy and five damaged) at the α = 10−12 risk level. A damage is
detected if the test statistic (bar) exceeds the critical point (dashed horizontal line).

phase) ARX(103, 103) models – no model identification is involved in the inspection phase. Figure

2.14 depicts typical residual variance estimates based on ARX(103, 103) models for two healthy and

five damaged states of the structure. The dark lines represent the scalar residual variance estimates for

each test case, while the shaded boxes designate their corresponding ±3 standard deviation confidence

intervals. The residual variances σ̂2
ou, σ̂

2
Au, . . . , σ̂

2
Eu, corresponding to each test case, are estimated from

the respective residual sequences eou[t], eAu[t], . . . , eEu[t] obtained by driving the current (unknown)

signals Zu through the models Mo,MA, . . . ,ME , respectively.

As it may be observed, the residual variance interval estimates σ̂2
ou obtained from the two healthy

data sets are quite close and overlap. On the other hand, the variance estimates σ̂2
Au, . . . , σ̂

2
Eu obtained

from representative damaged data sets are significantly greater than the healthy estimates (interval

estimates are clearly separated). Notice that the more severe damage types (such as types C and E)

yield greater residual variance estimates than the less severe ones (damage types A and B).

Typical damage detection and identification results are presented in Figures 2.15 and 2.16,

respectively, at the α = 10−12 risk level. Evidently, correct detection (Figure 2.15) is obtained in each

considered case, as the test statistic is shown not to exceed the critical point in the healthy case, while

it exceeds it in the damaged test cases. Moreover, Figure 2.16 demonstrates the ability of the method

to correctly identify the actual damage type (note the logarithmic scale on the vertical axes).

The residual variance and likelihood function based methods exhibit quite identical performance,

as the data record length N is large. This is expected and rather obvious from the comparison of

Equations (2.9) and (2.12). Hence, for the sake of brevity, the results for the likelihood function based

method are omitted.
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Figure 2.13: Model parameter based method (response Y1): Indicative damage identification results
for five damage test cases at the α = 10−12 risk level. Each bar corresponds to each considered
hypothesis test, with the actual damage indicated within each subplot. A damage type is identified
as current if the test statistic (bar) does not exceed the critical point (dashed horizontal line).

Residual uncorrelatedness based method

This method tackles damage detection and identification based on the identified (in the baseline

phase) ARX(138, 138) models. Figure 2.17 depicts typical residual normalized ACF estimates ρ̂[τ ] for

the first four lags (τ = 1, . . . , 4), based on ARX(138, 138) models for the healthy and five damaged

structural states. The residuals for each considered state of the structure are obtained by driving

the current data records Zu through the models Mo,MA, . . . ,ME . Under the null hypothesis of a

healthy current structure, the first residual series (obtained by driving the signals through the model

Mo) normalized ACF estimates should lie within the statistical insignificance zone of ±1.96/
√
N with

probability p = 0.95. This should not be the case for the other residual series (obtained by driving

the signals through the each one of the MA, . . . ,ME models).

Representative damage detection and identification results via the residual uncorrelatedness

based method are, at the α = 10−12 risk level with r = 25 (see Equation 2.15), presented in Figures

2.18 and 2.19, respectively. Evidently, correct detection (Figure 2.18) is obtained in each case, as

the test statistic is shown not to exceed the critical point in the healthy case, while it exceeds it in

the damaged test cases. Moreover, Figure 2.19 demonstrates the ability of the method to accurately

identify the actual damage type as the current one.
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Figure 2.14: Residual variance based method (response Y1): Residual variance estimates based on
ARX(103, 103) models for two healthy and five damaged states (the dark lines represent point variance
estimates and the shaded boxes ±3 sample standard deviation confidence intervals).
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Figure 2.15: Residual variance based method (response Y1): Indicative damage detection results for
six representative test cases (one healthy and five damaged) at the α = 10−12 risk level. A damage is
detected if the test statistic (bar) exceeds the critical point (dashed horizontal line).

2.4.5 Summary results and discussion (all measurement positions)

Summary results for all test cases, which include all three measurement positions (Y1, Y2 and Y3),

are presented in Table 2.7. Both non-parametric and parametric methods achieve accurate damage

detection with almost always zero false alarms. In fact only the FRF based method exhibits one and

two false alarms for vibration measurement positions Y1 and Y3, respectively. Moreover, the ability

of the methods to effectively detect damage is demonstrated by the fact that no missed damage cases

are observed. The damage identification results demonstrate the ability of the methods to accurately

identify the actual damage type. No damage misclassification cases are observed, except for the FRF

based method where misclassification errors occur for damage type A (Table 2.7).

It is also important to note that the methods are capable of detecting and identifying damage

using a single response signal. This is true for the cases where the damage location is relatively close

to the response sensor, but also to the cases where the damage location is far from that. Performance

is of course, and expectedly, affected by this distance, and this is also shown in the damage type A

case where the lowest misclassification rate occurs for sensor Y2 (Table 2.7) which is closest to the

damage location.

Overall, both non-parametric and parametric statistical time series methods demonstrate high

potential for effective damage detection and identification based even on a single vibration response

signal. Between the two non-parametric methods, the FRF based one appears to achieve better

damage detection and identification. Among the parametric methods, the residual based methods

appear to achieve clearer damage detection and identification than the parameter based method.
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Figure 2.16: Residual variance based method (response Y1): Indicative damage identification results
for five damage test cases at the α = 10−12 risk level. Each bar corresponds to each considered
hypothesis test, with the actual damage indicated within each subplot. A damage type is identified
as current if the test statistic (bar) does not exceed the critical point (dashed horizontal line).
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Figure 2.18: Residual uncorrelatedness based method (response Y1): Indicative damage detection
results for six representative test cases (one healthy and five damaged) at the α = 10−12 risk level
(max lag r = 25). A damage is detected if the test statistic (bar) exceeds the critical point (dashed
horizontal line).

Damage A Damage B Damage C Damage D Damage E
10

0

10
5

Residual Based Method: using the likelihood function (Damage Identification)

T
es

t 
S

ta
ti

st
ic

Damage A Damage B Damage C Damage D Damage E
10

0

10
5

T
es

t 
S

ta
ti

st
ic

Damage A Damage B Damage C Damage D Damage E
10

0

10
5

T
es

t 
S

ta
ti

st
ic

Damage A Damage B Damage C Damage D Damage E
10

0

10
5

T
es

t 
S

ta
ti

st
ic

Damage A Damage B Damage C Damage D Damage E
10

0

10
5

T
es

t 
S

ta
ti

st
ic

 Test Cases

0

100

0

100

0

100

0

100

0

100

actual damage B

actual damage E

actual damage C

actual damage A

actual damage D

Figure 2.19: Residual uncorrelatedness based method (response Y1): Indicative damage identification
results for five damage test cases at the α = 10−12 risk level (max lag r = 25). Each bar corresponds to
each considered hypothesis test, with the actual damage indicated within each subplot. A damage type
is identified as current if the test statistic (bar) does not exceed the critical point (dashed horizontal
line).
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Damage Detection

Method False Missed damage

alarms damage A damage B damage C damage D damage E

PSD based 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

FRF based 1/0/2 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

Mod. parameter† 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

Res. variance† 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

Res. likelihood† 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

Res. uncorrelatedness† 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

False alarms for points Y1/Y2/Y3 out of 39 test cases each.

Missed damages for points Y1/Y2/Y3 out of 31 test cases each; †adjusted α.

Damage Identification

Method Damage misclassification

damage A damage B damage C damage D damage E

PSD based 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

FRF based 2/1/2 0/0/0 0/0/0 0/0/0 0/0/0

Mod. parameter† 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

Res. variance† 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

Res. likelihood† 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

Res. uncorrelatedness† 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

Damage misclassification for points Y1/Y2/Y3 out of 31 test cases each; †adjusted α.

Table 2.7: Damage detection and identification summary results for three responses (Y1, Y2 and Y3).

Nevertheless, a number of issues require some attention on part of the user. First, careful model

identification – especially in the parametric case – is crucial for successful damage diagnosis. Paramet-

ric models require accurate parameter estimation and appropriate model structure (order) selection

in order to properly represent the structural dynamics and be effectively used for damage detection

and identification. Therefore, parametric methods require adequate user expertise and are somewhat

more elaborate than their non-parametric counterparts. In particular, extra attention should be paid

to successful model identification in conjunction with the model residual uncorrelatedness method, as

the corresponding model residuals should be as close to whiteness as possible in order for the method

to work effectively.

Another issue of primary importance is the proper selection of the risk level α (type I error),

for reasons associated with the methods’ robustness and effectiveness. If this is not properly adjusted,

damage diagnosis will be ineffective, as false alarm, missed damage, and damage misclassification cases

may occur. The user is advised to make an initial investigation of the false alarm rates for different

α levels using several healthy data sets. Afterwards, potential missed damage cases may be checked

with data corresponding to various damaged structural states. When applying the model residual

uncorrelatedness based method, the user should be aware of the fact that the max lag r value may

also affect performance. Thus, a tentative inquiry on the way max lag r value affects false alarm

occurrence should be undertaken. Depending on the exact type and order of the parametric model

used, max lag r values may range from a few to N/4 (N is the residual signal length in samples).

Moreover, in order for most parametric methods to work effectively, a very small value of type

I risk level α is often needed. This is due to the fact that the current parametric time series models

(ARMA, ARX, state space and so on) used for modeling the structural dynamics are incapable of

fully capturing the experimental, operational and environmental uncertainties that the structure is

subjected to – in this context see references Hios and Fassois (2009b) and Michaelides and Fassois

(2008). For this reason, a very small α is often selected in order to compensate for the lack of effective
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uncertainty modeling. This subject, along with more accurate modeling of uncertainties, is important

for current and future research.

The selection of the number and position of measurement sensors is another important issue.

Several vibration based damage diagnosis techniques that appear to work well in test cases may perform

poorly when subjected to the measurement constraints imposed by actual testing (Doebling et al. 1996,

Doebling et al. 1998). Techniques that are to be seriously considered for implementation in the field

should demonstrate that they can perform well under limitations of a small number of measurement

positions and under the constraint that these positions should be selected a priori, without a priori

knowledge of the damage location. As already demonstrated, statistical time series methods are

capable of treating damage diagnosis based on limited or even on a single pair of excitation-response

measurements and may also achieve a certain level of automation, although their performance on large

scale structures needs to be further investigated.

Finally, in the case of multiple damage scenarios, or even single damage cases not considered

in the baseline (training) phase, statistical time series methods are capable of effectively treating the

damage detection subproblem. The damage identification (classification) subproblem is clearly more

difficult, and requires the use of advanced methods, such as those more recently developed by the

author and co-workers (Sakellariou and Fassois 2008, Kopsaftopoulos and Fassois 2007). Work on

these methods is still on-going, and experimental comparisons along with full assessments are to be

made.
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2.5 Application on a scale aircraft skeleton structure

The goal of the present section is the comparative assessment of several scalar (univariate) and vec-

tor (multivariate) methods for SHM via their application on an aircraft scale skeleton structure in

which different damage scenarios correspond to the loosening of different bolts. The methods are

further classified as non-parametric or parametric and response-only or excitation-response. Prelim-

inary results by various methods may be found in the recent papers of Kopsaftopoulos et al. (2010)

and Kopsaftopoulos and Fassois (2011d). It should be noted that the structure has been used in the

past for the development of novel scalar (univariate) methods for precise damage localization and

magnitude (size) estimation using different (simulated) damages consisting of small masses attached

to the structure (Sakellariou and Fassois 2008, Kopsaftopoulos and Fassois 2007). Due to their ability

to address the precise localization and magnitude estimation problems, these methods are generally

more complex. As the focus of the present study is more on damage detection and identification (the

latter in the sense of estimating the damage scenario from a given pool of potential scenarios), only

simpler methods are utilized.

More specifically, four scalar methods, namely a Power Spectral Density (PSD), a Frequency

Response Function (FRF), a model residual variance, and a Sequential Probability Ratio Test (SPRT)

based method are employed, along with two vector methods, namely a model parameter based and a

residual likelihood function based method.

2.5.1 The scale aircraft skeleton structure

The scale aircraft skeleton structure used in the experiments was designed by ONERA (France) in

conjunction with the Structures and Materials Action Group SM-AG19 of the Group for Aeronautical

Research and Technology in Europe (GARTEUR) (Degener and Hermes 1996, Balmes and Wright

1997) and manufactured at the University of Patras (Figure 2.20). It represents a typical aircraft

skeleton design and consists of six solid beams with rectangular cross sections representing the fuselage

(1500×150×50 mm), the wing (2000×100×10 mm), the horizontal (300×100×10 mm) and vertical

stabilizers (400× 100× 10 mm), and the right and left wing-tips (400× 100× 10 mm). All parts are

constructed from standard aluminum and are jointed together via steel plates and bolts. The total

mass of the structure is approximately 50 kg.

2.5.2 The damage scenarios and the experiments

Damage detection and identification is based on vibration testing of the structure, which is suspended

through a set of bungee cords and hooks from a long rigid beam sustained by two heavy-type stands

(Figure 2.20). The suspension is designed in a way as to exhibit a pendulum rigid body mode below

the frequency range of interest, as the boundary conditions are free-free.

The excitation is broadband random stationary Gaussian force applied vertically at the right

wing-tip (Point X, Figure 2.20) through an electromechanical shaker (MB Dynamics Modal 50A, max

load 225 N). The actual force exerted on the structure is measured via an impedance head (PCB

M288D01, sensitivity 98.41 mV/lb), while the resulting vertical acceleration responses at Points Y1,

Y2, Y3 and Y4 (Figure 2.20) are measured via lightweight accelerometers (PCB 352A10 miniature

ICP accelerometers, 0.7 g, frequency range 0.003− 10 kHz, sensitivity ∼ 1.052 mV/m/s2). The force

and acceleration signals are driven through a conditioning charge amplifier (PCB 481A02) into the

data acquisition system based on two SigLab 20-42 measurement modules (each module featuring

four 20-bit simultaneously sampled A/D channels, two 16-bit D/A channels, and analog anti-aliasing
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Figure 2.20: The scale aircraft skeleton structure and the experimental set-up: The force excitation
(Point X), the vibration measurement locations (Points Y1 – Y4), and the bolts connecting the various
elements of the structure.

filters).

The damage scenarios considered correspond to the loosening of various bolts at different joints

of the structure (Figure 2.20). Six distinct scenarios (types) are considered and summarized in Table

2.5.2. The assessment of the presented statistical time series methods with respect to the damage

detection and identification subproblems is based on 60 experiments for the healthy and 40 experiments

for each considered damage state of the structure (damage types A, B,. . . , F – see Table 2.5.2) –

each experiment corresponding to a single test case. Moreover, four vibration measurement locations

(Figure 2.20, Points Y1 – Y4) are employed in order to determine the ability of the considered methods

in treating damage diagnosis using single or multiple vibration response signals. The frequency range

of interest is selected as 4−200 Hz, with the lower limit set in order to avoid instrument dynamics and

rigid body modes. Each signal is digitized at fs = 512 Hz and is subsequently sample mean corrected

and normalized by its sample standard deviation (Table 2.5.2).

A single healthy data set is used for establishing the baseline (reference) set, while 60 healthy

and 240 damage sets (six damage types with 40 experiments each) are used as inspection data sets.

For damage identification, a single data set for each damage structural state (damage types A, B,. . . ,

F) is used for establishing the baseline (reference) set, while the same 240 sets are considered as in-

spection data sets (each corresponding to a test case in which the actual structural state is considered

Structural Description No of inspection
state experiments (test cases)

Healthy — 60
Damage A loosening of bolts A1, A4, Z1, Z2 40
Damage B loosening of bolts D1, D2, D3 40
Damage C loosening of bolts K1 40
Damage D loosening of bolts D2, D3 40
Damage E loosening of bolts D3 40
Damage F loosening of bolts K1, K2 40

Sampling frequency: fs = 512 Hz, Signal bandwidth: 4− 200 Hz
Signal length in samples (s):
Non-parametric methods: N = 46 080 (90 s); Parametric methods: N = 15 000 (29 s)

Table 2.8: The damage scenarios and experimental details.
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Figure 2.21: Non-parametric Welch-based Frequency Response Function (FRF) magnitude estimates
for the healthy and damaged structural states (Point X – Point Y2 transfer function).

unknown). The time series models are estimated and the corresponding estimates of the characteristic

quantity Q are extracted (Q̂A, Q̂B, . . . , Q̂F in the baseline phase; Q̂u in the inspection phase). Dam-

age identification is presently based on successive binary hypothesis tests – as opposed to multiple

hypothesis tests – and should be thus considered as preliminary (Fassois and Sakellariou 2009).

2.5.3 Structural dynamics of the healthy structure

2.5.3.1 Non-parametric identification

Non-parametric identification of the structural dynamics is based on N = 46 080 (≈ 90 s) sample-long

excitation-response signals obtained from four vibration measurement locations on the structure (see

Figure 2.20). An L = 2 048 sample-long Hamming data window with zero overlap is used (number of

segments K = 22) for PSD (MATLAB function pwelch.m) and FRF (MATLAB function tfestimate.m)

Welch based estimation (see Table 2.9).

The obtained FRF magnitude estimates for the healthy and damage states of the structure for

the Point X – Point Y2 transfer function are depicted in Figure 2.21. As it may be observed the

FRF magnitude curves are quite similar in the 4 − 60 Hz range; notice that this range includes the

first five modes of the structure. Significant differences between the healthy and damage type A, C

Data length N = 46 080 samples (≈ 90 s)
Method Welch
Segment length L = 2 048 samples
Non-overlapping segments K = 22 segments
Window type Hamming
Frequency resolution ∆f = 0.355 Hz

Table 2.9: Non-parametric estimation details.
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Figure 2.22: Bayesian Information Criterion (BIC) for VARX(n, n) type parametric models in the
healthy case.

and F magnitude curves are observed in the range of 60 − 150 Hz, where the next four modes are

included. Finally, in the range of 150− 200 Hz another two modes are present, and discrepancies are

more evident for damage types A, B, C and F. Notice that the FRF magnitude curves for damage

types D and E are very similar to those of the healthy structure.

2.5.3.2 Parametric identification

Parametric identification of the structural dynamics is based on N = 15 000 (≈ 29 s) sample-long

excitation and vibration response signals used in the estimation of Vector AutoRegressive with eX-

ogenous excitation (VARX) models (MATLAB function arx.m). The modeling strategy consists of

the successive fitting of VARX(na, nb) models (with na, nb designating the AR and X orders, re-

spectively; na = nb = n is currently used) until a candidate model is selected. Model parameter

estimation is achieved by minimizing a quadratic Prediction Error (PE) criterion (trace of residual

covariance matrix) leading to a Least Squares (LS) estimator (Fassois 2001),(Ljung 1999, p. 206).

Model order selection, which is crucial for successful identification, may be based on a combination

of tools, including the Bayesian Information Criterion (BIC) (Figure 2.22), which is a statistical cri-

terion that penalizes model complexity (order) as a counteraction to a decreasing model fit criterion

(Fassois 2001), (Ljung 1999, pp. 505–507) and the use of “stabilization diagrams” which depict the es-

timated modal parameters (usually frequencies) as a function of increasing model order (Fassois 2001).

BIC minimization is achieved for model order n = 80 (Figure 2.22), thus a 4−variate VARX(80, 80)

model is selected as adequate for the residual variance, model parameter, and likelihood function based

methods. The identified VARX(80, 80) representation has d = 1 604 parameters, yielding a Sample

Per Parameter (SPP) ratio equal to 37.4 (N × (no of outputs)/d).

It should be noted that the complete 4−variate VARX(80, 80) model is employed in conjunction

with vector methods in Section 2.5.5. Yet, scalar parts of this model corresponding to excitation –

single response are used in conjunction with scalar methods in Section 2.5.4. This is presently done for

purposes of simplicity and it is facilitated by the fact that only a single (scalar) excitation is present.
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Method Principle Test Statistic Type

PSD based Su(ω)
?
= So(ω) F = Ŝo(ω)/Ŝu(ω) ∼ F (2K, 2K) scalar

FRF based δ|H(jω)| = |Ho(jω)| − |Hu(jω)| ?
= 0 Z = |δ|Ĥ(jω)||/

√
2σ̂2

H(ω) ∼ N(0, 1) scalar

Residual variance σ2
ou

?

≤ σ2
oo F = σ̂2

ou/σ̂
2
oo ∼ F (N,N − d) scalar

SPRT based σou
?

≤ σo or σou
?

≥ σ1 L(n) = n · log σo
σ1

+
σ2
1−σ

2
o

2σ2
oσ

2
1
·
∑n
t=1 e

2[t] scalar

Model parameter δθ = θo − θu
?
= 0 χ2

θ = δθ̂
T

(2P̂ θ)
−1δθ̂ ∼ χ2(d) vector

Residual likelihood θo
?
= θu

∑N
t=1(eTou[t,θo] ·Σo · eou[t,θo]) ≤ l vector

Explanation of Symbols:

S(ω): Power Spectral Density (PSD) function; |H(jω)|: Frequency Response Function (FRF) magnitude

σ2
H(ω) = var [|Ĥo(jω)|]; θ: model parameter vector; d: parameter vector dimensionality; P θ: covariance of θ

σ2
oo: variance of residual signal obtained by driving the healthy structure signals through the healthy model

σ2
ou: variance of residual signal obtained by driving the current structure signals through the healthy model

eou[t,θo]: vector residual sequence obtained by driving the current structure signals through the healthy model

σo, σ1: user defined values for the residual standard deviation under healthy and damage states, respectively

e: k-variate residual sequence; Σ: residual covariance matrix; l: user defined threshold

The subscripts “o” and “u” designate the healthy and current (unknown) structural states, respectively.

Table 2.10: Characteristics of the employed statistical time series methods for SHM

2.5.4 Application of scalar time series methods

Scalar statistical time series methods for SHM employ scalar (univariate) models and corresponding

statistics. In this section two non-parametric scalar methods, namely a Power Spectral Density (PSD)

based method and a Frequency Response Function (FRF) based method, and two parametric scalar

methods, namely a residual variance based method and a Sequential Probability Ratio Test (SPRT)

based method, are applied to the scale aircraft skeleton structure. The methods’ main characteristics

are summarized in Table 2.10.

2.5.4.1 The Power Spectral Density (PSD) based method

Typical non-parametric damage detection results using the vibration measurement location of Point

Y1 are presented in Figure 2.23. Evidently, correct detection at the α = 10−4 risk level is obtained in

each case, as the test statistic is shown not to exceed the critical point (dashed horizontal lines) in the

healthy test case, while it exceeds it in each damage test case. Observe that damage types A, B and C

(see Figure 2.20 and Table 2.5.2) are more easily detectable (note the logarithmic scale on the vertical

axis of Figure 2.23), while damage types D and E are harder to detect. This is in agreement with the

remarks made in subsection 2.5.3.1. Furthermore, notice that the frequency bandwidth of [150− 170]

Hz is more sensitive to damage. This is also in agreement with the remarks made in subsection 2.5.3.1

and seems to be due to the fact that the two natural frequencies in this bandwidth are more sensitive

to the considered damage scenarios (see Figure 2.21). Representative damage identification results at

the α = 10−4 risk level and using (as an example) the vibration measurement location at Point Y3 are

presented in Figure 2.24, with the actual damage being of type A. The test statistic does not exceed

the critical point when the Damage A hypothesis is considered, while it exceeds it in all remaining

cases. This correctly identifies damage type A as the current underlying damage.

Summary damage detection and identification results for each vibration measurement location

(Figure 2.20) are presented in Table 2.11. The PSD based method achieves accurate damage detection

as no false alarms are exhibited, while the number of missed damage cases is zero for all considered

damaged structural states. The method is also capable of identifying the actual damage type, as zero
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Figure 2.23: PSD based method: Representative damage detection results (sensor Y1) at the α = 10−4

risk level. The actual structural state is shown above each plot.
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Figure 2.24: PSD based method: Representative damage identification results (sensor Y3) at the
α = 10−4 risk level, with the actual damage being of type A. Each considered damage hypothesis is
shown above each plot.

damage misclassification errors are reported for damage types A, C, D and F, while it exhibits some

misclassification errors for damage type E. The misclassification problem is more intense for damage

type B when either the Y3 or the Y4 vibration measurement location is used (Table 2.11).
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Figure 2.25: FRF based method: Representative damage detection results (sensor Y4) at the α = 10−6

risk level. The actual structural state is shown above each plot.

2.5.4.2 The Frequency Response Function (FRF) based method

Figure 2.25 presents typical non-parametric damage detection results via the FRF based method using

the vibration measurement location of Point Y4. Evidently, correct detection at the α = 10−6 risk

level is achieved in each case, as the test statistic is shown not to exceed the critical points (dashed

horizontal lines) in the healthy case, while it exceeds them in all damage cases. Again, damage types

A, B and C are more easily detectable (hence more severe), while damage types D and E are harder to

detect. Representative damage identification results at the α = 10−6 risk level using (as an example)

the vibration measurement location of Point Y2 are presented in Figure 2.26, with the actual damage

being of type E. The test statistic does not exceed the critical point when the Damage E hypothesis

is considered, while it exceeds it in all other cases. This correctly identifies damage type E as the

current underlying damage.

Summary damage detection and identification results for each vibration measurement location

(Figure 2.20) are presented in Table 2.11. The FRF based method achieves effective damage detection

as no false alarms or missed damages are reported (Table 2.11). The method on the other hand,

exhibits decreased accuracy in damage identification as significant numbers of damage misclassification

errors are reported for damage types B and D (Table 2.11).

2.5.4.3 The residual variance based method

The residual variance based method employs an excitation – single response submodel obtained from

the complete 4−variate VARX(80, 80) models identified in the baseline phase, as well as on a corre-

sponding residual series obtained by driving the current (structure in unknown state) excitation and

single response signals through the same submodel (inspection phase). Damage detection and iden-

tification is achieved via statistical comparison of the two residual variances. Representative damage
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Figure 2.26: FRF based method: Representative damage identification results (sensor Y2) at the
α = 10−6 risk level, with the actual damage being of type E. Each considered damage hypothesis is
shown above each plot.

detection and identification results obtained via the residual variance based method (when the vibra-

tion measurement location of Point Y2 is used) are presented in Figures 2.27 and 2.28, respectively.

Evidently, correct detection (Figure 2.27) is obtained in each considered case, as the test statistic is

shown not to exceed the critical point in the healthy case, while it exceeds it in each damage test case.

Moreover, Figure 2.28 demonstrates the ability of the method to correctly identify the actual damage

type – in this case the vibration measurement location of Point Y3 is used.

Summary damage detection and identification results for each vibration measurement location

(Figure 2.20) are presented in Table 2.11. The method achieves effective damage detection and iden-

tification as no false alarms, missed damage, or damage misclassification errors are observed.

2.5.4.4 The Sequential Probability Ratio Test (SPRT) based method

The SPRT based method employs an excitation – single response submodel obtained from the complete

4−variate VARX(80, 80) models identified in the baseline phase, as well as a corresponding residual

series obtained by driving the current (structure in unknown state) excitation and single response

signals through the same submodel (inspection phase). Damage detection and identification is achieved

via statistical comparison of the two residual standard deviations using the SPRT. The nominal

residual standard deviation σo is selected as the mean standard deviation of the residuals obtained

from the 60 healthy data sets driven through the submodel (corresponding to the selected response)

of the baseline healthy VARX(80, 80) model. The residual standard deviation ratio σ1/σo is chosen

equal to 1.1, designating a 10% increase in the nominal standard deviation (see equations 2.16 and

2.17).

Representative damage detection results at the α = β = 0.01 risk levels obtained via the SPRT

based method for the vibration response (sensor) of Point Y1 are shown in Figure 2.29. A damage is



Chapter 2. Experimental assessment of vibration based statistical time series methods for SHM 47

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Model Residual Variance Based Method

T
es

t 
S

ta
ti

st
ic

Test Case
 

 

Healthy Damage A Damage B Damage C Damage D Damage E

Figure 2.27: Residual variance based method: Representative damage detection results (sensor Y2;
healthy – 60 experiments; damaged – 200 experiments). A damage is detected if the test statistic
exceeds the critical point (dashed horizontal line).
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Figure 2.28: Residual variance based method: Representative damage identification results (sensor
Y3; 240 experiments), with the actual damage being of type D. A damage is identified as type D if
the test statistic is below the critical point (dashed horizontal line).

detected when the test statistic exceeds the upper critical point (dashed horizontal lines), while the

structure is determined to be in its healthy state when the test statistic lies below the lower critical

point. After a decision is made, the test statistic is reset to zero and the test continues, thus during
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Figure 2.29: SPRT based method: Representative damage detection results (sensor Y1) at the α =
β = 0.01 risk levels (σ1/σo = 1.1). The actual structural state is shown above each plot.

testing multiple decisions are made. Evidently, correct detection (Figure 2.29) is obtained in each

test case, as the test statistic is shown to exceed multiple times (multiple correct decisions) the lower

critical point in the healthy case, while it exceeds the upper critical point in the damage test cases.

Observe that damage types A and C (Table 2.5.2) appear easier to detect, while damage types D and

E appear harder to detect. This is in agreement with the remarks made in subsection 2.5.3.1 and

Figure 2.21. Moreover, representative damage identification results at the α = β = 0.01 risk levels

(σ1/σo = 1.1) for the vibration measurement location of Point Y4 are depicted in Figure 2.30, with

the actual damage being of type B.

Summary damage detection and identification results for each vibration measurement location

are presented in Table 2.11. The method exhibits excellent performance in damage detection and

identification as no false alarms, missed damages, or damage misclassification errors are observed.

2.5.5 Application of vector time series methods

Vector statistical time series methods for SHM employ vector (multivariate) models and corresponding

statistics (Lütkepohl 2005). Despite their phenomenal resemblance to their univariate counterparts,

multivariate models generally have a much richer structure, while they typically require multivariate

statistical decision making procedures (Fassois and Sakellariou 2009, Lütkepohl 2005). In this section

two parametric methods, namely a model parameter based method and a residual likelihood function

based method, are applied to the scale aircraft skeleton structure. The methods’ main characteristics

are summarized in Table 2.10.
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Figure 2.30: SPRT based method: Representative damage identification results (sensor Y4) at the
α = β = 0.01 risk levels (σ1/σo = 1.1) with the actual damage being of type B. Each considered
damage hypothesis is shown above each plot.

2.5.5.1 The model parameter based method

The model parameter based method employs the excitation and all response signals, along with the

complete 4-variate VARX(80, 80) model identified in the baseline phase. In addition, a corresponding

4-variate VARX(80, 80) model is identified in each test case using the current signals (inspection

phase).

Figure 2.31 presents representative damage detection results. The healthy test statistics are

shown in circles (60 experiments), while the least severe damage types D and E are presented with

asterisks and diamonds, respectively (one for each one of the 40 test cases). Evidently, correct detection

is obtained in each test case, as the test statistic is shown not to exceed the critical point in the

healthy cases, while it exceeds it in the damage cases. Representative damage identification results

(240 test cases), with the actual damage being of type F, are presented in Figure 2.32. Evidently,

correct identification is obtained in each considered test case, as the test statistics are shown not to

exceed the critical point in the damage type F case, while the test cases corresponding to the other

damage types exceed the critical point. Note the logarithmic scale on the vertical axis which indicates

significant difference between the damage type F statistics and the rest damage types statistics for

the considered test cases.

Summary damage detection and identification results are presented in Table 2.12. The method

achieves accurate damage detection and identification, as no false alarm, missed damage, or damage

misclassification errors are reported.
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Figure 2.31: Model parameter based method: Representative damage detection results for three
structural states (healthy – 60 experiments; damaged – 80 experiments). A damage is detected if the
test statistic exceeds the critical point (dashed horizontal line).

10
5

10
6

10
7

10
8

10
9

Model Parameter Based Method

T
es

t 
S

ta
ti

st
ic

Test Case
 

 

Damage A Damage B Damage C Damage D Damage E Damage F

Figure 2.32: Model parameter based method: Representative damage identification results (240 exper-
iments), with the actual damage being of type F. A damage is identified as type F if the test statistic
is below the critical point (dashed horizontal line).
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Figure 2.33: Residual likelihood function based method: Representative damage detection results
(healthy – 60 experiments; damaged – 200 experiments). A damage is detected if the test statistic
exceeds the critical point (dashed horizontal line).

2.5.5.2 The residual likelihood function based method

The residual likelihood function method employs the complete 4-variate VARX(80, 80) model identified

in the baseline phase. Figure 2.33 presents representative damage detection results. Evidently, correct

detection is obtained in each test case, as the test statistic is shown not to exceed the critical point in

the healthy cases, while it exceeds it in each damage test case. Representative damage identification

results, with the actual damage being of type A, are depicted in Figure 2.34. Evidently, correct

identification is obtained in each considered test case, as the test statistics are shown not to exceed

the critical point in the damage type A case, while the test cases corresponding to the other damage

types exceed the critical point.

Summary damage detection and identification results are presented in Table 2.12. The method

achieves accurate damage detection and identification, as no false alarm, missed damage, or damage

misclassification cases are reported.

2.5.6 Discussion

Scalar time series methods for SHM are shown to achieve effective damage detection and identification,

although non-parametric scalar methods do seem to encounter some difficulties. The PSD based

method achieves excellent damage detection, although it exhibits some misclassification errors for

damage type E. The misclassification problem is more intense for damage type B when the vibration

measurement location Y3 or Y4 is used.

The FRF based method achieves accurate damage detection with no false alarms or missed

damage errors, except for vibration measurement location Y4 for which it exhibits an increased number

of false alarms. Moreover, it faces problems in correctly identifying damage types B and D, as the
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Figure 2.34: Residual likelihood function based method: Representative damage identification results
(240 experiments), with the actual damage being of type A. A damage is identified as type A if the
test statistic is below the critical point (dashed horizontal line).

number of damage misclassification errors is higher for these specific damage types. Both of these

damage types involve loosening of bolts on the left wing-tip (Figure 2.20). The FRF based method

yields results inferior to those obtained by the PSD based method even though it employs excitation-

response signals (while the latter employs response-only signals). This is probably due to the larger

PSD estimate uncertainty, which seems to better “accommodate” actual structural and experimental

uncertainties.

The scalar parametric residual variance and SPRT based methods achieve excellent performance

in accurately detecting and identifying damage employing any one of the vibration measurement

locations (Table 2.11).

Vector time series methods for SHM achieve very accurate damage detection and identification,

as with properly adjusted risk level α (type I error) no false alarm, missed damage, or damage misclas-

sification errors are reported (Table 2.12). Moreover, the methods demonstrate better “global” damage

detection capability. Nevertheless, parametric vector models require accurate parameter estimation

and appropriate model structure (order) selection in order to accurately represent the structural dy-

namics and effectively tackle the damage detection and identification problems. Therefore, methods

falling into this category require adequate user expertise and are somewhat more elaborate than their

scalar or non-parametric counterparts.

2.6 Concluding remarks

A comparative experimental assessment of vibration based statistical time series methods for SHM

was presented via their application to damage diagnosis on a lightweight aluminum truss structure

and a scale aircraft skeleton structure. Some of the important conclusions drawn from this study may

be summarized as follows:
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Damage Detection

Method False Missed damage

alarms damage A damage B damage C damage D damage E damage F

PSD based 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0

FRF based 1/0/0/35 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/0 0/1/0/0 0/0/0/0

Res. variance† 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0

SPRT based 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0

False alarms for response points Y1/Y2/Y3/Y4 out of 60 test cases per point.

Missed damages for response points Y1/Y2/Y3/Y4 out of 40 test cases per point; †adjusted α.

Damage Identification

Method Damage misclassification

damage A damage B damage C damage D damage E damage F

PSD based 0/0/0/0 0/0/21/21 0/0/0/0 0/0/0/0 0/0/1/2 0/0/0/0

FRF based 0/0/0/0 10/4/7/8 6/10/2/0 5/22/9/8 2/9/5/2 0/3/1/0

Res. variance† 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0

SPRT based 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0

Damage misclassification for response points Y1/Y2/Y3/Y4 out of 40 test cases per point; †adjusted α.

Table 2.11: Scalar methods: damage detection and identification summary results.

Damage Detection Damage Identification

Method False Missed damage Damage misclassification

alarms dam A dam B dam C dam D dam E dam F dam A dam B dam C dam D dam E dam F

Mod. par.† 0 0 0 0 0 0 0 0 0 0 0 0 0

Res. lik.† 0 0 0 0 0 0 0 0 0 0 0 0 0

False alarms out of 60 test cases. Missed damages out of 40 test cases.

Damage misclassification out of 40 test cases; †adjusted α.

Table 2.12: Vector methods: damage detection and identification summary results.

• Statistical time series methods for SHM achieve damage detection and identification based on

(i) scalar or vector random excitation and/or vibration response signals, (ii) statistical model

building, and (iii) statistical decision making under uncertainty.

• Both non-parametric and parametric, as well as scalar and vector methods were shown to effec-

tively tackle damage detection and identification, with parametric methods achieving excellent

performance with zero (in the present study) false alarm, missed damage, and damage misclas-

sification rates.

• Both non-parametric and parametric methods of scalar and vector schemes were shown to have

global damage detection capability, as they are able to detect “local” and “remote” damage with

respect to the sensor position used.

• All methods were shown to be capable of correctly identifying the actual damage type, with the

exception of the FRF based method which exhibited a small number of damage misclassification

errors.

• Parametric time series methods are more elaborate and demand increased user expertise com-

pared to their generally simpler non-parametric counterparts. Yet, they were shown to offer

increased sensitivity and accuracy. Moreover, vector methods based on multivariate models are

more elaborate, but offer the potential of further enhanced performance.

• The availability of data records corresponding to various potential damage scenarios is necessary

in order to treat damage identification. This may not be possible with the actual structure itself,
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but laboratory scale models or analytical (Finite Element) models may be used for this purpose.

• The extension of the methods to the more general multivariate case requires the use of corre-

sponding vector models and multivariate statistical decision making procedures and needs to be

fully investigated in the future.

• The need for methods capable of working under varying operational and environmental condi-

tions and uncertainties is important and also the subject of current research (for instance Hios

and Fassois 2009a, Michaelides and Fassois 2008).



Chapter 3

Identification of Stochastic Systems
Under Multiple Operating Conditions:
The Vector-dependent Functionally
Pooled (VFP) Parametrization

In many applications a system operates under a variety of operating conditions which affect its dy-

namics, with each condition kept constant for a single commission cycle. The goal of this chapter

is the identification of stochastic systems under multiple operating conditions via Vector-dependent

Functionally Pooled (VFP) models. This chapter’s work is based on the novel Functional Pooling (FP)

framework, which has been recently introduced by the Stochastic Mechanical Systems & Automation

group of the Mechanical Engineering & Aeronautics Department at University of Patras. The fourth

chapter of the thesis addresses the problem of identifying a globally valid and parsimonious system

model based on input-output data records obtained under a sample of operating conditions charac-

terized by more than one parameters (for instance operating temperature and humidity or damage

location and damage magnitude). Thus, models that include a vector characterization of the oper-

ating condition (referred to as operating parameter vector) are postulated. The problem is tackled

within the novel Functional Pooling (FP) framework that postulates proper global models of the ARX

and ARMAX types, data pooling techniques, and statistical parameter estimation. Corresponding

Vector-dependent Functionally Pooled (VFP) ARX and ARMAX models are postulated, and proper

estimators of the Least Squares (LS), Maximum Likelihood (ML), and Prediction Error (PE) types

are developed. Model structure estimation is achieved via customary criteria, such as the Akaike and

Bayesian information criteria (AIC and BIC, respectively), and a novel Genetic Algorithm (GA) based

procedure. The strong consistency of the VFP-ARX least squares and maximum likelihood estima-

tors is established, whereas the effectiveness of the complete estimation and identification method is

demonstrated via two Monte Carlo studies.

55
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3.1 Introduction

In many applications a system may operate under different operating conditions during different service

intervals or commission cycles, while maintaining its condition within each cycle. As is often the case

in practice, each operating condition may affect the system/structure and its dynamics. Typical

examples include materials and mechanical structures under different environmental conditions such

as temperature and humidity, rotating machinery operating at various speeds, hydraulic systems

operating under different temperatures or fluid pressures, mechanical systems under different load or

lubrication conditions, physiological systems under different conditions, and so on.

In such cases, it is important to identify a global and parsimonious (compact) model describing

the system under any operating condition, based on input and noise-corrupted output data records

corresponding to a sample of those conditions. It could be, perhaps, argued that the problem may be

handled using a number of “pseudo-independent” conventional mathematical models and customary

identification techniques that could artificially split the problem into a number of seemingly unrelated

subproblems. Each model could be then obtained based on data records corresponding to each operat-

ing condition. Models corresponding to other (intermediate) operating conditions would not be readily

available, but could be “interpolated” based on those identified. This approach would, nevertheless,

suffer from a number of problems: First it would fail to provide a single global and parsimonious

model valid under all admissible operating conditions. Second, it would be suboptimal, characterized

by reduced statistical accuracy, as it would result in a large number of estimated parameters and

ineffective use of the information available in the totality of the data records. For instance, the in-

terrelations among the different data records would be ignored, as a result of separating the problem

into seemingly unrelated subproblems.

In order to effectively handle such problems, a novel Functional Pooling (FP) framework has

been introduced by the Stochastic Mechanical Systems & Automation group of the Mechanical Engi-

neering & Aeronautics Department at University of Patras (Sakellariou and Fassois 2007, Sakellariou

and Fassois 2007b, Kopsaftopoulos and Fassois 2006a). This framework circumvents the above dif-

ficulties and allows for effective and accurate (statistically efficient) identification of a global and

parsimonious model describing the system under any admissible operating condition. It is based on

the novel concept of functional pooling that introduces functional dependencies (in terms of the op-

erating parameter) in the postulated model structure. It is this specific characteristic that, unlike in

conventional pooling used in fields such as econometrics (Dielman 1989, Greene 2003) where the ef-

fects of “operating conditions” are “smoothed out”, allows for both precise and parsimonious modeling.

The proposed Functional Pooling (FP) framework is based on three important entities:

(i) A stochastic Functionally Pooled (FP) model structure that explicitly allows for system modeling

under multiple operating conditions via a single (“global”) mathematical representation. This

representation is characterized by parameters that functionally (explicitly) depend on the oper-

ating condition (quasi-static dependence). It thus allows for the effective and compact modeling

of the dynamics under all possible conditions, as well as for optimal statistical accuracy, due to

its limited parametrization and the full accounting of the interrelations among the various data

records.

(ii) Data pooling techniques (see Dielman (1989) and Greene (2003)) for combining and optimally

treating (as one entity) the data obtained from the various experiments.

(iii) Statistical techniques for model estimation.
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The resulting framework is referred to as a statistical Functional Pooling framework, and the

corresponding models as stochastic Functionally Pooled (FP) models. It is worth noting that by

considering a specific damage type as an operating condition, the approach is well suited for effectively

tackling the damage detection, identification (localization) and magnitude estimation problems, and

some versions have been used within this context (Sakellariou and Fassois 2008, Kopsaftopoulos and

Fassois 2007, Kopsaftopoulos and Fassois 2011e). Nevertheless, the usefulness of the approach is far

broader, and includes system analysis, characterization, prediction and automatic control.

A schematic representation of the FP framework is provided in Figure 3.1. The only essential

practical condition for using this framework and identifying “global” system models is that each

operating condition corresponds to a specific value of a measurable variable, henceforth referred to as

the operating parameter. The case of a scalar operating parameter (for instance operating temperature)

has been treated in a previous work (Sakellariou 2005, Sakellariou and Fassois 2007, Sakellariou and

Fassois 2007b). This chapter focuses on the case of a vector operating parameter (consisting of two

or more scalars, for instance operating temperature and humidity).

The class of FP models could be in the most general terms considered to belong to the broader

family of Linear Parameter Varying (LPV) models (for details in LPV model identification see Toth

(2010) and Bamieh and Giarre (2003), and the references therein). Nevertheless and despite their

superficial resemblance, these two model classes address somewhat different identification issues with

quite different perspectives. LPV identification is achieved via two major approaches: (i) the local

approach and (ii) the global approach. In the local approach LTI models are identified in a number

of (local) operating points corresponding to constant scheduling signals and the resulting local linear

models are interpolated (possibly by using data from an additional global experiment) to an LPV model

(Toth 2010). For the interpolation various techniques and approaches have been introduced, varying

from interpolation on pole estimates to the technique where each local (LTI) model is converted to a

state space model in canonical form, and subsequently the coefficients in this model are interpolated.

The local approach would, nevertheless, suffer from a number of problems as it would fail to provide a

single global and parsimonious model valid under all admissible operating conditions, while it would

be suboptimal, characterized by reduced statistical accuracy, as it would result in a large number

of estimated parameters and ineffective use of the information available in the totality of the data

records. For instance, the interrelations among the different data records would be ignored, as a result

of separating the problem into seemingly unrelated subproblems. In the global approach though one

has to determine a global LPV model structure and an identification criterion and data from a single

global experiment are employed in order to estimate an LPV model (Toth 2010).

In the FP framework the only essential practical condition for identifying parsimonious global

system models is the availability of data records from each operating condition (point) with each such

condition corresponding to a specific value of one (or more) measurable variable. Furthermore, this

framework circumvents the aforementioned difficulties that the LPV local approach faces and allows

for effective and accurate (statistically efficient) identification of a global and parsimonious model

describing the system under any admissible operating condition. Moreover, the interrelations among

the different data records belonging to the various operating conditions are fully taken into account,

as the FP model structure employs appropriate data pooling techniques. Furthermore, an extremely

important difference is that the LPV global approach employs data obtained from a single experiment,

which is not the case in the FP framework, as it employs data records obtained under a sample of the

operating conditions. From all the above it is obvious that, despite their phenomenal similarities, the

FP and LPV model structures constitute distinct representations that have important differences and

therefore should be clearly distinguished.

Thus, this chapter addresses the problem of identifying a globally valid and parsimonious system
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model based on input-output data records obtained under a sample of operating conditions character-

ized by more than one parameters (for instance operating temperature and humidity). Thus, models

that include a vector characterization of the operating condition (referred to as operating parameter

vector) are postulated. The problem is tackled within the novel Functional Pooling (FP) framework

that postulates proper global models of the ARX and ARMAX types, data pooling techniques, and

statistical parameter estimation. Corresponding Vector-dependent Functionally Pooled (VFP) ARX

and ARMAX models are postulated, and proper estimators of the Least Squares (LS), Maximum

Likelihood (ML), and Prediction Error (PE) types are developed. Model structure estimation is

achieved via customary criteria (Bayesian Information Criterion and Akaike Information Criterion)

and a Genetic Algorithm (GA) based procedure. The strong consistency of the estimators is estab-

lished, whereas the effectiveness of the complete estimation and identification method is demonstrated

via Monte Carlo experiments.

The main contributions of the chapter are:

• Extension of the FP models employing a scalar operating parameter to the Vector-dependent

FP models employing the operating parameter vector.

• Model structure estimation is achieved via customary criteria such as the BIC and the AIC, as

well as via a Genetic Algorithm (GA) based procedure.

• A new VFP model form is introduced in which the innovations sequence variance is projected to a

functional subspace, so now it may be available not only for the sample of operating conditions

(available data records), but it may be efficiently estimated for all the potential admissible

operating conditions, thus for all the potential operating parameter vectors k.

• The strong consistency of the least squares and the maximum likelihood estimators is established,

as well as the asymptotic distribution of the all the considered estimators.

• Assessment of the proposed estimators and structure selection procedures via two Monte Carlo

studies, investigating both cases of complete and non-complete functional subspaces.

3.2 Vector-dependent Functionally Pooled (VFP) model structure

3.2.1 The data set

Model Identification is based on input and noise-corrupted output data records corresponding to a

sample of the admissible operating conditions. The data records are of length N , each one corre-

sponding to a specific value of the operating parameter vector k, which, without loss of generality,

is assumed to be two-dimensional. A sample of M1 values is used for the first externally measurable

variable k1 (first element of vector k), while a sample of M2 values is used for the second externally

measurable variable k2 (second element of vector k).

A total of M1 × M2 experiments (one for each element of k) are performed, with the complete

series covering the required range of each scalar parameter, say [k1
min, k

1
max] and [k2

min, k
2
max], via the

discretizations k1 = k1
1, k

1
2, . . . , k

1
M1

and k2 = k2
1, k

2
2, . . . , k

2
M2

. Hence each experiment is characterized

by a specific value of k, say k = [k1
i , k

2
j ]. This vector is, for simplicity of notation, also designated as

the duplet ki,j = (k1
i , k

2
j ) (the first subscript of ki,j designating the value of k1 and the second that

of k2).
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Data Records

AR/X/MA parameters belong to functional subspaces

t

t

Operating Points

Functional
Pooling

VFP -ARMAX Model

zero mean, stationary, Gaussian, uncorrelated over time,
contemporaneously correlated over cross -sections

Figure 3.1: Schematic representation of the problem showing the operating points on the (k1, k2) plane,
an excitation-response data set corresponding to a particular operating point, and the VFP-ARMAX
model structure.

Input and noise-corrupted output data records from different operating points corresponding to

various values of the operating parameter vector are used (Figure 3.1):

ZNM1M2 ∆
=
{
xk[t], yk[t] | k ∆

= [k1 k2]T , t = 1, . . . , N, k1 ∈ {k1
1, . . . , k

1
M1
}, k2 ∈ {k2

1, . . . , k
2
M2
}
}
.

(3.1)

In this expression t designates normalized discrete time (the corresponding analog time being t·T
with T standing for the sampling period), and xk[t], yk[t] the input and noise-corrupted output signals

corresponding to k. N stands for the signal length (in samples) corresponding to each experiment

(each k).

3.2.2 The VFP-ARX model structure

Vector-dependent Functionally Pooled AutoRegressive with eXogenous input (VFP-ARX) models con-

stitute conceptual extensions of their conventional ARX counterparts, with the important difference

that the model parameters belong to functional subspaces spanned by specific functions of k (basis

functions). A VFP-ARX(na, nb)[pa,pb] model, with na, nb designating its AR and X orders, and pa,

pb its AR and X parameter subspace dimensionalities, respectively, is of the form:

yk[t] +
na∑

i=1

ai(k) · yk[t− i] =
nb∑

i=0

bi(k) · xk[t− i] + wk[t] (3.2)

wk[t] ∼ iidN
(
0, σ2

w(k)
)
k ∈ R2 (3.3)
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ai(k)
∆
=

pa∑

j=1

ai,j ·Gda(j)(k), bi(k)
∆
=

pb∑

j=1

bi,j ·Gdb(j)(k) (3.4)

E
{
wki,j [t] · wkm,n [t− τ ]

}
= γw[ki,j , km,n] · δ[τ ] (3.5)

with xk[t], yk[t] the excitation and response signals, respectively, and wk[t] the disturbance (inno-

vations) signal that is a white (serially uncorrelated) zero-mean with variance σ2
w(k) and potentially

cross-correlated with its counterparts corresponding to different experiments. The symbol E{·} des-

ignates statistical expectation, δ[τ ] the Kronecker delta (equal to unity for τ = 0 and equal to zero

for τ 6= 0), N (·, ·) Gaussian distribution with the indicated mean and variance, and iid stands for

identically independently distributed.

As (3.4) indicates, the AR and X parameters ai(k), bi(k) are modelled as explicit functions of

the operating parameter vector k (k-varying parameters) belonging to the functional subspaces:

F〈ai(k)〉 ∆
= {Gda(1)(k), Gda(2)(k), . . . , Gda(pa)(k)}

F〈bi(k)〉 ∆
= {Gdb(1)(k), Gdb(2)(k), . . . , Gdb(pb)(k)}

spanned by the (mutually independent) basis functions Gda(j)(k), Gdb(j)(k) consisting of polynomials

of two variables (vector polynomials) obtained as cross-products from the corresponding univariate

polynomials (Chebyshev, Legendre, Jacobi and other families – for details see Appendix A). The

indices da(j) (j = 1, . . . , pa) and db(j) (j = 1, . . . , pb) designate the specific basis functions that are

included in each subspace. The constants ai,j and bi,j designate the AR and X coefficients of projection,

respectively.

For convenience, the following notation for the complete, that is including consecutive basis

functions equal to the subspace dimensionality, functional subspaces is introduced:

Fp ∆
= {G0(k), G1(k), . . . , Gp(k)}. (3.6)

The VFP-ARX model is thus parameterized in terms of the the model’s projection coefficients

ai,j , bi,j , the innovations covariance γw[ki,j , km,n]
(
γw[ki,j , ki,j ] = σ2

w[ki,j ]
)
, and the model structure

M, defined by the model orders na, nb and the functional subspaces F〈ai(k)〉, F〈bi(k)〉.

Based on the backshift operator B
(
Bi · x[t]

∆
= x[t− i]

)
the VFP-ARX model may be expressed

as follows:

A[B,k] · yk[t] = B[B,k] · xk[t] + wk[t] (3.7)

with A[B,k], B[B,k] designating the AR and X, respectively, k-varying polynomial operators:

A[B,k]
∆
= 1 +

na∑

i=1

ai(k)Bi, B[B,k]
∆
=

nb∑

i=0

bi(k)Bi. (3.8)

The ARX signal flow can be depicted as in Figure 3.2.

As already mentioned, the innovations sequences wk[t] corresponding to different operating

conditions may be contemporaneously correlated, that is

E{wki,j [t]wki,j [t]} = σ2
w([ki,j ] and E{wki,j [t]wkm,n [t]} = γw[ki,j , km,n].

Defining the VFP model’s cross-section innovations vector as:

w[t]
∆
=
[
wk1,1 [t]wk1,2 [t] . . . wk1,M2

[t] . . . wkM1,M2
[t]
]T

(3.9)
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Figure 3.2: The ARX model structure.

with covariance matrix:

Γw[t] = E
{
w[t]wT [t]

}
=




σ2
w[k1,1] γw[k1,1, k1,2] . . . γw[k1,1, kM1,M2 ]

γw[k1,2, k1,1] σ2
w[k1,2] . . . γw[k1,2, kM1,M2 ]

...
...

. . .
...

γw[kM1,M2 , k1,1] γw[kM1,M2 , k1,2] . . . σ2
w[kM1,M2 ]


 (3.10)

then the covariance matrix corresponding to the time instants t = 1, . . . , N is given by:

Γw = Γw[t] ⊗ IN (3.11)

with ⊗ designating Kronecker product (Bernstein 2005, chap. 7).

In the case of cross-sectionally uncorrelated innovations sequences with different variances (σ2
w[k1,1]

6= σ2
w[k1,2] 6= . . . 6= σ2

w[kM1,M2 ], groupwise heteroscedasticity), the covariance matrix is given by:

Γw =




σ2
w[k1,1]IN 0 . . . 0

0 σ2
w[k2,2]IN . . . 0

...
...

. . .
...

0 0 . . . σ2
w[kM1,M2 ]IN


 (3.12)

In the simpler case of cross-sectionally uncorrelated innovations sequences with equal variances

(σ2
w[k1,1] = σ2

w[k1,2] = . . . = σ2
w[kM1,M2 ] = σ2

w, groupwise homoscedasticity), the covariance matrix is

given by Γw = σ2
wINM1M2 with INM1M2 indicating the unity matrix.

It is worth noting that:

1. All information in terms of interrelations among the data records in ZNM1M2 is reflected in the

covariance matrix Γw[t] = E
{
w[t]wT [t]

}
with w[t]

∆
=
[
wk1,1 [t] . . . wkM1,M2

[t]
]T

. This knowledge

is incorporated into the parameter estimation phase to obtain statistical models.

2. The projection of the parameters ai(k), bi(k) on the functional subspaces F〈ai(k)〉, F〈bi(k)〉
allows for models capable of representing the system dynamics everywhere within [k1

min, k
1
max]×

[k2
min, k

2
max] ∈ R2, and not only at the distinct values {k1

1, k
1
2, . . . , k

1
M1
} × {k2

1, k
2
2, . . . , k

2
M2
}

involved in ZNM1M2 .

3. The form of functional dependence is an important issue. Physical insight may be used, although

experience has shown that orthogonal polynomials, or trigonometric functions are sufficient.

The representation of equations (3.2) – (3.5) is referred to as a VFP-ARX model of orders

(na, nb) and functional subspace dimensionalities pa, pb, or in short a VFP-ARX(na, nb)[pa,pb] model.
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It is parameterized in terms of the parameter vector:

θ̄
∆
= [ αi,j

... bi,j
... γw[ki,j , km,n] ]T ∀ i, j,m, n (3.13)

with γw[ki,j , ki,j ] = σ2
w[ki,j ].

The complete VFP-ARX model estimation and identification problem may be then stated as

follows: “Given the input – output data records {xk[t]}Nt=1, {yk[t]}Nt=1 for k = k1,1, k1,2, . . . , kM1,M2

and the VFP-ARX model set:

G ∆
=
{
M(θ̄) : A[B,k, θ̄] · yk[t] = B[B,k, θ̄] · xk[t] + ek[t, θ̄];

γw[ki,j , km,n] = E{eki,j [t, θ̄]ekm,n [t, θ̄]} ∀ i, j,m, n
}

(3.14)

select an element of G that best fits the measured data.”

In this expression ek[t, θ̄] stands for the model’s one-step-ahead prediction error (residual) se-

quence, which is designated as function of the parameters to be estimated. This signifies the fact that

(just like the parameters) it is initially unknown, but may be obtained based on the current model

parameters and the measured excitation-response vibration signals.

The VFP-ARX representation is assumed to satisfy the following conditions:

CD1. Stability condition. The poles of the AR polynomials (see Equation (3.7)) should lie inside the

unit circle ∀ k.

CD2. Irreducibility condition. The polynomials A[B,k] and B[B,k] are coprime (have no common

factors) ∀ k.

CD3. The input signal xk[t] is stationary, ergodic and persistently exciting with E
{
xki,j [t]wkm,n [t]

}
= 0

∀ i, j,m, n.

3.2.3 The VFP-ARMAX model structure

Vector-dependent Functionally Pooled AutoRegressive Moving Average with eXogenous input (VFP-

ARMAX) models constitute conceptual extensions of their conventional ARMAX counterparts, with

the important difference that the model parameters belong to functional subspaces spanned by specific

k functions (basis functions). A VFP-ARMAX(na, nb, nc)[pa,pb,pc] model, with na, nb, nc designating

its AR, X, MA orders and pa, pb, pc its AR, X, MA parameter subspace dimensionalities, is of the

form:

yk[t] +

na∑

i=1

ai(k) · yk[t− i] =

nb∑

i=0

bi(k) · xk[t− i] + wk[t] +

nc∑

i=1

ci(k) · wk[t− i] (3.15)

wk[t] ∼ iidN
(
0, σ2

w(k)
)
k ∈ R2 (3.16)

ai(k)
∆
=

pa∑

j=1

ai,j ·Gda(j)(k), bi(k)
∆
=

pb∑

j=1

bi,j ·Gdb(j)(k), ci(k)
∆
=

pc∑

j=1

ci,j ·Gdc(j)(k) (3.17)
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E
{
wki,j [t] · wkm,n [t− τ ]

}
= γw[ki,j , km,n] · δ[τ ] (3.18)

with xk[t], yk[t] the excitation and response signals, respectively, and wk[t] the disturbance (inno-

vations) signal that is a white (serially uncorrelated) zero-mean with variance σ2
w(k) and potentially

cross-correlated with its counterparts corresponding to different experiments. The symbol E{·} des-

ignates statistical expectation, δ[τ ] the Kronecker delta (equal to unity for τ = 0 and equal to zero

for τ 6= 0), N (·, ·) Gaussian distribution with the indicated mean and variance, and iid stands for

identically independently distributed.

As (3.17) indicates, the AR, X and MA parameters ai(k), bi(k), ci(k) are modelled as ex-

plicit functions of the operating parameter vector k (k-varying parameters) belonging to functional

subspaces:

F〈ai(k)〉 ∆
= {Gda(1)(k), Gda(2)(k), . . . , Gda(pa)(k)}

F〈bi(k)〉 ∆
= {Gdb(1)(k), Gdb(2)(k), . . . , Gdb(pb)(k)}

F〈ci(k)〉 ∆
= {Gdc(1)(k), Gdc(2)(k), . . . , Gdc(pc)(k)}

spanned by the (mutually independent) basis functions Gda(j)(k), Gdb(j)(k), Gdc(j)(k) consisting of

polynomials of two variables (vector polynomials) obtained as cross-products from univariate polyno-

mials (Chebyshev, Legendre, Jacobi and other families – for details see Appendix A). The indices da(j)

(j = 1, . . . , pa), db(j) (j = 1, . . . , pb) and dc(j) (j = 1, . . . , pc) designate the specific basis functions

that are included in each subspace. The constants ai,j , bi,j and ci,j designate the AR, X and MA

coefficients of projection, respectively.

The VFP-ARMAX model is thus parameterized in terms of the the model’s projection coeffi-

cients ai,j , bi,j , ci,j , the innovations covariance γw[ki,j , km,n]
(
γw[ki,j , ki,j ] = σ2

w[ki,j ]
)

and the model

structureM, defined by the model orders na, nb, nc and the functional subspaces F〈ai(k)〉, F〈bi(k)〉,
F〈ci(k)〉.

Based on the backshift operator Bi
(
B·x[t]

∆
= x[t−i]

)
the VFP-ARMAX model may be expressed

as follows:

A[B,k] · yk[t] = B[B,k] · xk[t] + C[B,k] · wk[t] (3.19)

with A[B,k], B[B,k], C[B,k] designating the AR, X and MA, respectively, k-varying polynomial

operators:

A[B,k]
∆
= 1 +

na∑

i=1

ai(k)Bi, B[B,k]
∆
=

nb∑

i=0

bi(k)Bi, C[B,k]
∆
= 1 +

nc∑

i=1

ci(k)Bi. (3.20)

The representation of equations (3.15) – (3.18) is referred to as a VFP-ARMAX model of orders

(na, nb, nc) and functional subspace dimensionalities (pa, pb, pc), or in short a

θ̄
∆
=
[
αi,j

... bi,j
... ci,j

... γw[ki,j , km,n]
]T ∀ i, j,m, n (3.21)

with γw[ki,j , ki,j ] = σ2
w[ki,j ].

The complete VFP-ARMAX model estimation and identification problem may be then posted

as follows: “Given the input – output data records {xk[t]}Nt=1, {yk[t]}Nt=1 for k = k1,1, k1,2, . . . , kM1,M2

and the VFP-ARMAX model set:

G ∆
=
{
M(θ̄) : A[B,k, θ̄] · yk[t] = B[B,k, θ̄] · xk[t] + C[B,k, θ̄] · ek[t, θ̄]

| γw[ki,j , km,n] = E{eki,j [t, θ̄]ekm,n [t, θ̄]}, ∀ i, j,m, n
}
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select an element of G that best fits the measured data.”

In this expression ek[t, θ̄] stands for the model’s one-step-ahead prediction error (residual) se-

quence.

The VFP-ARMAX representation is assumed to satisfy the following conditions:

CD4. Stability condition. The poles of the AR and MA polynomials should lie inside the unit circle

∀ k.

CD5. Irreducibility condition. The polynomials A[B,k], B[B,k], C[B,k] are coprime (have no common

factors) ∀ k.

CD6. The input signal xk[t] is stationary, ergodic and persistently exciting with E
{
xki,j [t]wkm,n [t]

}
= 0

∀ i, j,m, n.

The VFP-ARMAX representation of (3.19) may be equivalently expressed in terms of the inverse

function operators (Söderström and Stoica 1989) in the following form:

C−1[B,k] ·A[B,k] · yk[t] = C−1[B,k] ·B[B,k] · xk[t] + wk[t]

⇐⇒ I[B,k] · yk[t] = H[B,k] · xk[t] + wk[t] (3.22)

with:

I[B,k]
∆
= 1 +

∞∑

j=1

ij(k)Bi = C−1[B,k] ·A[B,k] (3.23)

H[B,k]
∆
= 1 +

∞∑

j=1

hj(k)Bi = C−1[B,k] ·B[B,k] (3.24)

with I[B,k], H[B,k] designating the indicated infinite order inverse function polynomial operators and

{ij}∞j=0, {hj}∞j=0 the corresponding k-varying inverse functions.

3.2.4 The VFP model structure with innovations variance projection

The VFP model structures of the previous subsections model the AR, X and MA parameters ai(k),

bi(k), ci(k) as explicit functions of the operating parameter vector k as belonging to the functional

subspaces:

F〈ai(k)〉 ∆
= {Gda(1)(k), Gda(2)(k), . . . , Gda(pa)(k)}

F〈bi(k)〉 ∆
= {Gdb(1)(k), Gdb(2)(k), . . . , Gdb(pb)(k)}

F〈ci(k)〉 ∆
= {Gdc(1)(k), Gdc(2)(k), . . . , Gdc(pc)(k)}

Nevertheless there is no explicit function for the innovations sequences (residual) variances

σ2
w(k). Thus, the potential user may estimate only the residual variances that belong to the op-

erating parameter vectors k of the employed data set. Thus, in order to tackle the aforementioned

drawback, the projection of the innovations sequences variance to functional subspaces, as in the case

of the AR and X parameters, spanned by bivariate polynomial basis functions, is introduced.

By employing the innovations variance functional subspace:

F〈σ2
w(k)〉 ∆

= {Gds(1)(k), Gds(2)(k), . . . , Gds(ps)(k)} (3.25)
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the innovations sequences variances may be projected to the selected basis functions (see Appendix

A) as follows:

σ2
w(k)

∆
=

ps∑

j=1

sj ·Gj(k) = gTs (k) · s (3.26)

with s designating the innovations variance projections coefficients.

3.3 Vector-dependent Functionally Pooled (VFP) model estimation

The model identification problem is usually distinguished into two subproblems: the parameter esti-

mation subproblem (estimation) and the model structure selection subproblem (identification).

3.3.1 VFP-ARX model estimation

For model estimation the VFP-ARX model of (3.2) – (3.5) may be expressed as follows:

yk[t] +

na∑

i=1

ai(k) · yk[t− i] =

nb∑

i=0

bi(k) · xk[t− i] + ek[t] (3.27)

ek[t] ∼ iidN
(
0, σ2

e(k)
)
k ∈ R2 (3.28)

ai(k)
∆
=

pa∑

j=1

ai,j ·Gda(j)(k), bi(k)
∆
=

pb∑

j=1

bi,j ·Gdb(j)(k) (3.29)

E
{
eki,j [t] · ekm,n [t− τ ]

}
= γe[ki,j , km,n] · δ[τ ] (3.30)

with ek[t] designating the model’s one-step-ahead prediction error or residual (corresponding to wk[t])

with variance σ2
e(k).

In the general case the model’s one-step-ahead prediction error (residual) sequences ek[t] may be

contemporaneously correlated, that is E{eki,j [t]eki,j [t]} = σ2
e [ki,j ] and E{eki,j [t]ekm,n [t]} = γe[ki,j , km,n],

with the model residual cross-section vector defined as e[t]
∆
=
[
ek1,1 [t] . . . ekM1,M2

[t]
]T

. The cross-

section vector covariance then is:

Γe[t] = E
{
e[t]eT [t]

}
=




σ2
e [k1,1] γe[k1,1, k1,2] . . . γe[k1,1, kM1,M2 ]

γe[k1,2, k1,1] σ2
e [k1,2] . . . γe[k1,2, kM1,M2 ]

...
...

. . .
...

γe[kM1,M2 , k1,1] γe[kM1,M2 , k1,2] . . . σ2
e [kM1,M2 ]


 (3.31)

and the covariance matrix for the time instants t = 1, . . . , N is given as:

Γe = Γe[t] ⊗ IN .

3.3.1.1 A Functionally Pooled (FP) linear regression framework

Consider the general case of VFP-ARX models with “incomplete” (not necessary including consecutive

basis functions) functional subspaces. The estimation of the VFP-ARX projection coefficients vector

θ, consisting of the corresponding AR and X coefficient of projection vectors a and b respectively:

θ
∆
= [ aT

... bT ]T (3.32)
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a
∆
= [ a1,1 . . . a1,pa

... . . .
... ana,1 . . . ana,pa ]T , b

∆
= [ b0,1 . . . b0,pb

... . . .
... bnb,1 . . . bnb,pb ]T

is presently considered based on available signal samples {xk[t]}Nt=1, {yk[t]}Nt=1 and a selected model

structure M.

The VFP-ARX model of Equation (3.27) may be rewritten as:

yk[t] =
[
ϕTAR[t]⊗ gTAR(k)

... ϕTX [t]⊗ gTX(k)
]
· θ + ek[t] = φTk[t] · θ + ek[t] (3.33)

with:

ϕAR[t]
∆
=

[
−yk[t− 1] . . . − yk[t− na]

]T

ϕX [t]
∆
=

[
xk[t] . . . xk[t− nb]

]T

gAR(k)
∆
=

[
Gda(1)(k) Gda(2)(k) . . . Gda(pa)(k)

]T

gX(k)
∆
=

[
Gdb(1)(k) Gdb(2)(k) . . . Gdb(pb)(k)

]T
.

Pooling together the expressions of the VFP-ARX model [Equation (3.33)] corresponding to all

operating parameters k (k1,1, k1,2, . . . , kM1,M2) considered in the experiments (cross-sectional pooling)

yields:




yk1,1 [t]
yk1,2 [t]

...
yk1,M2

[t]

yk2,1 [t]
...

ykM1,M2
[t]




=




φTk1,1 [t]

φTk1,2 [t]
...

φTk1,M2
[t]

φTk2,1 [t]
...

φTkM1,M2
[t]




· θ +




ek1,1 [t]
ek1,2 [t]

...
ek1,M2

[t]

ek2,1 [t]
...

ekM1,M2
[t]




=⇒ y[t] = Φ[t] · θ + e[t]. (3.34)

Then, following substitution of the data for t = 1, . . . , N the following expression is obtained:

y = Φ · θ + e (3.35)

with:

y
∆
=



y[1]

...
y[N ]


 , Φ

∆
=




Φ[1]
...

Φ[N ]


 , e

∆
=



e[1]

...
e[N ]


 .

3.3.1.2 Least Squares (LS) based estimation methods

Using the above linear regression framework the simplest possible approach for estimating the projec-

tion coefficient vector θ is based on minimization of the Ordinary Least Squares (OLS) criterion:

JOLS(θ, ZNM1M2)
∆
=

1

N

N∑

t=1

eT [t]e[t]

which leads to the Ordinary Least Squares (OLS) estimator:

θ̂
OLS

=
[
ΦTΦ

]−1[
ΦTy

]
. (3.36)
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A more appropriate criterion for the contemporaneously correlated residual case is (in view of

the Gauss-Markov theorem of Greene (2003)) the Weighted Least Squares (WLS) criterion:

JWLS(θ, ZNM1M2)
∆
=

1

N

N∑

t=1

eT [t]Γ−1
w[t]e[t] =

1

N
eTΓ−1

we

with Γw[t],Γw given by (3.10) and (3.11), respectively. This leads to the Weighted Least Squares

(WLS) estimator:

θ̂
WLS

=
[
ΦTΓ−1

wΦ
]−1[

ΦTΓ−1
wy

]
. (3.37)

As the covariance matrix Γw is practically unavailable, it may be consistently estimated by

using the Ordinary Least Squares (OLS) estimator, thus:

Γ̂
OLS

w[t] =
1

N

N∑

t=1

e[t, θ̂
OLS

]eT [t, θ̂
OLS

] (3.38)

with e[t, θ̂
OLS

] designating the residuals e[t] for θ = θ̂
OLS

.

Then:

Γ̂
OLS

w = Γ̂
OLS

w[t] ⊗ IN . (3.39)

The estimator in (3.37) is then expressed as:

θ̂
WLS

=
[
ΦT (Γ̂

OLS

w )−1Φ
]−1[

ΦT (Γ̂
OLS

w )−1y
]

(3.40)

while the final residual covariance matrix is estimated as:

Γ̂
WLS

w[t] =
1

N

N∑

t=1

e[t, θ̂
WLS

]eT [t, θ̂
WLS

]. (3.41)

In the case of cross-sectionally uncorrelated residual sequences with different variances (σ2
e [k1,1] 6=

σ2
e [k1,2] 6= . . . 6= σ2

e [kM1,M2 ], groupwise heteroscedasticity) the residual covariance matrix Γw for all k

has the same form as (3.12). As the variances are practically unavailable, they may be consistently

estimated (White 2001):

σ̂2
e(k, θ̂

OLS
) =

1

N

N∑

t=1

e2
k[t, θ̂

OLS
] (3.42)

for all k, with e2
k[t, θ̂

OLS
] designating the residual sequences obtained by applying OLS. The θ̂

WLS

estimator is then given by (3.40). The final residual variance is estimated as:

σ̂2
w(k) = σ̂2

e(k, θ̂
WLS

) =
1

N

N∑

t=1

e2
k[t, θ̂

WLS
]. (3.43)

In the simpler case of cross-sectionally uncorrelated residual sequences with equal variances

(σ2
e [k1,1] = σ2

e [k1,2] = . . . = σ2
e [kM1,M2 ] = σ2

e , groupwise homoscedasticity) the covariance matrix is

Γw = σ2
wINM1M2 with INM1M2 designating the unit matrix. In this case the WLS estimator coincides

with its OLS counterpart. The residual variance is estimated by (3.43).

Variance projection model form



68 Chapter 3. Identification of stochastic systems under multiple operating conditions

In the case where the innovations sequences variance is also projected to a functional subspace,

an initial estimate of the innovations residual matrix Γw may be obtained by using OLS or WLS at

a first stage. The coefficients of projection vector to be estimated is defined as:

θ
∆
= [ aT

... bT
... sT ]T = [ ϑT

... sT ]T (3.44)

with

a
∆
= [ a1,1 . . . a1,pa

... . . .
... ana,1 . . . ana,pa ]T , b

∆
= [ b0,1 . . . b0,pb

... . . .
... bnb,1 . . . bnb,pb ]T

s
∆
= [ s1 s2 . . . sps ]T

and the basis functions vector defined as:

gs(k)
∆
=
[
Gds(1)(k) Gds(2)(k) . . . Gds(ps)(k)

]T
. (3.45)

The estimation of θ is achieved in two stages. In the first stage the estimation of ϑ is achieved

via the OLS or WLS as previously presented (see Equations (3.36) and (3.40)). Afterwards, an initial

estimate of the innovations residual matrix Γw[t] may be obtained via the Equations (3.39) and (3.41).

Then, by taking the diagonal elements of the covariance matrix Γ̂w[t], which belong to the

cross-section residual variances, in a vector γ the following expression is obtained:

γ = gTs · s (3.46)

which may be solved for the innovations projection coefficients vector s in a least squares sense.

3.3.1.3 The Maximum Likelihood (ML) estimation method

The complete parameter vector θ̄ is estimated as:

̂̄θ
ML ∆

= arg max
¯θ
L(θ,Γw[t]/e) (3.47)

with L(·) the natural logarithm of the conditional likelihood function (Söderström and Stoica 1989,

Mendel 1995). In the general case of normally distributed and contemporaneously correlated residuals

ek[t] ∀ k (Söderström and Stoica 1989, p. 198) we have:

L(θ,Γw[t]/e[t1], . . . , e[tN ]) = ln

N∏

t=1

p(e[t]/θ,Γw[t])

= −1

2

N∑

t=1

eT [t]Γ−1
w[t]e[t]− NM1M2

2
ln 2π − N

2
ln det{Γw[t]} (3.48)

with p(·) designating the Gaussian probability density function. By setting:

Λ(θ)
∆
=

1

N

N∑

t=1

e[t,θ]eT [t,θ] (3.49)

(3.48) becomes:

L(θ,Γw[t]/e) = −N
2
TrΛ(θ)Γ−1

w[t] −
N

2
ln det{Γw[t]} −

NM1M2

2
ln 2π. (3.50)
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The first derivative of (3.50) with respect to Γw[t] leads to:

∂L(θ,Γw[t]/e)

∂Γw[t]
=
N

2
Γ−1
w[t]Λ(θ)Γ−1

w[t] −
N

2
Γ−1
w[t] (3.51)

and equating it to zero yields Γw[t] = Λ(θ).

As it may be shown, L(θ,Γw[t]/e) is maximized with respect to Γw[t] for Γw[t] = Λ(θ) and

the maximum likelihood estimate of Λ(θ) is given by (3.49) for the optimum value of θ that has to

be determined. By replacing Γw[t] with Λ(θ) in (3.50) yields:

L(θ/e) = −NM1M2

2
(ln 2π + 1)− N

2
ln det{Λ(θ)}. (3.52)

Maximizing equation (3.52) with respect to θ leads to the ML estimator :

θ̂
ML ∆

= arg min
θ
det{Λ(θ)} (3.53)

and Γ̂w[t] = Λ(θ̂
ML

) = 1
N

∑N
t=1 e[t, θ̂

ML
]eT [t, θ̂

ML
]. Notice that obtaining θ̂

ML
requires the use of

iterative optimization techniques (Söderström and Stoica 1989, Ljung 1999).

In the heteroscedastic case we have:

ln det{Λ(θ)} = ln
(
σ2
e [k1,1,θ] · . . . · σ2

e [kM1,M2 ,θ]
)

= lnσ2
e [k1,1,θ] + . . .+ lnσ2

e [kM1,M2 ,θ]

=

k1M1∑

k1=k11

k2M2∑

k2=k21

lnσ2
e(k,θ). (3.54)

Maximizing (3.52) with respect to θ leads to the optimal value of θ (as in (3.53)) and:

σ̂2
w(k) = σ̂2

e(k, θ̂
ML

) =
1

N

N∑

t=1

e2
k[t, θ̂

ML
]. (3.55)

In the homoscedastic case we have:

ln det{Λ(θ)} = ln
[
σ2
e(θ)

]M1M2 = M1M2 lnσ2
e(θ) (3.56)

and the final residual variance is given by (3.55).

Variance projection model form

In this case the complete parameter vector θ̄ defined in Equation (3.44) is estimated as:

θ̂
ML ∆

= arg max
θ

L(θ/e). (3.57)

In the general case of normally distributed and heteroscedastic residuals ek[t] ∀k we have:

L(θ/e) = ln

N∏

t=1

p(e[t]/θ) = ln

k1M1∏

k1=k11

k2M2∏

k2=k21

N∏

t=1

p(eki,j [t]/θ)

= = −NM1M2

2
ln 2π − N

2

M1∑

k1=k1i

M2∑

k2=k2j

ln(gTs (k) · s)− 1

2

M1∑

k1=k1i

M2∑

k2=k2j

N∑

t=1

e2
k[t,ϑ]

gTs (k) · s (3.58)
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with e2
k[t,ϑ] designating the residual sequence corresponding to vector ϑ, which contains the AR and

X coefficients of projection.

Maximization of the log-likelihood function of Equation (3.58) constitutes a non-linear optimiza-

tion problem that has to be handled via iterative techniques (Söderström and Stoica 1989, Ljung 1999).

As it may be observed, both the ϑ and s vectors that are to be estimated are included in Equation

(3.58). Depending on the dimensions of these vectors, the above non-linear optimization problem may

be difficult to handle. Thus, it may be convenient to be accordingly divided and hence, treated via

appropriate multistage methods.

3.3.2 VFP-ARMAX model estimation

For model estimation the VFP-ARMAX model of (3.15) – (3.18) may be expressed as follows:

yk[t] +

na∑

i=1

ai(k) · yk[t− i] =

nb∑

i=0

bi(k) · xk[t− i] + ek[t] +

nc∑

i=1

ci(k) · ek[t− i] (3.59)

ek[t] ∼ iidN
(
0, σ2

e(k)
)
k ∈ R2 (3.60)

ai(k)
∆
=

pa∑

j=1

ai,j ·Gda(j)(k), bi(k)
∆
=

pb∑

j=1

bi,j ·Gdb(j)(k), ci(k)
∆
=

pc∑

j=1

ci,j ·Gdc(j)(k) (3.61)

E
{
eki,j [t] · ekm,n [t− τ ]

}
= γe[ki,j , km,n] · δ[τ ] (3.62)

with ek[t] designating the model’s one-step-ahead prediction error or residual (corresponding to wk[t])

with variance σ2
e(k).

In the general case the model’s one-step-ahead prediction error (residual) sequences ek[t] may be

contemporaneously correlated, that is E{eki,j [t]eki,j [t]} = σ2
e [ki,j ] and E{eki,j [t]ekm,n [t]} = γe[ki,j , km,n],

with the model residual cross-section vector defined as e[t]
∆
=
[
ek1,1 [t] . . . ekM1,M2

[t]
]T

The cross-section

vector covariance then is:

Γe[t] = E
{
e[t]eT [t]

}

=




σ2
e [k1,1] . . . γe[k1,1, kM1,M2

]
...

. . .
...

γe[kM1,M2
, k1,1] . . . σ2

e [kM1,M2
]




and the covariance matrix for the time instants t = 1, . . . , N is given as:

Γe = Γe[t] ⊗ IN .

3.3.2.1 The Prediction Error (PE) method

Consider the general case of VFP-ARMAX models with “incomplete” (not necessarily including con-

secutive basis functions) functional subspaces. The estimation of the VFP-ARMAX projection coef-

ficients vector θ, consisting of the corresponding AR, X and MA coefficient of projection vectors a, b

and c respectively:

θ
∆
= [ aT

... bT
... cT ]T (3.63)

is presently considered based on available signal samples {xk[t]}Nt=1, {yk[t]}Nt=1 and a selected model

structure M.
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The estimation of θ may be based on the Prediction Error (PE) principle, according to which

a quadratic scalar function f(·) (typically positive) of the model’s one-step-ahead prediction error

ek[t,θ] (residual) sequence is minimized with respect to vector θ:

θ̂ = arg min
θ
f(ek[t,θ]) (3.64)

with arg min designating “argument minimizing” and ek[t,θ] being provided by the model expression

(Söderström and Stoica 1989):

C[B,k, c]ek[t,θ] = A[B,k,a]yk[t]−B[B,k, b]xk[t] =⇒

=⇒ ek[t,θ] = I[B,k,a, c]yk[t]−H[B,k, b, c]xk[t]. (3.65)

In the general case of contemporaneously correlated residuals the criterion to be minimized

according to the Gauss-Markov theorem (Ljung 1999, p. 555) is:

J1(θ, ZNM1M2)
∆
=

1

N

N∑

t=1

eT [t]Γ−1
w[t]e[t] =

1

N
eTΓ−1

we (3.66)

with Γw[t] and Γw the corresponding innovations covariance matrices given by (3.10) and (3.11),

respectively. The residual covariance matrix may be estimated as:

Γ̂w[t] =
1

N

N∑

t=1

e[t, θ̂]eT [t, θ̂]. (3.67)

In the case of groupwise heteroscedastic residuals, that is serially and cross-sectionally uncorre-

lated residuals with different variances (σ2
e [k1,1] 6= σ2

e [k1,2] 6= . . . 6= σ2
e [kM1,M2 ]), among the different

groups of data for all operating conditions, the criterion to be minimized is given by (3.66), from

which the best linear unbiased estimator (BLUE) is obtained when the innovations covariance matrix

is used as a weighting matrix.

As the innovations covariance matrix Γw is practically unavailable, it may be replaced by

consistent estimates. It is noted that this weighted least squares estimation may be iterated until

potential convergence in the projection coefficients vector is achieved.

In the simpler case of groupwise homoscedastic residuals, that is serially and cross-sectionally

uncorrelated residuals with equal variances (σ2
e [k1,1] = σ2

e [k1,2] = . . . = σ2
e [kM1,M2 ]), the criterion to

be minimized is:

J2(θ, ZNM1M2)
∆
=

1

N

N∑

t=1

eT [t]e[t]. (3.68)

The final residual variance is then estimated as follows:

σ̂2
w(k) =

1

N

N∑

t=1

e2
k[t, θ̂]. (3.69)

In the above cases, as well as for ML estimation, the estimation of θ constitutes a non-linear

optimization problem as ek[t,θ] is a non-linear function of the MA parameters. This non-linear

problem has to be handled via iterative optimization techniques (Söderström and Stoica 1989, pp.

212–216), which are often amenable to wrong convergence problems due to the potential existence of

several local minima in the PE criterion and require high computational burden.
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Therefore, a Two Stage Least Squares (2SLS) method (see Fassois (2001), Petsounis and Fassois

(2001) and the references therein) is formulated in order to overcome the problems associated with

non-linear optimization by exclusively resorting on sequences of linear operations. The 2SLS method

may be used as stand-alone or for the initialization of the Prediction Error (PE) and Maximum

Likelihood (ML) methods.

3.3.2.2 The two Stage Least Squares (2SLS) method

Stage 1: Inverse function estimation

By replacing the theoretical inverse function operators I[B,k] and H[B,k] by truncated order

versions of orders ni and nh, respectively, (3.65) is rewritten as:

I[B,k, i] · yk[t] = H[B,k,h] · xk[t] + ek[t, i,h] (3.70)

with ek[t, i,h] designating the model residual, i, h the vectors containing the projection coefficients

of the truncated order operators I[B,k, i], H[B,k,h], respectively.

The estimation of vector ϑ = [iT
... hT ]T may be then achieved by an Ordinary Least Squares

(OLS) estimator as in Equation (3.36), minimizing the model’s Residual Sum of Squares (RSS),

e2
k[t, i,h], for all available operating parameters k, by pooling together the data corresponding to the

discrete values of k considered in the experiments (see Equation (3.1)).

Stage 2: Projection Coefficient Estimation

Once the residual series ek[t, î, ĥ] has been obtained, the VFP-ARMAX model of (3.15), (3.17)

is approximated by replacing the past, but not current, values of the prediction error ek[t,θ] with the

obtained ek[t, î, ĥ] via Equation (3.65).

Thus, the final projection coefficients vector θ may be estimated as previously by minimizing

the model’s Residual Sum of Squares (RSS), e2
k[t,θ], for all available operating parameters k, through

the OLS estimator (see Equation (3.36)). The final innovations covariance matrix is estimated using

the currently estimated residuals ek[t, θ̂] in Equation (3.67).

3.3.2.3 The Maximum Likelihood (ML) estimation method

The complete parameter vector θ̄ is estimated as:

̂̄θ
ML ∆

= arg max
¯θ
L(θ,Γw[t]/e)

with L(·) the natural logarithm of the conditional likelihood function (Söderström and Stoica 1989,

Mendel 1995). In the general case of normally distributed and contemporaneously correlated residuals

ek[t] ∀ k (Söderström and Stoica 1989, p. 198) we have:

L(θ,Γw[t]/e[t1], . . . , e[tN ]) = ln

N∏

t=1

p(e[t]/θ,Γw[t])

= −1

2

N∑

t=1

eT [t]Γ−1
w[t]e[t]− NM1M2

2
ln 2π − N

2
ln det{Γw[t]} (3.71)
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with p(·) designating the Gaussian probability density function. By setting:

Λ(θ)
∆
=

1

N

N∑

t=1

e[t,θ]eT [t,θ] (3.72)

it is proved (Söderström and Stoica 1989, p. 202), L(θ,Γw[t]/e) is maximized with respect to Γw[t]

for Γw[t] = Λ(θ) and the maximum likelihood estimate of Λ(θ) is given by (3.72) for the optimum

value of θ that has to be determined.

The ML estimator finally is given by:

θ̂
ML ∆

= arg min
θ
det{Λ(θ)} (3.73)

with the final innovations (residual) covariance matrix estimated as:

Γ̂w[t] = Λ(θ̂
ML

) =
1

N

N∑

t=1

e[t, θ̂
ML

]eT [t, θ̂
ML

].

Notice that obtaining θ̂
ML

requires the use of iterative optimization techniques (Söderström and

Stoica 1989, pp. 212–216).

In the heteroscedastic case we have:

ln det{Λ(θ)} =

k1M1∑

k1=k11

k2M2∑

k2=k21

lnσ2
e(k,θ), (3.74)

while the final innovations variance is obtained by:

σ̂2
w(k) = σ̂2

e(k, θ̂
ML

) =
1

N

N∑

t=1

e2
k[t, θ̂

ML
]. (3.75)

In the homoscedastic case we have:

ln det{Λ(θ)} = ln
[
σ2
e(θ)

]M1M2 = M1M2 lnσ2
e(θ) (3.76)

and the final residual variance is given by Equation (3.75).

3.4 Vector-dependent Functionally Pooled (VFP) model structure
selection and validation

The problem of the VFP model structure selection (structure estimation) for a given basis function

family (such as Chebyshev, Legendre and so on), that is model order determination for the AR,

X, MA polynomials and determination of their corresponding functional subspaces, is referred to

as the model identification problem. For purposes of conceptual simplicity it is presently assumed

that F〈ai(k)〉 ∆
= F〈AR〉, F〈bi(k)〉 ∆

= F〈X〉 and F〈ci(k)〉 ∆
= F〈MA〉, while the innovations variance

projection is not presently considered.

Model structure selection may be based on customary statistical criteria, such as the Akaike

Information Criterion (AIC) and Bayesian Information Criterion (BIC) (Schwarz 1978, Sakellariou

2005, Sakellariou and Fassois 2007, Akaike 1971, Reinsel 1993), that are adapted for the VFP model
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structure and penalize model complexity as a counteraction to decreasing quality of fit criterion.

Nevertheless, the present work proposes an additional Genetic Algorithm (GA) procedure based on

Poulimenos (2007), which may be automated, while it is extremely useful in the case of functional basis

dimensionality determination that involves incomplete (that is not necessarily including consecutive

basis functions) functional subspaces (see Section 3.6.2).

3.4.1 Model structure selection (identification)

3.4.1.1 Structure selection based on customary criteria

Let M(θ) be a general VFP-AR(MA)X model describing a given pool of N sample-long excitation-

response signals zN = (xNk , y
N
k ). Structure estimation for M(θ) may be based on minimization of

the Bayesian Information Criterion (BIC) (Schwarz 1978, Sakellariou 2005, Sakellariou and Fassois

2007),(Ljung 1999, pp. 505–507):

M̂(θ̂) = arg min
M(θ)

BIC, BIC =
1

NM1M2

{
−L(θ/zN ) + dim(θ) · ln(NM1M2)

2

}
(3.77)

with L(·) designating the natural logarithm of the conditional likelihood of the indicated quantity.

The Gaussian log-likelihood function of a VFP-ARMAX model M(θ) given the signal samples zN

may be shown to be:

L(θ/zN ) = −NM1M2

2
(ln 2π + 1)− N

2
ln det{Γe[t]}. (3.78)

Hence, structure estimation for a VFP-AR(MA)X modelM(θ) based on BIC minimization may

be obtained as:

M̂(θ̂) = arg min
M(θ)

1

NM1M2

{
N

2
ln det{Γe[t]} + dim(θ) · ln(NM1M2)

2

}
=

= arg min
M(θ)

{
ln det{Γe[t]} + dim(θ) · ln(NM1M2)

N

}
. (3.79)

Similarly, the Akaike Information Criterion (AIC) (Ljung 1999, pp. 505–507),(Akaike 1971) is

defined as follows:

M̂(θ̂) = arg min
M(θ)

{
NM1M2 ln det{Γe[t]} + 2 · dim(θ)

}
. (3.80)

3.4.1.2 Genetic Algorithm (GA) based structure selection

Given a basis function family, selection of the VFP-AR(MA)X model structure M refers to the

estimation of the set of integers:

M ∆
= {na, nb, nc, pa, pb, pc, da(1), . . . , da(pa), db(1), . . . , db(pb), dc(1), . . . , dc(pc)} (3.81)

with na, nb, nc designating the AR, X and MA model orders, pa, pb, pc the dimensionalities of

the functional subspaces F〈AR〉, F〈X〉, F〈MA〉, respectively, and da(j) (j = 1, . . . , pa), db(j) (j =

1, . . . , pb), dc(j) (j = 1, . . . , pc) the basis function indices of the respective subspaces.
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Model structure estimation may then be seen as the estimation of the integer-valued model

structure vector m:

m
∆
=
[
na nb nc

... pa pb pc
... da(1) . . . da(pa)

... db(1) . . . db(pb)
... dc(1) . . . dc(pc)

]T
[6+pa+pb+pc]

(3.82)

na, nb, nc ∈ {1, . . . , n̄}, pa, pb, pc ∈ {1, . . . , p̄} da(j), db(j), dc(j) ∈ {1, . . . , d̄} (3.83)

with n̄, p̄ and d̄ designating the maximum considered orders, subspace dimensionalities and basis func-

tion indices, respectively, which define the search space of the model structure estimation subproblem.

The estimation of m may be based on minimization of the Bayesian Information Criterion (BIC

– see Section 3.4.1.1):

m̂ = arg min
m

BIC(m). (3.84)

However, the model structure M is not uniquely defined in terms of the model structure

vector m as defined in equation (3.82). As the sub-vectors [da(1) . . . da(pa)], [db(1) . . . db(pb)] and

[dc(1) . . . dc(pc)] correspond to ordered sets of integers, any recomposition of them produces equivalent

model structures (for example the vectors [da(1) da(2) da(3)] and [da(1) da(3) da(2)] correspond to

the same model structure). Thus, the model structure M is not uniquely defined, which implies that

several global minima with respect to m exist in the BIC criterion. Moreover, during the optimiza-

tion procedure the dimension of the model structure vector m varies, as the subspace dimensionalities

pa, pb and pc change. Thus, it is obvious that the definition of the model structure vector m of equa-

tion (3.82), although it seems to be a “natural” choice, is inappropriate for the actual optimization

procedure.

In order for the model structure M to be uniquely defined in terms of vector m the problem is

transformed into a binary variable optimization problem as follows:

mbin
∆
=
[
na nb nc

... za,1 . . . za,pa
... zb,1 . . . zb,pb

... zc,1 . . . zc,pc

]
[3+pa+pb+pc]

(3.85)

with za,j , zb,j and zc,j designating binary variables indicating whether the basis function Gj(k) is

included in the functional subspace F〈AR〉, F〈X〉 and F〈MA〉, respectively. Thus:

za,j = 1 ⇐⇒ Gj(k) ∈ F〈AR〉, za,j = 0 ⇐⇒ Gj(k) /∈ F〈AR〉 (3.86)

and similarly for the variables zb,j and zc,j .

By the above procedure the model structureM is uniquely defined by the fixed-dimension vector

mbin of equation (3.85). Hence, the estimation of mbin is achieved as:

m̂bin = arg min
mbin

BIC(mbin). (3.87)

The minimization of mbin constitutes a discrete variable optimization problem, which may

be tackled via the use of Genetic Algorithms (GA) (Chipperfield et al. n.d.). In order to reduce

the dimension of the optimization problem, usually the AR, X and MA model orders are initially

selected via customary model order selection techniques (BIC, AIC, RSS/SSS) (Ljung 1999, Fassois

2001, Söderström and Stoica 1989), whereas the functional subspace dimensionalities and indices are

selected via the use of GAs.
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fχ2

α

1− α

χ2
1−α0

Ho accepted H1 accepted

Figure 3.3: Statistical hypothesis testing based on a χ2 distributed statistic (one-tail test).

3.4.2 Model validation

Once the model estimation and structure selection procedures have been completed, model validation

is based on the assumptions concerning the residual sequences êk[t], which, for an accurate model,

should be serially uncorrelated (over time), uncorrelated with the input ∀ k (Assumptions CD3 and

CD6) and cross-sectionally uncorrelated (over the different operating conditions) in the homoscedastic

and heteroscedastic cases.

Testing the hypothesis of residual uncorrelatedness for each k may be based on the following

statistical hypothesis testing procedure:

Ho : ρ[τ ] = 0 τ = 1, 2, . . . , r (white residuals)
H1 : ρ[τ ] 6= 0 for some τ (not white residuals)

(3.88)

in which ρV [τ ] (τ = 1, 2, . . . , r) designates the residual series normalized autocorrelation at lag τ .

Under the null hypothesis the following Q statistic follows a chi-square (χ2) distribution with r degrees

of freedom (Box et al. 1994, p. 314):

Q = N(N + 2) ·
r∑

τ=1

(N − τ)−1ρ̂2[τ ] ∼ χ2(r) (3.89)

in which N designates the residual signal length (in number of samples), ρ̂[τ ] the estimated (sample)

normalized autocorrelation at lag τ , and r the maximum lag. This leads to the following test at the

α risk level (see Figure 3.3):

Q < χ2
1−α(r) =⇒ Ho is accepted (white residuals)

Else =⇒ H1 is accepted (not white residual)
(3.90)

with χ2
1−α(r) designating the distribution’ s (1− α) critical point.

The independence between the inputs and the residuals, and among the residuals of all oper-

ating conditions may be based on typical statistical tests using the sample cross-correlation function

(Söderström and Stoica 1989, pp. 426–429),(Ljung 1999, p. 531–514),(Reinsel 1993, p. 132–133).
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3.5 Asymptotic properties

3.5.1 Consistency analysis

The consistency of the OLS, WLS, ML and PE estimators presented in Section 3.3 is presently inves-

tigated. For simplicity, the case of cross-sectionally uncorrelated innovations sequences with different

variances (heteroscedastic case) is considered. The estimated model is assumed to have the exact

structure of the true system, with the latter and the excitation signals satisfying the assumptions CD1

– CD6 of Section 3.2.

For the Least Squares (LS) estimators of Section 3.3.1.2 we have proved the following theorem:

Theorem 3.5.1 (LS estimator consistency) Let θo be the true projection coefficient vector, wk[t]

a white zero mean process with E{w2
k[t]} = σ2

w(k) for every operating point, and E{φk[t]φk
T [t]} a

nonsingular matrix. Then:

θ̂
LS

N
a.s.−→ θo (N −→∞)

with a.s. designating convergence in the almost sure sense (White 2001, pp. 18–19). �

For the proof of Theorem 3.5.1 see Appendix B.

For the Maximum Likelihood (ML) estimators of Sections 3.3.1.3 and 3.3.2.3 we have the fol-

lowing theorem:

Theorem 3.5.2 (ML estimator consistency) Let θ̄o =
[
θTo

... γw[ki,j , km,n]
]

be the true parameter

vector, wk[t] a normally distributed zero mean white process with E{w2
k[t]} = σ2

w(k) for every operating

point, and E{φk[t]φk
T [t]} a nonsingular matrix. Then:

̂̄θ
ML

N
a.s.−→ θ̄o (N −→∞).

�

The interested reader may find the proof of Theorem 3.5.2 in Appendix B. This proof is direct

extension of the corresponding proof found in Sakellariou (2005, pp. 70–72).

For the Prediction Error (PE) estimator of Section 3.3.2.1 we have the following theorem:

Theorem 3.5.3 (PE estimator consistency) Let θo be the true projection coefficient vector, ek[t]

a white zero mean process with E{e2
k[t]} = σ2

e(k) for every operating point, and E{ψk[t,θo]ψk
T [t,θo]},

with ψk[t,θo] = ∂ek[t,θo]/∂θo a nonsingular matrix. Then:

θ̂
PE

N
p−→ θo (N −→∞)

with p designating convergence in probability (White 2001, p. 24). �

The proof of Theorem 3.5.3 is direct extension of the corresponding proof found in Sakellariou

(2005, pp. 145–147).
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3.5.2 Asymptotic distribution

The asymptotic distribution theorems for the OLS, WLS, ML and PE estimators are presented in

the following. For simplicity, the case of cross-sectionally uncorrelated innovations sequences with

different variances (heteroscedastic case) is considered.

For the Least Squares (LS) estimators of Section 3.3.1.2 we have the following theorem:

Theorem 3.5.4 (LS estimator asymptotic distribution) Let θo be the true projection coefficient

vector, wk[t] a white zero mean process with E{w2
k[t]} = σ2

w(k) for every operating point, and

E{φk[t]φk
T [t]} a nonsingular matrix. Then:

√
NM1M2(θ̂ − θo) d−→ N (0,P ) (N −→∞)

with

P =

[
1

M1M2

M1∑

k1=k1i

M2∑

k2=k2j

1

σ2
w(ki,j)

E
{
ϕki,j [t,θo]ϕ

T
ki,j

[t,θo]
}
⊗Gki,j

]−1

(3.91)

=

[
1

M1M2

M1∑

k1=k1i

M2∑

k2=k2j

1

σ2
w(ki,j)

E
{
φki,j [t,θo]φ

T
ki,j

[t,θo]
}
]−1

= [ΦTΓ−1
wΦ]−1 (3.92)

with d designating convergence in distribution (White 2001, pp. 65–66) and Gki,j = gki,jg
T
ki,j

. �

The proof of Theorem 3.5.4 is direct extension of the corresponding proof found in Sakellariou

(2005, pp. 73–76).

As the covariance matrix P is unknown, it may estimated using the available input-output data

records of length N via the following estimator:

P̂ =

[
1

NM1M2

M1∑

k1=k1i

M2∑

k2=k2j

1

σ̂2
w(ki,j)

N∑

t=1

φki,j [t]φ
T
ki,j

[t]

]−1

= [ΦT Γ̂
−1

wΦ]−1 (3.93)

and

σ̂2
w(ki,j) =

1

N

N∑

t=1

e2
ki,j

[t, θ̂] (3.94)

Theorem 3.5.5 (ML estimator asymptotic distribution) Let θ̄o =
[
θTo

... γw[ki,j , km,n]
]

be the

true parameter vector, wk[t] a normally distributed zero mean white process with E{w2
k[t]} = σ2

w(k)

for every operating point, and E{φk[t]φk
T [t]} a nonsingular matrix.

Then the estimate ̂̄θ follows asymptotically Gaussian distribution with mean θ̄o and covariance

matrix equal to the Cramer-Rao lower bound (Söderström and Stoica 1989, pp. 560–562):

̂̄θ
ML

N ∼ N (θ̄,PML) (N −→∞).

�
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The proof of Theorem 3.5.5 is direct extension of the corresponding proof found in Sakellariou

(2005, pp. 76–79).

The part of PML that corresponds to the coefficients of projection vector θo coincides with

the covariance matrix of Equation (3.92) (Söderström and Stoica 1989, p. 562), (Sakellariou 2005,

p. 78). Hence, the WLS estimator of Section 3.3.1.2 achieves efficient estimation of the coefficients

of projection vector θ reaching the Cramer-Rao lower bound, when consistent estimates of the true

variances σ2
w(ki,j) are employed.

Theorem 3.5.6 (PE estimator asymptotic distribution) Let θo be the true projection coeffi-

cient vector, ek[t] a white zero mean process with E{e2
k[t]} = σ2

e(k) for every operating point, and

E{ψk[t,θo]ψk
T [t,θo]}, with ψk[t,θo] = ∂ek[t,θo]/∂θo a nonsingular matrix. Then:

√
NM1M2(θ̂ − θo) d−→ N (0,P ) (N −→∞)

with

P =

[
1

M1M2

M1∑

k1=k1i

M2∑

k2=k2j

1

σ2
w(ki,j)

E
{
ψki,j [t,θo]ψ

T
ki,j

[t,θo]
}
]−1

(3.95)

with d designating convergence in distribution (White 2001, pp. 65–66). �

The proof of Theorem 3.5.6 is direct extension of the corresponding proof found in Sakellariou

(2005, pp. 147–149).

3.6 Monte Carlo Studies

The effectiveness of the VFP model estimation based on the OLS, WLS and ML estimators, along

with the model functional subspace selection and model validation is presently examined via two

Monte Carlo studies. The first study explores the case of complete functional subspaces, that is

subspaces consisting of consecutive basis functions, whereas the second study explores the case of non-

complete functional subspaces, that is subspaces not necessarily including consecutive basis functions

(see Appendix A).

The first Monte Carlo study, presented in Section 3.6.1, is based on a VFP-ARX(4, 1)6 model

with its functional subspace consisting of the first 6 basis functions of Table 3.1 for both the AR and X

parameters, thus a complete functional subspace of maximum polynomial degree 2 (quadratic). The

second Monte Carlo study, presented in Section 3.6.2, is based on a VFP-ARX(4, 1)9 model with its

functional subspace consisting of 9 basis functions for both the AR and X parameters. The first 6 basis

are consecutive, thus up to degree 2, while the next three basis functions are the eighth (P2,1), ninth

(P1,2), and thirteenth (P2,2) of Table 3.1. Hence, a non-complete functional subspace of maximum

polynomial degree 4 is considered.

In both Monte Carlo studies the maximum functional subspace from which the “actual” basis

functions are selected is the complete subspace spanned by consecutive basis functions up to fourth

degree. Thus, the maximum subspace considered includes all fifteen basis functions of Table 3.1, from

which the structure selection algorithms presented in Section 3.4 should choose the true ones.
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3.6.1 Test Case I: Complete parameter functional subspace

The first study is based on a VFP-ARX(4, 1)6 model (na = 4, nb = 1) with zero delay (b0 6= 0 in

the eXogenous polynomial) and AR, X subspaces consisting of the first 6 basis functions of Table 3.1

for both the AR and X parameters (hence functional dimensionality pa = pb = 6). Thus a complete

functional subspace of maximum polynomial degree 2 (quadratic) consisting of shifted Chebyshev

polynomials of the second kind is employed (Dunkl and Xu 2001). The VFP-ARX(4, 1)6 model

employed is presented in the following equation:

[
1 +

4∑

i=1

6∑

j=1

ai,jGj(k) · Bi
]
· yk[t] =

[
1∑

i=0

6∑

j=1

bi,jGj(k) · Bi
]
xk[t] + wk[t] (3.96)

with

gAR(k) = gX(k) = G(k) =
[
G1(k) . . . G6(k)

]
. (3.97)

The study consists of 500 runs, in each one of which the first scalar operating parameter takes

20 values (k1
i ∈ [1, 20]) and the second scalar operating parameter takes 16 values (k2

j ∈ [1, 16]).

Thus, each run includes excitation-response signals (of length equal to N = 1024 samples) from

M1×M2 = 320 operating conditions. Each response is corrupted by random noise at the 10% standard

deviation level in accordance with the ARX structure expression (innovations standard deviation over

the noise-free response standard deviation equal to 0.1). The innovations sequences corresponding

to different operating conditions are cross-sectionally uncorrelated, but characterized by different

variances (groupwise heteroscedasticity). Some of the true system coefficients of projection (out of

a total of 36) are indicated in Table 3.2. The innovations sequences (residuals) wk[t] among the

different operating conditions are considered cross-sectionally uncorrelated with different variances

σ2
w(k) (groupwise heteroscedasticity). In all cases the system output(s) were generated by using a

number of mutually independent, random sequences with zero mean and approximately flat spectra

acting as system input(s) and random noise.

Model structure estimation consists of the selection of the functional subspace dimensionality

p, as well as the specific basis functions (second kind shifted Chebyshev polynomials) that includes.

In the case of complete functional subspaces, the problems of functional subspace dimensionality and

specific basis function determination coincide. Thus, model structure estimation is achieved via the

BIC criterion of Section 3.4.1.1, the Genetic Algorithm (GA) procedure of Section 3.4.1.2, as well as

the Residual Sum of Squares normalized by the Series Sum of Squares (RSS/SSS) function:

RSS/SSS =
1

M1M2

k1M1∑

k1=k11

k2M2∑

k2=k21

∑N
t=1 e

2
ki,j

[t]
∑N

t=1 y
2
ki,j

[t]
× 100%. (3.98)

1. constant basis function P0,0

2. linear basis functions P1,0, P0,1

3. quadratic basis functions P2,0, P1,1, P0,2

4. cubic basis functions P3,0, P2,1, P1,2, P0,3

5. fourth degree basis functions P4,0, P3,1, P2,2, P1,3, P0,4

Table 3.1: Functional subspaces of bivariate polynomials up to fourth degree (see Appendix A).
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Projection True OLS WLS ML

Coefficient value estimate estimate estimate

a1,1 -0.01706 -0.01708 ± 0.00035 -0.01712 ± 0.00023 -0.01711 ± 0.00023

a1,4 0.12289 0.12295 ± 0.00025 0.12294 ± 0.00016 0.12294 ± 0.00016

a2,3 -0.03889 -0.03896 ± 0.00021 -0.38692 ± 0.00017 -0.38693 ± 0.00017

a2,6 -0.00178 -0.00182 ± 0.00019 -0.00178 ± 0.00013 0.00178 ± 0.00013

a3,2 -0.02903 -0.02905 ± 0.00021 -0.02903 ± 0.00017 -0.02903 ± 0.00017

a4,1 0.59618 0.59622 ± 0.00031 0.59625 ± 0.00021 0.59625 ± 0.00021

a4,4 -0.01629 -0.01630 ± 0.00022 -0.01630 ± 0.00014 -0.01630 ± 0.00014

a4,5 -0.00605 -0.00600 ± 0.00016 -0.00601 ± 0.00013 -0.00602 ± 0.00013

b0,1 0.74531 0.74526 ± 0.00045 0.74527 ± 0.00037 0.74527 ± 0.00038

b0,3 0.46714 0.46714 ± 0.00051 0.46711 ± 0.00037 0.46712 ± 0.00037

b1,2 0.63756 0.63768 ± 0.00054 0.63760 ± 0.00036 0.63760 ± 0.00035

b1,6 0.16828 0.16841 ± 0.00062 0.16830 ± 0.00037 0.16831 ± 0.00037

EAR(%) 0.04066 0.03756 0.03720

EX(%) 0.01505 0.00451 0.00478(
RSS
SSS

)
% 0.30579 ± 0.00036 0.30582 ± 0.00036 0.30582 ± 0.00036

mean estimate ±1 standard deviation

Table 3.2: Indicative Monte Carlo estimation results for the VFP-ARX(4, 1)6 model (selected coeffi-
cients of projection; 500 runs per method; mean estimate ±1 standard deviation).

Model validation is based on the whiteness examination of the residuals for each k as indicated in

Section 3.4.2, as well as on the normalized cross correlation function (MATLAB function crosscorr.m)

between the inputs and the residuals for all k and among the residuals of the different operating

conditions.

Figure 3.4 depicts the model structure selection criteria of BIC (Figure 3.4a) and RSS/SSS (Fig-

ure 3.4b) based on the WLS estimator of Equation (3.40). Both these criteria reach an approximate

plateau for p = 6, nevertheless the BIC criterion, which penalizes the functional basis overdetermina-

tion, attains its minimum value for p = 6, while the RSS/SSS criterion keeps decreasing (see Figure

3.4a and Figure 3.4b close-ups, respectively). Moreover, Table 3.3 presents the GA details for the

functional subspace selection task (see Equation (3.87)). The GA achieved excellent results, as it was

able to select the correct functional subspace with 100% success based on 500 Monte Carlo runs (500

correct selections out of 500 Monte Carlo runs).

Figure 3.5 presents indicative model validation results based on the Q test of Section 3.4.2.

The Q statistics estimated from the model residuals of each cross-section for one Monte Carlo run are

depicted versus the M1×M2 = 20×16 = 320 cross-sections. The dashed red line represents the critical

point at the α = 0.01 (99%) confidence level. The model is valid when the test statistics lie below the

critical point (dashed red line) with respect to the selected confidence level. It is evident from Figure

3.5 that the VFP-ARX(4, 1)6 is valid, as the Q statistic of all the model residual sequences, except

three, lie below the critical point.

Population size Elite count Crossover fraction Fitness function tolerance

30 3 0.7 10−4

Table 3.3: Genetic Algorithm (GA) details for functional subspace determination of Test Case I.
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Figure 3.5: Indicative VFP-ARX(4, 1)6 model validation results: Q statistic versus the 320 cross-
section at the α = 0.01 (99%) confidence level (max lag = 50). The model is valid when the test
statistics lie below the critical point (dashed red line) for the selected confidence level.

Indicative VFP-ARX(4, 1)6 model validation results are shown in Figure 3.6. The top line plots

depict the cross correlation function between various model residual series ek[t] pairs at the α = 0.01

(99%) confidence level, while the bottom line plots depict the cross correlation function between

various input xk and residual series ek[t] pairs at the α = 0.01 (99%) confidence level (max lag = 50).

In all cases it is evident that both the residual series pairs (top line plots), as well as the input-residual

pairs (bottom line plots) are uncorrelated, a fact that proves the validity of the model. In all cases

the residuals are found serially uncorrelated, cross-sectionally uncorrelated and uncorrelated with the

inputs. Thus, model identification (in terms of functional subspace selection) is accurately achieved,

as the true number of functional basis, as well as the specific basis functions in the case of the GA

based method, is correctly estimated in all 500 runs.

Next, interval parameter estimates are constructed for the OLS, WLS and ML estimators, along

with normalized (percentage) aggregate AR and X errors corresponding to the mean estimated values:

EAR
∆
=
||â− ao||
||ao|| %, EX

∆
=
||b̂− bo||
||bo|| % (3.99)

with a and b designating the AR and X coefficient of projection vectors, respectively, the superscript

“o” designating the true value of these vectors, and ||a|| = ∑i |ai|, ||b|| =
∑

i |bi|.
The Monte Carlo estimation summarized results for all the considered estimators are presented

in Table 3.2 (mean estimates ± standard deviations). All three estimators achieve excellent agreement

between the true values of the projection coefficients (theoretical values) and the corresponding OLS,

WLS and ML estimates. Moreover, the standard deviations of the estimated projection coefficients are

extremely low with those belonging to the WLS and ML estimators giving even better results, as it was

expected. Notice though that the WLS is initialized by the OLS variances (QR decomposition), while
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Figure 3.6: Indicative VFP-ARX(4, 1)6 model validation results: (a) top line plots: cross correlation
function between various model residual series ek[t] pairs at the α = 0.01 (99%) confidence level, and
(b) bottom line plots: cross correlation function between various input xk and residual series ek[t]
pairs at the α = 0.01 (99%) confidence level (max lag = 50).

the ML estimator is initialized by the WLS estimates, and makes use of the Gauss-Newton non-linear

optimization scheme (Söderström and Stoica 1989) (maximum number of iterations 100; maximum

number of function evaluations 5000; termination tolerance of the loss function 10−2; termination

tolerance of the estimated parameters 10−8). Furthermore, the extremely low AR and X aggregate

errors and the low values of the RSS/SSS over the 500 runs constitute further indications for the

excellent performance of the estimators.

Indicative parameter estimation results are pictorially depicted in Figure 3.7. The true values

of the coefficient of projection are shown in dashed red lines, while the sample mean estimates (blue

lines) from the 500 runs along with their 95% confidence intervals (±1.96 sample standard deviations)

are shown in shaded boxes. The dashed blue lines correspond to the theoretical WLS ±1.96 standard

deviations based the asymptotic distribution analysis of Section 3.5.2 as estimated via Equation (3.93).

As it may be readily observed, all the results are very accurate. All three methods provide essentially

unbiased estimates, with the WLS and ML methods expectedly providing better accuracy for the

coefficients of projection (smaller standard deviations, thus narrower confidence intervals). Moreover,

notice the excellent agreement between the theoretical and estimated WLS standard deviations of the

projection coefficients, which demonstrates the validity of the asymptotic distribution analysis.

Figure 3.8 presents indicative VFP-ARX(4, 1)6 model residual sequence variance results by the

OLS, WLS and ML estimators. The sample mean estimates and the ±1.96 sample standard deviations

(shaded boxes), along with the corresponding residual true values (dashed red lines) are presented.

Again there is excellent agreement between the true and the estimated residual variances.

Figure 3.9 depicts the a1 model parameter (first parameter of the AR polynomial) surface versus

the k1 and k2 series of the operating parameters for the true (theoretical) system, as well as for the

mean OLS, WLS, and ML estimates over the 500 runs. Furthermore, Figure 3.10 depicts the b0
model parameter (first parameter of the X polynomial) surface versus the k1 and k2 series for the true

(theoretical) system and the mean OLS, WLS, and ML estimates. In both cases the agreement of the

true parameter surfaces with the corresponding estimated is evident.

The VFP-ARX(4, 1)6 second natural frequency ω2 and first damping ratio ζ1 surfaces versus
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Figure 3.7: Indicative VFP-ARX(4, 1)6 projection coefficient estimation results by the OLS, WLS
and ML methods (Monte Carlo results based on 500 runs per method): sample mean estimates ±1.96
sample standard deviations (shaded boxes), along with the corresponding true values (dashed red lines
- - -) and the theoretical asymptotic WLS standard deviations (dashed blue lines - - -), which coincide
with the Cramer-Rao lower bound.

the k1 and k2 series are shown in Figures 3.11 and 3.12, respectively, for the true (theoretical) system

and the mean OLS, WLS, and ML estimates over 500 runs. Notice the excellent agreement between

the true and the estimated quantities in all cases. Moreover, Figure 3.13 depicts the VFP-ARX(4, 1)6

based frequency response magnitude surfaces versus frequency and k1 operating parameter, with the

k2 operating parameter set to k2
3, for the true system, as well as for those estimated based on the mean

projection coefficient vectors of the considered estimators. Again, the excellent agreement between

the true and the estimated quantities is evident.

The complexity of each estimation method is assessed based on the CPU (Central Processing

Unit) time required by a typical computer (Intel Core 2 Duo P8400 @ 2.26 GHz, 4 GB RAM, Linux

Operating System) for achieving a single Monte Carlo run. The obtained relative times are presented in

Table 3.4. Thus, indicative results for the required CPU times for the OLS, WLS, and ML estimation

methods are 5.63, 11.85 and 54.13 seconds, respectively (also see Table 3.4), in order to obtain the

final estimates of the same coefficients of projection vector for a single run of this test case. Notice,

that the ML estimation method requires, as expected, the greatest amount of CPU time, while the

OLS method the least. Nevertheless, the WLS method achieves an acceptable CPU time while it

yields the most accurate estimation results.
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Figure 3.8: Indicative VFP-ARX(4, 1)6 residual variance results by the OLS, WLS and ML methods
(Monte Carlo results based on 500 runs per method): sample mean estimates ±1.96 sample standard
deviations (shaded boxes), along with the corresponding residual true values (dashed red lines - - -).

3.6.2 Test Case II: Non-complete parameter functional subspace

The second study is based on a VFP-ARX(4, 1)9 model (na = 4, nb = 1) with zero delay (b0 6= 0

in the eXogenous polynomial) and AR, X subspaces consisting of 9 basis functions (hence functional

dimensionality pa = pb = 9). The first 6 basis are consecutive, thus up to polynomial degree 2, while

the next three basis functions are the eighth (P2,1), ninth (P1,2), and thirteenth (P2,2) (see Table 3.1).

Hence, a non-complete functional subspace of maximum polynomial degree 4 (quadratic) consisting of

shifted Chebyshev polynomials of the second kind is considered. The VFP-ARX(4, 1)9 model employed

is presented in the following equation:

CPU time (%)

Test Case OLS WLS ML

I 10.41 21.89 100
II 12.93 17.55 100

Relative CPU time (%)

I/II 51.32 79.50 63.73

Table 3.4: CPU and relative (test case I/test case II) CPU times for the OLS, WLS and ML estimation
methods as percentage of the total ML time (single run).
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Figure 3.9: VFP-ARX(4, 1)6 model parameter a1 estimates versus k1 and k2 series: (a) true system,
(b) mean OLS estimate, (c) mean WLS estimate and (d) mean ML estimate (mean parameters over
500 runs).

Projection True OLS WLS ML

Coefficient value estimate estimate estimate

a1,1 -0.07969 -0.07971 ± 0.00036 -0.07974 ± 0.00023 -0.07973 ± 0.00023

a1,4 0.10437 0.10436 ± 0.00024 0.10440 ± 0.00017 0.10441 ± 0.00017

a1,9 -0.00474 -0.00475 ± 0.00015 -0.00476 ± 0.00011 -0.00476 ± 0.00011

a2,3 -0.01176 -0.01176 ± 0.00023 -0.01178 ± 0.00014 -0.01178 ± 0.00014

a2,5 0.01810 0.01811 ± 0.00020 0.01810 ± 0.00013 0.01810 ± 0.00013

a3,1 -0.08097 -0.08089 ± 0.00028 -0.08088 ± 0.00021 -0.08087 ± 0.00021

a3,4 0.06493 0.06490 ± 0.00021 0.06491 ± 0.00016 0.06491 ± 0.00016

a3,9 -0.00922 -0.00922 ± 0.00015 -0.00922 ± 0.00011 -0.00922 ± 0.00011

a4,5 -0.00511 -0.00508 ± 0.00018 -0.00509 ± 0.00013 -0.00509 ± 0.00013

b0,1 0.74531 0.74526 ± 0.00063 0.74527 ± 0.00044 0.74526 ± 0.00044

b0,7 0.71846 0.71844 ± 0.00069 0.71847 ± 0.00039 0.71848 ± 0.00039

b1,2 0.63756 0.63756 ± 0.00077 0.63761 ± 0.00046 0.63761 ± 0.00044

EAR (%) 0.04680 0.04094 0.04073

EX (%) 0.00773 0.00367 0.00402(
RSS
SSS

)
(%) 0.30665 ± 0.00041 0.30673 ± 0.00041 0.30673 ± 0.00041

mean estimate ±1 standard deviation

Table 3.5: Indicative Monte Carlo estimation results for the VFP-ARX(4, 1)9 model (selected coeffi-
cients of projection; 500 runs per method; mean estimate ±1 standard deviation).
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Figure 3.10: VFP-ARX(4, 1)6 model parameter b0 estimates versus k1 and k2 series: (a) true system,
(b) mean OLS estimate, (c) mean WLS estimate and (d) mean ML estimate (mean parameters over
500 runs).

[
1 +

4∑

i=1

9∑

j=1

ai,jGj(k) · Bi
]
· yk[t] =

[
1∑

i=0

9∑

j=1

bi,jGj(k) · Bi
]
xk[t] + wk[t] (3.100)

with

gAR(k) = gX(k) = G(k) =
[
G1(k) . . . G6(k) G8(k) G9(k) G13(k)

]
. (3.101)

The study consists of 500 runs, in each one of which the first scalar operating parameter takes

20 values (k1
i ∈ [1, 20]) and the second scalar operating parameter takes 16 values (k2

j ∈ [1, 16]).

Thus, each run includes excitation-response signals (of length equal to N = 1024 samples) from

M1×M2 = 320 operating conditions. Each response is corrupted by random noise at the 10% standard

deviation level in accordance with the ARX structure expression (innovations standard deviation over

the noise-free response standard deviation equal to 0.1). The innovations sequences (residuals) wk[t]

corresponding to different operating conditions are cross-sectionally uncorrelated, but characterized by

different variances (groupwise heteroscedasticity). Some of the true system coefficients of projection

(out of a total of 36) are indicated in Table 3.5. In all cases the system output(s) were generated by

using a number of mutually independent, random sequences with zero mean and approximately flat

spectra acting as system input(s) and random noise.

Model structure estimation consists of the selection of the functional subspace dimensionality

p, as well as the specific basis functions (second kind shifted Chebyshev polynomials) that includes.

In the case of complete functional subspaces, the problems of functional subspace dimensionality and

specific basis function determination coincide, nevertheless this is not the case for this test case. As

the functional subspace is non-complete, model structure estimation may not be achieved via the BIC

criterion, as in this case it would require the estimation of a huge number of models, covering all
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Figure 3.11: VFP-ARX(4, 1)6 second natural frequency ω2 versus k1 and k2 series: (a) true system,
(b) mean OLS estimate, (c) mean WLS estimate and (d) mean ML estimate (mean parameters over
500 runs).

the possible subspace dimensionalities, as well as the potential specific basis functions. Hence, the

Genetic Algorithm (GA) procedure of Section 3.4.1.2 is necessary in this case in order to tackle the

model structure estimation task.

Model validation is based on the whiteness examination of the residuals for each k as indicated in

Section 3.4.2, as well as on the normalized cross correlation function (MATLAB function crosscorr.m)

between the inputs and the residuals for all k and among the residuals of the different operating

conditions.

Table 3.3 presents the GA details for the functional subspace selection task (see Equation (3.87)).

The GA achieved very good results, as it was able to select the correct functional subspace dimension-

ality (p = 9) along with the correct specific basis functions (see Equation (3.101)) with 89% success

based on 500 Monte Carlo runs (446 correct selections out of 500 Monte Carlo runs). These results

could be improved if the population size is increased. Nevertheless, this would cause an increase in

CPU time, thus the potential user should decide on the exact GA optimization parameters based on

the available time, computational cost and desired estimation accuracy. For instance, the GA of test

case I whose optimization details are presented in Table 3.3 needs about 100 seconds for a single run

with a population size of 30, while the GA of this test case (see Table 3.6) with a population size of

140 needs about 600 seconds, hence 600% more CPU time.

Population size Elite count Crossover fraction Fitness function tolerance

140 10 0.7 10−4

Table 3.6: Genetic Algorithm (GA) details for functional subspace determination of Test Case II.
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Figure 3.12: VFP-ARX(4, 1)6 first damping ratio ζ1 versus k1 and k2 series: (a) true system, (b) mean
OLS estimate, (c) mean WLS estimate and (d) mean ML estimate (mean parameters over 500 runs).

Indicative VFP-ARX(4, 1)9 model validation results are shown in Figure 3.14. The top line plots

depict the cross correlation function between various model residual series ek[t] pairs at the α = 0.01

(99%) confidence level, while the bottom line plots depict the cross correlation function between

various input xk and residual series ek[t] pairs at the α = 0.01 (99%) confidence level (max lag = 50).

In all cases it is evident that both the residual series pairs (top line plots), as well as the input-residual

pairs (bottom line plots) are uncorrelated, a fact that proves the validity of the model. In all cases

the residuals are found serially uncorrelated, cross-sectionally uncorrelated and uncorrelated with the

inputs. Thus, model identification (in terms of functional subspace selection) is accurately achieved,

as the true number of functional basis, as well as the specific basis functions in the case of the GA

based method, is correctly estimated in all 500 runs.

The Monte Carlo estimation summarized results for the considered estimators are presented in

Table 3.5 (mean estimates ± standard deviations). All three estimators achieve excellent agreement

between the true values of the projection coefficients (theoretical values) and the corresponding OLS,

WLS and ML estimates. Moreover, the standard deviations of the estimated projection coefficients are

extremely low with those belonging to the WLS and ML estimators giving even better results, as it was

expected. Notice though that the WLS is initialized by the OLS variances (QR decomposition), while

the ML estimator is initialized by the WLS estimates, and makes use of the Gauss-Newton non-linear

optimization scheme (Söderström and Stoica 1989) (maximum number of iterations 100; maximum

number of function evaluations 5000; termination tolerance of the loss function 10−2; termination

tolerance of the estimated parameters 10−8). Furthermore, the extremely low AR and X aggregate

errors and the low values of the RSS/SSS over the 500 runs constitute further indications for the

excellent performance of the estimators.

Indicative parameter estimation results are pictorially depicted in Figure 3.15. The true values
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Figure 3.13: VFP-ARX(4, 1)6 based frequency response magnitude versus frequency and k1 series (k2

is set to k2
3): (a) true system, (b) mean OLS estimate, (c) mean WLS estimate and (d) mean ML

estimate (mean parameters over 500 runs).
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Figure 3.14: Indicative VFP-ARX(4, 1)9 model validation results: (a) top line plots: cross correlation
function between various model residual series ek[t] pairs at the α = 0.01 (99%) confidence level, and
(b) bottom line plots: cross correlation function between various input xk and residual series ek[t]
pairs at the α = 0.01 (99%) confidence level (max lag = 50).
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Figure 3.15: Indicative VFP-ARX(4, 1)9 projection coefficient estimation results by the OLS, WLS
and ML methods (Monte Carlo results based on 500 runs per method): sample mean estimates ±1.96
sample standard deviations (shaded boxes), along with the corresponding true values (dashed red lines
- - -) and the theoretical asymptotic WLS standard deviations (dashed blue lines - - -), which coincide
with the Cramer-Rao lower bound.

of the coefficient of projection are shown in dashed red lines, while the sample mean estimates (blue

lines) from the 500 runs along with their 95% confidence intervals (±1.96 sample standard deviations)

are shown in shaded boxes. The dashed blue lines correspond to the theoretical WLS ±1.96 standard

deviations based the asymptotic distribution analysis of Section 3.5.2 as estimated via Equation (3.93).

As it may be readily observed, all the results are very accurate. All three methods provide essentially

unbiased estimates, with the WLS and ML methods expectedly providing better accuracy for the

coefficients of projection (smaller standard deviations, thus narrower confidence intervals). Moreover,

notice the excellent agreement between the theoretical and estimated WLS standard deviations of the

projection coefficients, which demonstrates the validity of the asymptotic distribution analysis.

Figure 3.16 presents indicative VFP-ARX(4, 1)9 model residual sequence variance results by the

OLS, WLS and ML estimators. The sample mean estimates and the ±1.96 sample standard deviations

(shaded boxes), along with the corresponding residual true values (dashed red lines) are presented.

Again there is excellent agreement between the true and the estimated residual variances.

Figure 3.17 depicts the a4 model parameter (fourth parameter of the AR polynomial) surface

versus the k1 and k2 series of the operating parameters for the true (theoretical) system, as well as

for the mean OLS, WLS, and ML estimates over the 500 runs. Furthermore, Figure 3.18 depicts the

b0 model parameter (first parameter of the X polynomial) surface versus the k1 and k2 series for the

true (theoretical) system and the mean OLS, WLS, and ML estimates. In both cases the agreement

of the true parameter surfaces with the corresponding estimated is evident.
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Figure 3.16: Indicative VFP-ARX(4, 1)9 residual variance results by the OLS, WLS and ML methods
(Monte Carlo results based on 500 runs per method): sample mean estimates ±1.96 sample standard
deviations (shaded boxes), along with the corresponding residual true values (dashed red lines - - -).

The VFP-ARX(4, 1)9 second natural frequency ω2 and first damping ratio ζ1 surfaces versus

the k1 and k2 series are shown in Figures 3.19 and 3.20, respectively, for the true (theoretical) system

and the mean OLS, WLS, and ML estimates over 500 runs. Notice the excellent agreement between

the true and the estimated quantities in all cases. Moreover, Figure 3.21 depicts the VFP-ARX(4, 1)9

based frequency response magnitude surfaces versus frequency and k2 operating parameter, with the

k1 operating parameter set to k1
8, for the true system, as well as for those estimated based on the mean

projection coefficient vectors of the considered estimators. Again, the excellent agreement between

the true and the estimated quantities is evident.

The complexity of each estimation method is assessed based on the CPU time required by a

typical computer (Intel Core 2 Duo P8400 @ 2.26 GHz, 4 GB RAM, Linux Operating System) for

achieving a single Monte Carlo run. The obtained relative times are presented in Table 3.4. Notice,

that the ML estimation method requires, as expected, the greatest amount of CPU time, while the

OLS method the least. Nevertheless, the WLS method achieves an acceptable CPU time while it

yields the most accurate estimation results. The relative CPU time needed for the estimation of the

VFP-ARX(4, 1)6 and VFP-ARX(4, 1)9 models with six and nine basis functions, respectively, for the

considered parameter estimation methods are presented in Table 3.4. Notice that the greatest increase

in CPU time is obtained for the WLS method, while the OLS method exhibits the smallest increase.

Additional results for both Monte Carlo studies may be found in Appendix C.
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Figure 3.17: VFP-ARX(4, 1)9 model parameter a4 estimates versus k1 and k2 series: (a) true system,
(b) mean OLS estimate, (c) mean WLS estimate and (d) mean ML estimate (mean parameters over
500 runs).

3.7 Concluding Remarks

In many applications a system operates under a variety of operating conditions which affect its dy-

namics, with each condition kept constant for a single commission cycle. The goal of this chapter

was the identification of stochastic systems under multiple operating conditions via Vector-dependent

Functionally Pooled (FP) models. This chapter’s work is based on the novel Functional Pooling (FP)

framework, which has been recently introduced by the Stochastic Mechanical Systems & Automa-

tion group of the Mechanical Engineering & Aeronautics Department at the University of Patras

(Sakellariou 2005, Kopsaftopoulos and Fassois 2006a, Sakellariou and Fassois 2007, Sakellariou and

Fassois 2007b).

Thus, the third chapter of the thesis addressed the problem of identifying a globally valid and

parsimonious system model based on input-output data records obtained under a sample of operat-

ing conditions characterized by more than one parameters (for instance operating temperature and

humidity). The problem was tackled within the novel Functional Pooling (FP) framework that pos-

tulates proper global models of the ARX and ARMAX types, data pooling techniques, and statistical

parameter estimation. Corresponding Vector-dependent Functionally Pooled (VFP) ARX and AR-

MAX models were postulated, and proper estimators of the Least Squares (LS), Maximum Likelihood

(ML), and Prediction Error (PE) types were developed. Model structure estimation was achieved

via customary criteria (Bayesian Information Criterion) and a novel Genetic Algorithm (GA) based

procedure. The strong consistency of the VFP-ARX least squares and maximum likelihood estima-

tors is established, whereas the effectiveness of the complete estimation and identification method is

demonstrated via two Monte Carlo studies.
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Figure 3.18: VFP-ARX(4, 1)9 model parameter b0 estimates versus k1 and k2 series: (a) true system,
(b) mean OLS estimate, (c) mean WLS estimate and (d) mean ML estimate (mean parameters over
500 runs).

The main issues addressed in this chapter are the following:

• Extension of the FP models employing a scalar operating parameter to the Vector-dependent

FP models employing the operating parameter vector.

• Model structure estimation was achieved via customary criteria such as the BIC and the AIC,

as well as via a Genetic Algorithm (GA) based procedure.

• A new VFP model form was introduced in which the innovations sequence variance is projected

to a functional subspace, so now it may be available not only for the sample of operating

conditions (available data records), but it may be efficiently estimated for all the potential

admissible operating conditions, thus for all the potential operating parameter vectors k.

• The strong consistency of the least squares and the maximum likelihood estimators was estab-

lished, as well as the asymptotic distribution of the all the considered estimators.

• Assessment of the proposed estimators and structure selection procedures via two Monte Carlo

studies, investigating both the cases of complete and non-complete functional subspaces.

• Discussion of the estimators main features, as well as their corresponding computational times.
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Figure 3.19: VFP-ARX(4, 1)9 second natural frequency ω2 versus k1 and k2 series: (a) true system,
(b) mean OLS estimate, (c) mean WLS estimate and (d) mean ML estimate (mean parameters over
500 runs).

Figure 3.20: VFP-ARX(4, 1)9 first damping ratio ζ1 versus k1 and k2 series: (a) true system, (b) mean
OLS estimate, (c) mean WLS estimate and (d) mean ML estimate (mean parameters over 500 runs).
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Figure 3.21: VFP-ARX(4, 1)9 based frequency response magnitude versus frequency and k2 series (k1

is set to k1
8): (a) true system, (b) mean OLS estimate, (c) mean WLS estimate and (d) mean ML

estimate (mean parameters over 500 runs).



Appendix A

Bivariate Polynomials

Bivariate (two-dimensional) orthogonal polynomials may be obtained as tensor products from their

corresponding (Chebyshev, Legendre, Jacobi, or other (Dunkl and Xu 2001, Krall and Scheffer 1967,

Kowalski 1982)) univariate counterparts. For example, the bivariate Chebyshev orthogonal polynomi-

als have the following form:

Pmn(x, y) = Pm(x) · Pn(y) (x, y) ∈ [−1, 1]× [−1, 1] ⊂ R2 (A.1)

with Pmn the bivariate Chebyshev polynomial of total degree mn and Pm(x), Pn(y) the univariate

Chebyshev polynomials of degrees m,n, respectively.

Theorem A.1 (construction of bivariate polynomial orthogonal basis (Krall and Scheffer

1967, Kowalski 1982)) A polynomial orthogonal basis of maximum degree mn contains a total of
1
2(mn+ 1)(mn+ 2) basis functions obtained as follows:

1. constant basis function P0,0

2. linear basis functions P1,0, P0,1

3. quadratic basis functions P2,0, P1,1, P0,2

4. cubic basis functions P3,0, P2,1, P1,2, P0,3

5. fourth degree basis functions P4,0, P3,1, P2,2, P1,3, P0,4
...

mn+ 1. degree mn basis functions Pmn,0, Pmn−1,1, Pmn−2,2, . . . , P1,mn−1, P0,mn.

�

The univariate polynomials used in this study in order to obtain their bivariate counterparts are

the shifted Chebyshev polynomials of the second kind (Type II Chebyshev polynomials), which belong

to the broader family of Chebyshev orthogonal polynomials. These polynomials obey the following

recurrence relation:

a1,nGn+1(x) = (a2,n + a3,nx)Gn(x)− a4,nGn−1(x) x ∈ [0, 1] ⊂ R (A.2)

with a1,n = a4,n = 1, a2,n = −2, a3,n = 4, and G0(x) = 0, G1(x) = 1.

Hence, the first five shifted Chebyshev polynomials of the second kind are:

97
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Po = 1
P1 = −1 + 2x
P2 = 1− 8x+ 8x2

P3 = −1 + 18x− 48x2 + 32x3

P4 = 1− 32x+ 160x2 − 256x3 + 128x4

In the present framework, where the two variables are damage magnitude (k1) and damage

location (k2), the following variable selections are made:

x ∈ [0, 1] ⊂ R, x = k1/k1
max y ∈ [0, 1] ⊂ R, y = k2/k2

max. (A.3)
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Proofs of Theorems

Proof of Theorem 3.5.1:

The true system can be written in linear regression form as follows:

yk[t] =
[
ϕTAR[t]⊗ gTAR(k)

... ϕTX [t]⊗ gTX(k)
]
· θ + wk[t] = φTk[t] · θ + wk[t] (B.1)

with:

ϕAR[t]
∆
=

[
−yk[t− 1] . . . − yk[t− na]

]T

ϕX [t]
∆
=

[
xk[t] . . . xk[t− nb]

]T

gAR(k)
∆
=

[
Gda(1)(k) Gda(2)(k) . . . Gda(pa)(k)

]T

gX(k)
∆
=

[
Gdb(1)(k) Gdb(2)(k) . . . Gdb(pb)(k)

]T
.

The WLS estimator is rewritten as:

θ̂
WLS

N =

[
1

NM1M2

M1∑

k1=k1i

M2∑

k2=k2j

1

σ2
w(ki,j)

N∑

t=1

φki,j [t]φ
T
ki,j

[t]

]−1

·

[
1

NM1M2

M1∑

k1=k1i

M2∑

k2=k2j

1

σ2
w(ki,j)

N∑

t=1

φki,j [t]
(
φTki,j [t]θo + wki,j [t]

)
]

(B.2)

= θo +

[
1

NM1M2

M1∑

k1=k1i

M2∑

k2=k2j

1

σ2
w(ki,j)

N∑

t=1

φki,j [t]φ
T
ki,j

[t]

︸ ︷︷ ︸
AN

]−1

·

[
1

NM1M2

M1∑

k1=k1i

M2∑

k2=k2j

1

σ2
w(ki,j)

N∑

t=1

φki,j [t]wki,j [t]

︸ ︷︷ ︸
bN

]
(B.3)

Let:

AN =
1

NM1M2

M1∑

k1=k1i

M2∑

k2=k2j

1

σ2
w(ki,j)

N∑

t=1

φki,j [t]φ
T
ki,j

[t] (B.4)
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and

bN =
1

NM1M2

M1∑

k1=k1i

M2∑

k2=k2j

1

σ2
w(ki,j)

N∑

t=1

φki,j [t]wki,j [t] (B.5)

Then from Söderström and Stoica (1989, pp. 547–548) and by using the algebraic definitions of

Liu (1999) and Liu and Trenkler (2008)1 it is proved that:

N∑

t=1

φki,j [t]φ
T
ki,j

[t] =

N∑

t=1

[
ϕARki,j

[t]⊗ gAR(ki,j)
... ϕXki,j

[t]⊗ gX(ki,j)
]
·

[
ϕARki,j

[t]⊗ gAR(ki,j)
... ϕXki,j

[t]⊗ gX(ki,j)
]T

(B.6)

=
[[
ϕARki,j

[t]
... ϕXki,j

[t]
]
∗
[
gAR(ki,j)

... gX(ki,j)
]]
·

[[
ϕARki,j

[t]
... ϕXki,j

[t]
︸ ︷︷ ︸

ϕki,j [t]

]
∗
[
gAR(ki,j)

... gX(ki,j)︸ ︷︷ ︸
g(ki,j)

]]T
(B.7)

=

N∑

t=1

[
ϕki,j [t] ∗ g(ki,j)

]
·
[
ϕki,j [t] ∗ g(ki,j)

]T
(B.8)

=

N∑

t=1

ϕki,j [t]ϕ
T
ki,j

[t] ∗ g(ki,j)g
T (ki,j)︸ ︷︷ ︸

Gki,j

(B.9)

=

N∑

t=1

ϕki,j [t]ϕ
T
ki,j

[t] ∗Gki,j
a.s.−→ E

{
ϕki,j [t]ϕ

T
ki,j

[t]
}
∗Gki,j (B.10)

By Kolmogorov’s theorem (White 2001, p. 19) is proved that:

σ̂2
w(ki,j)

a.s.−→ σ2
w(ki,j) (B.11)

By proposition 2.11 of White (2001, p. 19) and Equations (B.4), (B.10), and (B.11) we have the

following result:

AN
a.s.−→ Q, Q : a positive definite matrix (B.12)

and bN can be expressed as:

bN =
1

M1M2

M1∑

k1=k1i

M2∑

k2=k2j

1

σ2
w(ki,j)

pki,j (B.13)

with:

pki,j =
1

N

N∑

t=1

φki,j [t]wki,j [t] =
1

N

N∑

t=1

ϕki,j [t] ∗ g(ki,j)wki,j [t] =
1

N

N∑

t=1

ϕki,j [t]wki,j [t] ∗ g(ki,j) (B.14)

In Ljung (1999, p. 553) it is proved that:

1

N

N∑

t=1

ϕki,j [t]wki,j [t]
a.s.−→ 0 (B.15)

1Kronecker product: A⊗B = (aijBij)ij . Khatri-Rao product: A∗B = (Aij ⊗Bij)ij , where Aij is the ij-submatrix
of A and Bij is the ij-submatrix of B.
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Thus, from Equations (B.13) and (B.15) it follows that:

bN
a.s.−→ 0 (B.16)

Hence, as θ̂
WLS

N = θo +A−1
N bN , from (B.12) and (B.16) it is proved that:

θ̂
WLS

N
a.s.−→ θo. (B.17)

�

Proof of Theorem 3.5.2:

The first derivative of L(θ̄/e) at ̂̄θML can be expressed in Taylor series form around θ̄o as follows

(Sorenson 1980, p. 188):
[
∂L(θ̄/e)

∂θ̄

]

¯θ=
̂̄θML

=

[
∂L(θ̄/e)

∂θ̄

]

¯θ=
¯θo

+

[
∂2L(θ̄/e)

∂θ̄∂θ̄
T

]

¯θ=
¯θ
∗
(̂̄θML − θ̄o) (B.18)

where θ̄
∗

a vector near θ̄o with θ̄
∗

= λθ̄o + (1 − λ)̂̄θML and 0 ≤ λ ≤ 1. Because ̂̄θML maximizes

L(θ̄/e), the left term of (B.18) equals to zero, so we have:

1

NM1M2

[
∂L(θ̄/e)

∂θ̄

]

¯θ=
¯θo

= − 1

NM1M2

[
∂2L(θ̄/e)

∂θ̄∂θ̄
T

]

¯θ=
¯θ
∗
(̂̄θML − θ̄o) (B.19)

The left term of equation (B.19) can be written as follows:

1

NM1M2

[
∂L(θ̄/e)

∂θ̄

]

¯θ=
¯θo

=
1

NM1M2

M1∑

k1=k1i

M2∑

k2=k2j

[
∂ ln p(eki,j [t]/θ̄)

∂θ̄

]

¯θ=
¯θo

(B.20)

Taking the derivative ln p(eki,j [t]/θ̄) with respect to σ2
w(ki,j) and θ, for θ̄ = θ̄o leads to:

∂ ln p(eki,j [t]/θ̄)

∂σ2
w(ki,j)

∣∣∣∣∣¯θ=
¯θo

=
∂

∂σ2
w(ki,j)

{
−1

2
ln 2π − 1

2
lnσ2

w(ki,j)−
1

2

eki,j [t,θ]

σ2
w(ki,j)

}∣∣∣∣∣¯θ=
¯θo

= − 1

2σ2
w(ki,j)

+
w2
ki,j

[t]

2σ4
w(ki,j)︸ ︷︷ ︸

d1(ki,j ,ki,j)

(B.21)

∂ ln p(eki,j [t]/θ̄)

∂θ

∣∣∣∣∣¯θ=
¯θo

= − 1

σ2
w(ki,j)

wki,j [t]ψki,j [t,θo]

︸ ︷︷ ︸
d2(ki,j) (na+nb+1)×1)

(B.22)

with ψki,j [t,θo] =
∂eki,j [t]

∂θ

∣∣∣
θ=θo

. It has to be noticed that
∂ ln p(eki,j [t]/

¯θ)

∂σ2
w(km,n)

∣∣∣¯θ=
¯θo

= 0 for (i, j) 6= (m,n),

which means d1(ki,j , km,n) = 0.

Using the ergodicity theorem (Söderström and Stoica 1989, pp. 547–548) of the disturbance

sequences (white noise with zero mean) and while ψki,j [t,θo] = φTki,j [t,θo] includes input values and

past output values independent of wki,j [t] we have:

1

NM1M2

M1∑

k1=k1i

M2∑

k2=k2j

N∑

t=1

[
dkt︷ ︸︸ ︷

dT2 d1(k1,1, ki,j) . . . d1(kM1,M2 , ki,j)
]T a.s.−→ 0 (B.23)



102 Appendix B. Proofs of theorems

as

1
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N∑
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2σ4
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}
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ki,j
[t]}

2σ4
w(ki,j)

}
=

1
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{
− 1

2σ2
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2σ4
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}
= 0 (B.24)

and
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1

σ2
w(ki,j)

E{wki,j [t]}E{ψki,j [t,θo]} = 0 (B.25)

For the expression of the second derivative the following property is used Söderström and Stoica

(1989, pp. 560–562):

E

{
∂ ln p(eki,j [t]/θ̄)

∂θ̄

∣∣∣∣∣¯θ=
¯θo

[
∂ ln p(eki,j [t]/θ̄)

∂θ̄
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¯θo

]T}
= −E

{
∂2 ln p(eki,j [t]/θ̄)

∂θ̄∂θ̄
T

∣∣∣∣∣¯θ=
¯θo

}
(B.26)

Hence, the second derivative of L(θ̄/e) with respect to θ̄ can be written using (B.26):
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(B.27)

Using dkt = [∂ ln p(eki,j [t]/θ̄)/∂θ̄]¯θ=
¯θo

the above equation becomes:
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(B.28)

It is noted that d1(ki,j , km,n) = 0, ∀ (i, j) 6= (m,n). The expected value of (B.28) is estimated

as follows:

E{d2(ki,j)d
T
2 (ki,j)} = E

{ 1

σ4
w(ki,j)

w2
ki,j

[t]φki,j [t,θo]φ
T
ki,j
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}

=
1
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w(ki,j)

E{φki,j [t,θo]φTki,j [t,θo]}
︸ ︷︷ ︸

Dki,j

(B.29)
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Hence, (B.27) is written as:

1

NM1M2

[
∂2L(θ̄/e)

∂θ̄∂θ̄
T

]

¯θ=
¯θo

a.s.−→




− 1
M1M2

∑M1

k1=k1i

∑M2

k2=k2j
Dki,j 0 0 . . . 0

0 − 1
M1M2

d3(k1,1) 0 . . . 0

0 0 − 1
M1M2

d3(k1,2) . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
M1M2

d3(kM1,M2)




= F¯θo

(B.32)

Let F¯θo
a non-singular matrix and F¯θ

∗ ≈ F¯θo
, then from Equations (B.19), (B.23) and (B.32)

we have:
̂̄θ
ML

N
a.s.−→ θ̄o. (B.33)

�
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Appendix C

Additional Monte Carlo Results

C.1 Test Case I: Complete parameter functional subspace

Figure C.1: AutoRegressive (AR) VFP-ARX(4, 1)6 true model parameters versus k1 and k2 series.

Figure C.2: Exogenous (X) VFP-ARX(4, 1)6 true model parameters versus k1 and k2 series.
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Figure C.3: The two VFP-ARX(4, 1)6 true model natural frequencies ω versus k1 and k2 series.

Figure C.4: The two VFP-ARX(4, 1)6 true model damping ratios ζ versus k1 and k2 series.

Figure C.5: VFP-ARX(4, 1)6 based frequency response magnitude versus frequency and k2 series (k1

is set to k1
8): (a) true system, (b) mean OLS estimate, (c) mean WLS estimate and (d) mean ML

estimate (mean parameters over 500 runs).
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C.2 Test Case II: Non-complete parameter functional subspace

Figure C.6: AutoRegressive (AR) VFP-ARX(4, 1)9 true model parameters versus k1 and k2 series.

Figure C.7: Exogenous (X) VFP-ARX(4, 1)9 true model parameters versus k1 and k2 series.

Figure C.8: The two VFP-ARX(4, 1)9 true model natural frequencies ω versus k1 and k2 series.
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Figure C.9: The two VFP-ARX(4, 1)9 true model damping ratios ζ versus k1 and k2 series.

Figure C.10: VFP-ARX(4, 1)9 based frequency response magnitude versus frequency and k1 series (k2

is set to k2
5): (a) true system, (b) mean OLS estimate, (c) mean WLS estimate and (d) mean ML

estimate (mean parameters over 500 runs).



Chapter 4

A Stochastic Functional Model Based
Method for Vibration Based Damage
Detection, Localization and Magnitude
Estimation

A vibration based statistical time series method that is capable of effective damage detection, pre-

cise localization, and magnitude estimation within a unified stochastic framework is introduced. The

method constitutes an important generalization of the recently introduced Functional Model Based

Method (FMBM) in that it allows, for the first time in the statistical time series methods context,

for complete and precise damage localization. More precisely, the proposed method can accurately

localize damage anywhere on properly defined continuous topologies on the structure, instead of pre-

defined specific locations. Estimator uncertainties are taken into account, and uncertainty ellipsoids

are provided for the damage location and magnitude. To achieve its goal, the method is based on

the extended class of Vector-dependent Functionally Pooled (VFP) models, which are characterized

by parameters that depend on both damage magnitude and location, as well as on proper statistical

estimation and decision making schemes. The method is validated and its effectiveness is experimen-

tally assessed via its application to damage detection, precise localization, and magnitude estimation

on a prototype GARTEUR-type laboratory scale aircraft skeleton structure. The damage scenarios

considered consist of varying size small masses attached to various continuous topologies on the struc-

ture. The method is shown to achieve effective damage detection, precise localization, and magnitude

estimation based on even a single pair of measured excitation-response signals.
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4.1 Introduction

Damage detection, localization, and magnitude estimation (collectively referred to as damage diagno-

sis, or damage detection and identification) in vibrating structures, including aerospace, mechanical,

civil, and marine structures, are of paramount importance for reasons associated with improved dy-

namic performance, proper operation, increased safety, and reduced maintenance costs (Doebling

et al. 1996, Doebling et al. 1998, Farrar et al. 2001, Montalvão et al. 2006).

The need for global damage diagnosis methods that can be applied to realistic structures has

led to the development of methods that examine changes in the structures’ vibration characteristics.

Vibration based methods for damage diagnosis thus form a technologically important and continuously

evolving family, and are among the most accurate and effective (Doebling et al. 1998, Farrar et al.

2001, Montalvão et al. 2006, Fassois and Sakellariou 2007, Fassois and Sakellariou 2009, Fan and

Qiao 2011). They offer a number of potential advantages, such as no requirement for visual inspection,

“automation” capability, “global” coverage (in the sense of covering large areas of the structure), and

the ability to work at a “system level”. Nevertheless, and despite the fact that they generally tend

to treat damage detection effectively, problems are frequently encountered when it comes to damage

localization and magnitude estimation (damage quantification).

While damage detection has received considerable attention, no mature solutions yet exist for

the damage localization and magnitude estimation (quantification) subproblems. To date, vibration

based damage diagnosis methods that have shown promise to detect, locate (identify), and quantify

damage are based on the basic idea that modal parameters (natural frequencies, mode shapes and

modal damping) are functions of the physical properties of the structure (mass, damping and stiffness)

(Doebling et al. 1998, Farrar et al. 2001, Montalvão et al. 2006, Farrar and Jauregui 1998a, Farrar

and Jauregui 1998b). Therefore, changes in the physical properties will cause detectable changes

in the modal properties. The majority of these methods is established on, or presumes, access to

detailed and large size Finite Element (FE) models and utilize intensive model updating techniques

(for tuning the model to the obtained data records) and pre- and post-damage data records (Farrar

et al. 2001, Zimmerman et al. 2001, Nauerz and Fritzen 2001, Liberatore and Carman 2004, Perera et al.

2007). Furthermore, as complete FE models are utilized, these techniques require a significant number

of measurement sensors and thus tend to be computationally and experimentally elaborate, while

problems may be introduced by the measurement constraints imposed by actual testing conditions

(Farrar et al. 2001, Farrar and Jauregui 1998a, Farrar and Jauregui 1998b, Zimmerman et al. 2001).

Moreover, some of these methods appear to be inconsistent and unable to clearly identify the damage

location when they are applied to less severe damage cases, while it may be ambiguous at times to

determine whether they indicate damage at more than one location (Montalvão et al. 2006, Farrar

and Jauregui 1998a).

On the other hand, recent studies embed the problem of vibration based damage detection,

localization, and magnitude estimation in the alternative context of statistical pattern recognition

(Sohn et al. 2001, Mattson and Pandit 2006a, Manson et al. 2003, Lee et al. 2006, Xi et al. 2000, Jung

and Koh 2009). Statistical pattern recognition methods are based on signal analysis of the measured

data aiming at the extraction of damage sensitive features. They utilize techniques related to time

series and outlier analysis (Sohn et al. 2001, Mattson and Pandit 2006a, Manson et al. 2003), neural

network analysis (Manson et al. 2003, Lee et al. 2006), and analysis of statistical parameters (Xi

et al. 2000, Jung and Koh 2009). Neither sophisticated FE models nor modal parameters are employed

in the implementation of these methods, while they are reportedly capable of achieving effective

damage detection. Nevertheless, they often face difficulties when it comes to the more complicated

tasks of damage localization and magnitude estimation, with the main drawbacks being the conversion
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of the localization problem into a discrete classification problem (implying that only a finite number

of specific potential damage locations is considered), the exhaustive search for appropriate damage

sensitive features, the training necessary for damage localization, and the frequent need for sensor

networks and sensor location optimization.

Statistical time series methods for Structural Health Monitoring (SHM) form a closely related

category within the broader vibration based family of methods – see the survey articles of Fassois and

Sakellariou (2007) and Fassois and Sakellariou (2009). These methods use random excitation and/or

response signals from the structure in its healthy state and a number of potential damage states,

along with statistical model building (identification) and statistical decision making for inferring the

health state of the structure. They feature a number of potential advantages, such as accounting for

measurement errors and uncertainties, allowing the use of normal operating data records, utilizing only

partial identified structural models (as opposed to complete models required by most alternatives) and

a very limited number of sensors (even a single sensor may be used in certain cases in conjunction with

small structures). On the other hand, as complete structural models are not employed, time series

methods may be limited to identifying (locating) damage only to the extent allowed by the type of

model used.

In Sohn and Farrar (2001) a time series method based on AR-ARX models is used to locate

damage sources in an eight degree-of-freedom mechanical system, whereas a subspace based method

for damage localization within a FE model of the monitored structure is presented in Basseville et al.

(2004). A statistical damage classification algorithm based on ARMA model parameters and assessed

via experimental data obtained from the IASC-ASCE four-storey frame structure, the Z24 bridge, and

the Malaysia-Singapore Second Link bridge is presented in Carden and Brownjohn (2008). The ARMA

model parameters are used in Nair et al. (2006) to establish a damage detection and localization

method with application to the ASCE benchmark structure, while in a follow up study Nair and

Kiremidjian (2007), the ARMA parameters along with a Gaussian Mixture Model are employed to

locate damage on the same structure. A two-stage damage diagnosis method based on the distance

between ARMA models and pre-whitening filters is presented in Zheng and Mita (2007) and is tested

using simulated and experimental data obtained from a building model. A damage identification

procedure for bridge health monitoring based on features obtained from AR and ARX models is

used and assessed via numerical simulations in Zhang (2007), while an ARX model and the standard

deviation of its residuals are employed in Lu and Gao (2005) for damage detection and localization

in a two and an eight degree-of-freedom simulated mass-spring system. Both non-parametric and

parametric statistical time series methods are employed in Rizos et al. (2008) for skin damage detection

and restoration assessment in a stiffened aircraft panel, while comparative assessment studies of the

main non-parametric, parametric, scalar and vector statistical time series methods are provided in

recent papers by the author (Kopsaftopoulos and Fassois 2010a, Kopsaftopoulos and Fassois 2011b).

Although statistical time series methods effectively tackle damage detection, they also face

difficulties in achieving damage localization and magnitude estimation. Damage localization is usually

achieved with respect to the available sensor positions on the structure, and thus effective localization

depends on the exact number and location of the sensors. Furthermore, the large majority of the

methods do not deal with damage quantification (damage severity estimation). In an effort to overcome

these limitations, a novel Functional Model Based Method (FMBM) has been recently introduced by

the Stochastic Mechanical Systems & Automation group of the Mechanical Engineering & Aeronautics

Department at University of Patras (Sakellariou 2005, Sakellariou and Fassois 2008, Sakellariou et al.

2002). The FMBM is indeed capable of accurately representing the (typically partial) structural

dynamics for a damage state for its continuum of damage magnitudes, as well as operating even on a

single pair of excitation-response signals. Nevertheless, the method is limited in localizing damage at

a finite number of specific pre-determined locations, instead of continuous topologies on the structure
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– that is any point on a structural area or substructure. In this sense the FMBM does not allow for

precise damage localization on a structure.

The aim of the present chapter is the introduction and experimental validation and assessment

of a generalized version of the FMBM which is – for the first time within the context of statistical time

series type methods – achieving complete and precise damage localization over continuous topologies

on a structure, combined with damage magnitude estimation. Furthermore, estimator uncertainties

are fully taken into account in all phases of the diagnostic procedure, and uncertainty ellipsoids

are provided for combined damage location and magnitude. Like the original FMBM, the method

utilizes a partial and reduced size identified model, and is capable of operating on a “low” number

of measurement sensors – even on a single pair for “small” structures – and any type of vibration

response signals (acceleration, velocity, displacement).

The method’s cornerstone is the new extended class of Vector-dependent Functionally Pooled

(VFP) models (see Chapter 3 and Kopsaftopoulos and Fassois (2006a). These are generalizations

of the Functional Pooled (FP) models of Sakellariou and Fassois (Sakellariou 2005, Sakellariou and

Fassois 2008, Sakellariou and Fassois 2007), which now allow for the analytical inclusion of both

damage location and magnitude on the dynamics. VFP models thus allow for the extension of the

notion of damage mode/fault mode to include damage not only of all possible magnitudes, but also

of all possible locations on a specific continuous topology on a structure. As VFP models have a

richer structure than their FP counterparts and use bivariate (two-dimensional) functional subspaces

for parameter projection, functional subspace dimensionality estimation is a more complicated task

which is accomplished through a suitable Genetic Algorithm (GA) based procedure.

The method is validated and its effectiveness is experimentally assessed via a proof-of-concept

application to damage detection, precise localization, and magnitude estimation on a prototype

GARTEUR-type laboratory scale aircraft skeleton structure (Degener and Hermes 1996, Balmes and

Wright 1997). The damage scenarios considered include the attachment of varying size small masses

to various continuous topologies on the structure. The novelties of this experimental study include:

(a) The feasibility of achieving precise damage localization and magnitude estimation based on only

a single excitation-response signal pair is, for the first time, investigated and demonstrated.

(b) Localization and damage magnitude uncertainties are explicitly considered and estimated, with

uncertainty ellipsoids corresponding to specified probability levels being constructed.

(c) The method’s operation and effectiveness is examined for both “local” and “remote” (with respect

to the sensor location) damage. This is critical in view of the need for effective diagnosis with

the smallest possible number of available sensors.

(d) The effectiveness of the method in properly detecting and “negatively” localizing (that is exclud-

ing all considered structural topologies) damage that does not belong to any of the modelled

types/topologies (referred to as unmodelled damage) is examined.

The rest of the chapter is organized as follows: The proposed VFP-ARX model based method is

presented in Section 4.2, and the experimental set-up used for validation and assessment in Section 4.3.

Experimental results are provided in Section 4.4, while the conclusions of the study are summarized

in Section 4.5.
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4.2 The VFP-ARX model based method

Like all statistical time series methods for SHM, the stochastic functional model, or more precisely

the Vector-dependent Functionally Pooled AutoRegressive with eXogenous excitation (VFP-ARX)

model, based method for combined damage detection, localization, and magnitude estimation consists

of two phases: (a) A baseline (training) phase, which includes modelling of the considered damage

topologies (modes), for the continuum of damage locations and magnitudes on a structural topology,

via the novel class of stochastic VFP-ARX models, and (b) the inspection phase, which is performed

whenever necessary or continuously during the structure’s service cycle, and includes the functions of

damage detection, localization, and magnitude estimation.

4.2.1 Baseline phase

4.2.1.1 Baseline modelling of the healthy structure

Although not strictly required, the modelling of the healthy (nominal) structure is an initial step

performed in order to facilitate (in the sense of providing approximate model orders) the subsequent

step of damage topology (mode) modelling.

A single experiment is performed, based on which an interval estimate of a discrete-time model

(or a vector model or an array of models in the case of several vibration response measurement loca-

tions) representing the healthy structural dynamics is obtained via standard identification procedures

(Fassois 2001, Ljung 1999). In this study an array of two single excitation and single response Au-

toRegressive with eXogenous excitation (ARX) models is used.

An ARX(na, nb) model is of the form1 (Fassois 2001, Ljung 1999, Söderström and Stoica 1989):

y[t] +

na∑

i=1

ai · y[t− i] =

nb∑

i=0

bi · x[t− i] + e[t] e[t] ∼ iidN
(
0, σ2

e

)
(4.1)

with t designating the normalized discrete time (t = 1, 2, 3, . . . with absolute time being (t − 1)Ts,

where Ts stands for the sampling period), x[t], y[t] the measured excitation and vibration response

signals, respectively, na, nb the AutoRegressive (AR) and eXogenous (X) orders, respectively, and

e[t] the stochastic model residual (one-step-ahead prediction error) sequence, that is a white (serially

uncorrelated), Gaussian, zero mean with variance σ2
e sequence, uncorrelated with the excitation x[t].

The symbol N (·, ·) designates Gaussian distribution with the indicated mean and variance, and iid

stands for identically independently distributed.

The model is parameterized in terms of the parameter vector θ̄ = [ai
... bi

... σ2
e ]
T to be estimated

from the measured signals (Fassois 2001, Ljung 1999). Model estimation may be achieved based on

minimization of the Ordinary Least Squares (OLS) or the Weighted Least Squares (WLS) criteria

(Fassois 2001, Ljung 1999). The modelling procedure involves the successive fitting of ARX(na, nb)

models for increasing orders na and nb, until an adequate model is selected (Fassois 2001). Model

order selection is based on the Bayesian Information Criterion (BIC) and the residual sum of squares

normalized by the series sum of squares (RSS/SSS). Final model validation is based on formal verifica-

tion of the residual (one-step-ahead prediction error) sequence uncorrelatedness (whiteness) hypothesis

(Ljung 1999, pp. 512–513).

1Lower case/capital bold face symbols designate vector/matrix quantities, respectively.
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4.2.1.2 The notion of damage topology (mode)

The notion of damage topology (mode) refers to the union of all admissible damage magnitudes on

a particular topology (section or component) of the structure (damage of all possible magnitudes at

all possible locations along a topology). Hence, a damage topology is defined via two variables: (a)

damage magnitude and (b) damage location. For this purpose, the novel stochastic Vector-dependent

Functionally Pooled AutoRegressive with eXogenous excitation (VFP-ARX) models of Chapter 3 are

used. The VFP-ARX representation allows for complete and precise damage topology description,

as the model parameters and residual series covariance depend functionally on damage magnitude

and damage location, while the corresponding interrelations and statistical dependencies between the

different damage magnitudes and locations are taken into account.

The VFP-ARX representation belongs to the recently introduced broader class of stochastic

FP models, which make use of data pooling techniques for combining and optimally treating (as

one entity) the data obtained from various experiments corresponding to different structural states

and statistical techniques for model estimation (Kopsaftopoulos and Fassois 2006a, Sakellariou and

Fassois 2007, Hios and Fassois 2009b).

4.2.1.3 Damage topology (mode) modelling

The modelling of a specific damage topology (mode) via a VFP-ARX model involves consideration of all

admissible damage magnitudes occurring at predetermined locations on a specific section/component

of the structure (right/left wing, horizontal stabilizer, and so on). For this reason a total of M1 ×M2

experiments is performed (physically or via analytical models and simulation), with M1 and M2 des-

ignating the number of experiments under the various damage magnitudes and locations, respectively.

Each experiment is characterized by a specific damage magnitude k1 and a specific damage location k2,

with the complete series covering the required range of each variable, say [k1
min, k

1
max] and [k2

min, k
2
max],

via the discretizations {k1
1, k

1
2, . . . , k

1
M1
} and {k2

1, k
2
2, . . . , k

2
M2
} (it is tacitly assumed, without loss of

generality, that the healthy structure corresponds to k1 = 0). For the identification of a model cor-

responding to a specific damage topology the vector operating parameter k containing the damage

magnitude and damage location components, is defined as:

k
∆
= [k1

i k
2
j ]
T ⇐⇒ ki,j , i = 1, . . . ,M1, j = 1, . . . ,M2 (4.2)

with ki,j designating the state of the structure corresponding to the i-th damage magnitude and the

j-th damage location. This procedure yields a pool of excitation-response signal pairs (each of length

N):

xk[t], yk[t] with t = 1, . . . , N, k1 ∈ {k1
1, . . . , k

1
M1
}, k2 ∈ {k2

1, . . . , k
2
M2
}. (4.3)

A proper mathematical description of the structure for the considered damage topology may

be then obtained in the form of a VFP-ARX model. In the case of several vibration measurement

locations an array of such models (or else a vector model) may be obtained, with each scalar model

corresponding to each measurement location and being designated as MXY
k (with X indicating the

damage topology and Y the vibration measurement location).

The VFP-ARX model structure postulated is of the following form (Chapter 3):

yk[t] +

na∑

i=1

ai(k) · yk[t− i] =

nb∑

i=0

bi(k) · xk[t− i] + ek[t] (4.4a)
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ek[t] ∼ iidN
(
0, σ2

e(k)
)

k ∈ R2 (4.4b)

ai(k)
∆
=

p∑

j=1

ai,j ·Gj(k), bi(k)
∆
=

p∑

j=1

bi,j ·Gj(k) (4.4c)

E{eki,j [t] · ekm,n [t− τ ]} = γe[ki,j , km,n] · δ[τ ] (4.4d)

with na, nb designating the AutoRegressive (AR) and eXogenous (X) orders, respectively, xk[t], yk[t]

the excitation and response signals, respectively, and ek[t] the model’s residual (one-step-ahead pre-

diction error) sequence, that is a white (serially uncorrelated) zero mean sequence with variance σ2
e(k).

This sequence should be uncorrelated with the excitation xk[t] but potentially cross-correlated with

its counterparts corresponding to different experiments (different k’s). The symbol E{·} designates

statistical expectation, δ[τ ] the Kronecker delta (equal to unity for τ = 0 and equal to zero for τ 6= 0),

N (·, ·) Gaussian distribution with the indicated mean and variance, and iid stands for identically

independently distributed.

As (4.4c) indicates, the AR and X parameters ai(k), bi(k) are modeled as explicit functions

of the vector k (which contains the damage magnitude and damage location components) by be-

longing to p-dimensional functional subspace spanned by the mutually independent basis functions

G1(k), G2(k), . . . , Gp(k) (functional basis). The functional basis consists of polynomials of two vari-

ables (bivariate) obtained as tensor products from their corresponding univariate polynomials (Cheby-

shev, Legendre, Jacobi, and other families (Dunkl and Xu 2001)), while the whole procedure of the

subspace creation is described in detail in Appendix A of Chapter 3. The constants ai,j and bi,j
designate the AR and X, respectively, coefficients of projection.

The VFP-ARX model of (4.4a)–(4.4d) is parameterized in terms of the parameter vector to be

estimated from the measured signals:

θ̄
∆
= [ αi,j

... bi,j
... σ2

e(k) ]T ∀ k (4.5)

and may be written in linear regression form as:

yk[t] =
[
ϕTk[t]⊗ gT (k)

]
· θ + ek[t] = φTk[t] · θ + ek[t] (4.6)

with:

ϕk[t]
∆
=

[
−yk[t− 1] . . . − yk[t− na]

...xk[t] . . . xk[t− nb]
]T

[(na+nb+1)×1]
(4.7a)

g(k)
∆
=

[
G1(k) . . . Gp(k)

]T
[p×1]

(4.7b)

θ
∆
=

[
a1,1 . . . ana,p

... b0,1 . . . bnb,p

]T
[(na+nb+1)p×1]

(4.7c)

and T designating transposition and ⊗ Kronecker product (Bernstein 2005, chap. 7).

Pooling together the expressions (4.6) of the VFP-ARX model corresponding to all vector op-

erating parameters k (k1,1, k1,2, . . . , kM1,M2) considered in the experiments (cross-sectional pooling)

yields:
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


yk1,1 [t]
...

ykM1,M2
[t]


 =




φTk1,1 [t]
...

φTkM1,M2
[t]


 · θ +




ek1,1 [t]
...

ekM1,M2
[t]


 =⇒ y[t] = Φ[t] · θ + e[t]. (4.8)

Then, following substitution of the data for t = 1, . . . , N the following expression is obtained:

y = Φ · θ + e (4.9)

with

y
∆
=



y[1]

...
y[N ]


 , Φ

∆
=




Φ[1]
...

Φ[N ]


 , e

∆
=



e[1]

...
e[N ]


 . (4.10)

Using the above linear regression framework the simplest approach for estimating the projection

coefficient vector θ is based on minimization of the Ordinary Least Squares (OLS) criterion JOLS ∆
=

1
N

∑N
t=1 e

T [t]e[t].

A more appropriate criterion is (in view of the Gauss-Markov theorem (Greene 2003)) the

Weighted Least Squares (WLS) criterion:

JWLS ∆
=

1

N

N∑

t=1

eT [t]Γ−1
e[t]e[t] =

1

N
eTΓ−1

e e (4.11)

which leads to the Weighted Least Squares (WLS) estimator:

θ̂
WLS

=
[
ΦTΓ−1

e Φ
]−1[

ΦTΓ−1
e y

]
. (4.12)

In these expressions Γe = E{eeT } (Γe = Γe[t] ⊗ IN , with IN designating the N ×N unity matrix)

designates the residual covariance matrix, which is practically unavailable. Nevertheless, it may be

consistently estimated by applying (in an initial step) Ordinary Least Squares (details in Chapter 3).

Once θ̂
WLS

has been obtained, the final residual variance and residual covariance matrix estimates

are obtained as:

σ̂2
e(k, θ̂

WLS
) =

1

N

N∑

t=1

e2
k[t, θ̂

WLS
], Γ̂e[t] =

1

N

N∑

t=1

e[t, θ̂
WLS

]eT [t, θ̂
WLS

]. (4.13)

The estimator θ̂
WLS

may, under mild conditions, be shown to be asymptotically Gaussian dis-

tributed with mean coinciding with the true parameter vector θo and covariance matrix Pθ:

√
N(θ̂N − θo) ∼ N (0,Pθ) (N −→∞) (4.14)

based on which interval estimates of the true parameter vector may be constructed (for details see

Chapter 3).

The problem of VFP-ARX model structure selection (structure estimation) for a given basis

function family (such as Chebyshev, Legendre, and so on), that is model order determination for the

AR and X polynomials and determination of their corresponding functional subspaces, is referred
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to as the model identification problem. Usually, the AR and X model orders are initially selected

via customary model order selection techniques (BIC, RSS, stabilization diagrams) (Ljung 1999),

whereas the functional subspace dimensionalities are selected via a Genetic Algorithm (GA) procedure

(Chipperfield et al. n.d.). Initially, maximum functional subspace dimensionalities are selected, which

define the search space of the functional subspace estimation subproblem. The determination of the

exact subspace dimensionalities is achieved via the use of GAs based on minimization of the BIC with

respect to the candidate basis functions (see Section 3.4 for details).

4.2.2 Inspection phase

Let x[t], y[t] (t = 1, 2, . . . , N) represent the current excitation and response signals, respectively,

obtained from the structure in an unknown (to be classified) state. Damage detection,localization,

and magnitude estimation are based on the pre-determined in the baseline phase VFP-ARX models,

with each model corresponding to a specific damage topology (mode). The current excitation and

response signals are driven through these models and estimates of the current values of the operating

vector k and residual series ek[t] are obtained from each one. Subsequently, these estimates are used

for tackling the damage detection, localization, and magnitude estimation tasks within a statistical

decision making framework.

4.2.2.1 Step I: Damage detection

Damage detection is based on the re-parameterized, in terms of k and σ2
e(k) VFP-ARX model of

any damage topology (e.g. V ). Thus, the projection coefficients are replaced by the corresponding

estimates available from the baseline phase, while the vector k containing the damage magnitude and

location, and the residual series variance σ2
e(k) are the current unknown parameters to be estimated:

MV
(
k, σ2

e(k)
)

: y[t] +
na∑

i=1

ai(k) · y[t− i] =
nb∑

i=0

bi(k) · x[t− i] + e[t]. (4.15)

The estimation of the currently unknown parameters k and σ2
e(k) based on the current excitation

and response signals, may be achieved via the following Nonlinear Least Squares (NLS) and variance

estimators (refer to Ljung (1999, pp. 327–329) for details on NLS estimation):

k̂ = arg min
k

N∑

t=1

e2[t], σ2
e(k̂) =

1

N

N∑

t=1

e2[t, k̂] (4.16)

the first one realized via a hybrid optimization scheme based on Genetic Algorithms (GA) (Chipperfield

et al. n.d.) and constrained nonlinear optimization (Sequential Quadratic Programming – SQP) (Gill

et al. 1981, Coleman and Zhang n.d.).

The GA aims at exploring the complete search space ((k1, k2) plane) with the objective of

locating promising regions within which the “true” k might be located. Despite the GA’s inherent

ability for effective global optimization, they often suffer in terms of exact global optimum localization.

Hence, a constrained nonlinear optimization scheme is employed in a suitably defined neighborhood

of the GA result in order to find the exact global optimum k̂.

Assuming that the structure is indeed under a damage belonging to damage topology V (or

healthy) the first estimator may be shown to be asymptotically (N → ∞) Gaussian distributed,
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with mean equal to the true k value and covariance matrix Σk

(
k̂ ∼ N (k,Σk)

)
coinciding with the

Cramer-Rao lower bound, which may be obtained as:

Σ̂k =
σ̂2
e(k̂)

N

[
1

N

N∑

t=1

[
ϕT [t]⊗ ∂gT (k)

∂k

∣∣∣∣
k=k̂

· θ̂
]
·
[
ϕT [t]⊗ ∂gT (k)

∂k

∣∣∣∣
k=k̂

· θ̂
]T]−1

. (4.17)

In this expression ϕ[t] is defined as in (4.7a), while θ̂ designates the available from the baseline phase

estimate of projection coefficients vector corresponding to the selected damage topology model.

Since the healthy structure corresponds to k1 = 0 (zero damage magnitude) for any damage

topology model, damage detection may be based on the following hypothesis testing problem:

Ho : k1 = 0 (null hypothesis – healthy structure)
H1 : k1 6= 0 (alternative hypothesis – damaged structure).

(4.18)

Under the null (Ho) hypothesis, the following statistic follows t−distribution with N −1 degrees

of freedom (which should be adjusted to N − 2 in case the estimated mean is subtracted from the

residual series in the computation of Σ̂k):

t =
k̂1

σ̂k1
∼ t(N − 1) (4.19)

with σ̂k1 being the positive square root of the first diagonal element of Σ̂k (estimated standard

deviation of k1). This leads to the following test at the α risk level (probability of false alarm, or type

I error, that is accepting H1 although Ho is true, being equal to α):

tα
2
(N − 1) ≤ t ≤ t1−α

2
(N − 1) =⇒ Ho is accepted (healthy structure)

Else =⇒ H1 is accepted (damaged structure)
(4.20)

with tα designating the t distribution’s (with the indicated degrees of freedom) α critical point [defined

such that Prob(t ≤ tα) = α].

4.2.2.2 Step II: Damage topology (mode) identification

Damage topology (mode) identification corresponds to the examination of which one of the available

damage topology VFP-ARX models provides, for its estimated k̂, a valid representation of the current

structural dynamics based on residual uncorrelatedness (whiteness) hypothesis testing. The current

damage topology is that corresponding to the valid model, which will exhibit an uncorrelated (white)

residual sequence for the corresponding k̂.

Once damage occurrence has been detected, current damage topology determination is based on

the successive estimation (using the current data) and validation of the re-parameterizedMV
(
k, σ2

e(k)
)

VFP-ARX models (Equation 4.15) for V = A,B, . . . corresponding to the various damage modes. The

procedure stops as soon as a particular model is successfully validated, with the corresponding dam-

age topology identified as current. Model validation may be based on a statistical test examining the

residual uncorrelatedness (whiteness) via the statistical hypothesis testing problem:

Ho : ρV [τ ] = 0 τ = 1, 2, . . . , r (damage is of type V )
H1 : ρV [τ ] 6= 0 for some τ (damage is not of type V )

(4.21)
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Figure 4.1: Flowchart representation of the VFP-ARX model based method.

in which ρV [τ ] (τ = 1, 2, . . . , r) designates the residual series normalized autocorrelation at lag τ .

Under the null hypothesis the following Q statistic follows a chi-square (χ2) distribution with r degrees

of freedom (Box et al. 1994, p. 314):

Q = N(N + 2) ·
r∑

τ=1

(N − τ)−1ρ̂2
V [τ ] ∼ χ2(r) (4.22)

in which N designates the residual signal length (in number of samples), ρ̂V [τ ] the estimated (sample)

normalized autocorrelation at lag τ , and r the maximum lag. This leads to the following test at the

α risk level:

Q < χ2
1−α(r) =⇒ Ho is accepted (damage is of type V )

Else =⇒ H1 is accepted (damage is not of type V )
(4.23)

with χ2
1−α(r) designating the distribution’ s (1− α) critical point.

It should be noticed that inability to identify a particular damage topology (obviously as not

previously modeled) indirectly implies damage detection.

4.2.2.3 Step III: Damage localization and magnitude estimation

Damage localization and magnitude estimation are then based on the interval estimates of k2 and k1,

respectively, which are constructed based on the k̂, Σ̂k estimates obtained from the corresponding

re-parameterized VFP-ARX model (of the form (4.15)) of the current valid damage topology. Thus,

using Equation (4.19), the interval estimates of k1 (damage magnitude) and k2 (damage location) at

the α risk level are:

ki interval estimate:
[
k̂i + tα

2
(N − 1) · σ̂ki , k̂i + t1−α

2
(N − 1) · σ̂ki

]
(4.24)

with i = 1 for damage magnitude and i = 2 for damage location, while σ̂ki is the positive square root

of the i-th diagonal element of Σ̂k.

Bivariate confidence bounds for k = [k1 k2]T may be also obtained by observing that the quantity

follows chi-square distribution with two degrees of freedom (Ljung 1999, p. 558):
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(k̂ − k)TΣk
−1(k̂ − k) ∼ χ2

1−α(2). (4.25)

Thus the probability that:

(k̂ − k)TΣk
−1(k̂ − k) ≤ χ2

1−α(2) (4.26)

is equal to 1−α (χ2
1−α(2) designating the χ2 distribution’s with two degrees of freedom 1−α critical

point). This expression defines an ellipsoid on the (k1, k2) plane within which the true (k1, k2) point

should lie with probability (1 − α), or equivalently, with risk α (bivariate confidence bounds). The

shape of the ellipsoid is determined by Σk. Notice that in practice Σk is replaced by its estimate,

which is assumed to be of negligible variability.

Figure 4.1 presents a flowchart representation of the VFP-ARX model based method for damage

detection, identification and magnitude estimation.

4.3 The experimental set-up

4.3.1 The structure

The scale aircraft skeleton structure used in the experiments was designed by ONERA (France) in

conjunction with the Structures and Materials Action Group SM-AG19 of the Group for Aeronautical

Research and Technology in Europe (GARTEUR) (Degener and Hermes 1996, Balmes and Wright

1997). The currently used structure was manufactured at the University of Patras (Figure 4.2a). This

testbed represents a typical aircraft skeleton design and consists of six solid beams with rectangular

cross sections representing the fuselage, the wing, the horizontal and vertical stabilizers, and the right

and left wing tips. All parts of the structure are constructed from standard aluminum and are jointed

together via steel plates and screws. The total mass of the structure is approximately 50 kg and its

dimensions are indicated in Table 4.1.

4.3.2 The damage topologies and scenarios

The damage scenarios considered correspond to the attachment of a variable number of unit masses,

simulating local elasticity reductions, at three different topologies (presently geometrical axes) on the

structure. Each unit mass approximately is 8.132 g and is attached to the structure using adhesive wax.

Small masses are frequently used as a non-destructive way to simulate local stiffness reduction (for

instance see Sakellariou and Fassois 2008, Kopsaftopoulos and Fassois 2007, Zepico-Valle et al. 2011,

Panopoulou et al. 2011), while other types of damages, such as the loosening of bolts, have been also

effectively considered in other recent studies (Kopsaftopoulos and Fassois 2011b, Kopsaftopoulos and

Fassois 2011d). In the present study each damage belongs to one of three distinct damage topologies

(modes) (see Figure 4.2 and Table 4.2):

(a) The first (damage topology (mode) A) corresponds to the attachment of up to 10 unit masses at

a single location, representing different damage magnitudes in the range of [0, 81.32] g, at any

point on the aa′ axis (Figure 4.2b), starting from a and moving to the left along the right wing

of the aircraft in the range 0− 80 cm – Figure 4.2.

(b) The second (damage topology (mode) B) corresponds to the attachment of up to 10 unit masses

at a single location, representing different damage magnitudes in the range of [0, 81.32] g, at
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Figure 4.2: (a) The scale aircraft skeleton structure and the experimental set-up; (b) the right wing-tip
with the force excitation (Point X), the first vibration measurement position (Point Y), and the aa′

and bb′ axes that define the A and B damage topologies, respectively; (c) the horizontal stabilizer
with the second vibration measurement position (Point Z) and the cc′ axis that defines the C damage
topology.

any point on the bb′ axis (Figure 4.2b), starting from b and moving backwards along the right

wing-tip in the range 0− 40 cm.

(c) The third (damage topology (mode) C ) corresponds to the attachment of up to 10 unit masses

at a single location, representing different damage magnitudes in the range of [0, 81.32] g, at any

point on the cc′ axis (Figure 4.2c), starting from c and moving to the left along the horizontal

stabilizer in the range 0− 40 cm.

Each damage – belonging to any one of the above topologies or, perhaps, to an “unmodelled”

topology – is designated as FXk1,k2 , with X = A, B, C indicating a particular damage topology, k1 the

damage magnitude (g of added mass) and k2 the precise damage location (distance in cm along the

pertinent axis. The healthy structure corresponds to k1 = 0 (0 g of added mass) and is designated as

Fo.

4.3.3 The experimental procedure

Damage detection, localization, and magnitude estimation are based on vibration testing of the struc-

ture, which is suspended through a set of bungee cords and hooks from a long rigid beam sustained by

four heavy-type stands (Figure 4.2a). The suspension is designed in a way as to exhibit a pendulum

Component Length Width Thickness
(mm) (mm) (mm)

Fuselage 1500 150 50
Wings 2000 100 10
Horizontal Stabilizer 300 100 10
Vertical Stabilizer 400 100 10
Wing-tips 400 100 10

Table 4.1: Dimensions of the scale aircraft skeleton structure.
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Damage Description
Topology
(Mode)

A any mass anywhere on the right wing (k1 ∈ [0, 81.32] g with δk1 = 8.132 g, k2 ∈ [0, 80] cm)

B any mass anywhere on the right wing-tip (k1 ∈ [0, 81.32] g with δk1 = 8.132 g, k2 ∈ [0, 40] cm)

C any mass anywhere on the hor. stab. (k1 ∈ [0, 81.32] g with δk1 = 8.132 g, k2 ∈ [0, 40] cm)

Table 4.2: The considered damage topologies (modes) – see Figure 4.2b-c.

rigid body mode below the frequency range of interest, as the boundary conditions are free-free.

The excitation is broadband random stationary Gaussian applied vertically at the right wing-tip

(Point X, Figure 4.2b) through an electromechanical modal shaker (MB Dynamics Modal 50A, max

load 225 N) equipped with a stinger. The actual force exerted on the structure is measured via an

impedance head (PCB M288D01, sensitivity 98.41 mV/lb), while the resulting vertical acceleration

responses at Points Y and Z (Figure 4.2b-c) are measured via lightweight accelerometers (PCB 352A10

miniature ICP accelerometers, 0.7 g, frequency range 0.003− 10 kHz, sensitivity ∼ 1.052 mV/m/s2).

The force and acceleration signals are driven through a conditioning charge amplifier (PCB 481A02)

into the data acquisition system based on SigLab 20-42 measurement modules (each module featuring

four 20-bit simultaneously sampled A/D channels, two 16-bit D/A channels, and analog anti-aliasing

filters).

4.3.4 The signals

The excitation and response signal bandwidth is selected as 4 − 90 Hz, with the lower limit set in

order to avoid instrument dynamics and rigid body modes. Each signal is digitized at fs = 256 Hz,

resulting in a length of N = 1500 samples, and is subsequently sample mean corrected and normalized

by its sample standard deviation (Table 4.3).

4.4 Damage detection, localization, and magnitude estimation re-
sults

Damage detection, localization, and magnitude estimation results for damage of any magnitude oc-

curring anywhere in one of the three specified topologies (modes) is now considered.

The considered damage test cases are summarized in Table 4.4 – each test case is considered

twice, first via the Point Y and then via the Point Z sensor. Notice that Test Case I corresponds to

the healthy structure, Test Cases II – IV to damage in topology A (right wing), Test Cases V – VI

to damage in topology B (right wing-tip), Test Cases VII – VIII to damage in topology C (horizontal

stabilizer), while Test Case IX does not belong to any of the considered topologies and for this reason

it is referred to as “unmodelled” (it corresponds to damage on the left wing-tip). The challenging issue

with this last Test Case is whether or not it will be possible to detect it and “negatively” localize it

as not belonging to any one of the A – C topologies. It should be further emphasized that none of the

Sampling frequency: fs = 256 Hz Bandwidth: [4− 90] Hz
Signal length: N = 1500 samples (5.85 s)

Table 4.3: Signal pre-processing and details.



Chapter 4. A FM based method for damage detection, localization and magnitude estimation 123

Figure 4.3: The effects of two topology A damages on parametrically obtained FRF magnitude curves
corresponding to each one of the Point X – Point Y (a – b) and Point X – Point Z (c – d) transfer
functions. The gray zones depict 95% confidence intervals (uncertainty zones) for the healthy FRF
magnitudes. The (b) and (d) subplots are blow ups of (a) and (c), respectively.

damages considered in the Test Cases is used in the baseline (training) phase of the next subsection.

The damage diagnosis method operates on a single pair of excitation – response signals, namely

the excitation force that is always applied at Point X, and a vibration acceleration response mea-

sured either at Points Y or at Point Z (Figure 4.2b-c). Depending on the distance of the employed

accelerometer sensor from the damage occurrence location, the damage is labeled as being “local” or

“remote” to the response sensor used.

The effects of the considered damage cases to the structural dynamics are depicted in Figure 4.3,

which presents parametric (ARX(48, 48) model based) Frequency Response Function (FRF) magnitude

estimates (Matlab function ffplot.m) for the Point X–Point Y and Point X–Point Z transfer functions

for the healthy and two damage cases belonging to topology (mode) A (notice that 95% confidence

Test Damage Damage Description
Case Topology (mode)

I Fo – Healthy structure
II FA8.132,80 A Mass of 8.132 g at 80 cm (right wing)

III FA32.528,0 A Mass of 32.528 g at 0 cm (right wing)

IV FA40.66,75 A Mass of 40.66 g at 75 cm (right wing)

V FB8.132,0 B Mass of 8.132 g at 0 cm (right wing-tip)

VI FB16.26,5 B Mass of 16.26 g at 5 cm (right wing-tip)

VII FC12.19,10 C Mass of 12.19 g at 10 cm (horizontal stab.)

VIII FC81.32,30 C Mass of 81.32 g at 30 cm (horizontal stab.)

IX F40.66,10 Unmodelled Mass of 40.66 g at 10 cm (left wing-tip)
† Each case is considered separately via Point Y or Point Z measurements.

Table 4.4: The considered test cases†.
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intervals are also depicted for the healthy FRFs). Evidently, the effects of damage are rather small,

which underscores the challenges underlying the damage diagnosis problem.

4.4.1 Baseline phase

4.4.1.1 Baseline modelling of the healthy structure

Conventional ARX models representing the healthy structure are obtained through standard identi-

fication procedures (Fassois 2001, Ljung 1999) based on obtained excitation-response signals (5.85 s,

N = 1500 sample long, Matlab function arx.m). This leads to an ARX(48, 48) model characterized by

zero delay (bo 6= 0 in the exogenous polynomial) for the Point X–Point Y transfer function. Similarly,

an ARX(51, 51) model (bo 6= 0) is obtained for the Point X–Point Z transfer function. These models

are used as reference and for providing approximate orders for the corresponding damage topology

(mode) models of the next paragraph. The global modal characteristics (natural frequencies and

damping ratios) of the structure based on the identified ARX(48, 48) model of the healthy structure

are presented in Table 4.5.

4.4.1.2 Modelling of the dynamics for damage topologies (modes) A, B, C

Damage mode modelling for damage topology (mode) A (right wing – refer to Table 4.2) is based on

signals obtained from a total of M1 ×M2 = 99 experiments. 9 experiments correspond to the healthy

structure (k1 = 0 g) and 90 to the damaged structure (1− 10 unit masses being placed at each one of

9 locations on the right wing – Figure 4.2b). The mass and location increments used are δk1 = 8.132

g and δk2 = 10 cm, covering the intervals [0, 81.32] g and [0, 80] cm.

Damage mode modelling for damage topologies (modes) B (right wing-tip) and C (horizontal

stabilizer) (refer to Table 4.2) is based on signals obtained from a total of M1×M2 = 55 experiments.

5 experiments correspond to the healthy structure (k1 = 0 g) and 50 to the damaged structure (1−10

unit masses being placed at each one of 5 locations on the right wing-tip for damage mode B or on

the horizontal stabilizer for damage mode C – Figure 4.2b-c). The mass and location increments used

are δk1 = 8.132 g and δk2 = 10 cm, covering the intervals [0, 81.32] g and [0, 40] cm.

Based on the signals collected from the aforementioned experiments, two models are identified

for each one of the A, B, C damage topologies: The first model describes the Point X – Point Y

dynamics (transfer function) and the second the Point X – Point Z dynamics (transfer function).

Mode Natural Damping
Frequency (Hz) Ratio (%)

1 6.21 8.70
2 17.95 0.33
3 39.80 0.26
4 46.11 0.75
5 54.51 0.04
6 55.37 0.24
8 59.60 3.29
9 69.74 0.78
10 80.11 0.14

Table 4.5: Global modal characteristics (natural frequencies and damping ratios) of the structure
based on the identified ARX(48, 48) model of the healthy structure.



Chapter 4. A FM based method for damage detection, localization and magnitude estimation 125

Damage Vibration measurement at Point Y Vibration measurement at Point Z

Topology (mode)

A MAY
k : VFP-ARX(48, 48)30 MAZ

k : VFP-ARX(51, 51)30

B MBY
k : VFP-ARX(57, 57)30 MBZ

k : VFP-ARX(69, 69)30

C MCY
k : VFP-ARX(44, 44)30 MCZ

k : VFP-ARX(65, 65)30

Weighted Least Squares (WLS) estimation

99 training experiments for damage topology A; 55 training experiments each for topologies B and C

Frequency range [4− 90] Hz, Sampling frequency fs = 256 Hz

Signal length N = 1500 samples (5.85 s)

Table 4.6: The structure of the identified damage topology (mode) models.

Model order selection starts with the orders selected for the conventional ARX models represent-

ing the healthy structure, the final model orders being presently selected based on the BIC criterion

(Fassois 2001) and model validation techniques, such as checking the whiteness (uncorrelatedness)

and the normality of the model residuals (Matlab functions acf.m and normplot.m, respectively)

(Fassois 2001, Ljung 1999). The functional subspaces are selected via a Genetic Algorithm (GA)

based procedure (Matlab function ga.m). An extended functional subspace consisting of 45 Cheby-

shev Type II bivariate polynomial basis functions (see Appendix A of Chapter 3) is initially considered,

with the GA aiming at selecting the optimal functional basis subset based on BIC minimization (see

Section 3.4.1.2 – GA estimation details in Table 4.7).

The identified damage mode models are summarized in Table 4.6 and are as follows:

(a) Point X – Point Y Dynamics: A VFP-ARX damage model is identified for each damage topology

mode based on N = 1500 sample-long signals: a VFP-ARX(48, 48) for damage topology A, a

VFP-ARX(57, 57) for damage topology B, and a VFP-ARX(44, 44) model for damage topology

C. Each functional subspace consists of p = 30 Chebyshev Type II 2-dimensional polynomials.

(b) Point X – Point Z Dynamics: A VF-ARX damage model is identified for each damage topology

based on N = 1500 sample-long signals: a VFP-ARX(51, 51) for damage topology A, a VFP-

ARX(69, 69) for damage topology B, and a VFP-ARX(65, 65) model for damage topology C.

Like in the previous case, each functional subspace consists of p = 30 Chebyshev Type II 2-

dimensional polynomials.

Indicative FRF magnitude curves obtained from damage topology A and the Point Y VFP-

ARX(48, 48)30 model (designated as MAY
k ) are, as functions of frequency, damage magnitude and

location, depicted in Figure 4.4. Indicative AR parameters of the same model are depicted in Figure

4.5 as functions of damage magnitude and location. Similarly, indicative natural frequencies obtained

by the model as functions of damage magnitude and location are presented in Figure 4.6 (also compare

with Figure 4.3 and Table 4.5).

Population size Elite count Crossover fraction Maximum number of generations

100 20 0.7 1000

Table 4.7: Genetic Algorithm (GA) details for functional subspace dimensionality estimation.
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Figure 4.4: Damage topology A model (MAY
k ) based FRF magnitude versus frequency and (a) damage

magnitude (for set location k2 = 0 cm) and (b) damage location (for set magnitude k1 = 48.792 g).

Figure 4.5: Typical damage topology A model (MAY
k ) AR parameters versus damage magnitude (k1

g) and location (k2 cm).

4.4.2 Inspection phase: damage detection, localization and magnitude estimation

The effectiveness of the damage diagnosis method is now assessed via the Test Cases of Table 4.4. It

should be stressed that the damages associated associated with the Test Cases do not coincide with

those used in the baseline (training) phase – apart from Test Case I that corresponds to the healthy

structure. Each one of the first eight Test Cases (I – VIII) is considered twice: once using the Point Y

sensor and once using the Point Z sensor. In this way each damage may be either “local” or “remote”

depending on the sensor used, so that the capability of the method to operate under either one of the
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Figure 4.6: Indicative natural frequencies versus damage magnitude (k1 g) and damage location (k2

cm) based on the damage topology A (MAY
k ) model: (a) second mode; (b) third mode; (c) fourth

mode; and (d) fifth mode (compare with Table 4.5 and Figure 4.4).

two circumstances is assessed. The ninth Test Case (IX) in Table 4.4 is “unmodelled”, meaning that

it does not belong to any one of the three (A, B, C) topologies. Still, it is particularly interesting

to examine whether or not its presence can be detected, and whether or not it can be “negatively”

localized, the latter meaning whether it can be actually concluded that it does not belong to any of

the three considered topologies. An additional question is whether this can be achieved using any one

of the three different topology (A or B or C) models; for this reason Test Case IX is considered three

times (using both sensors) and the results are designated as IXa, IXb, IXc, respectively.

Damage detection results for each Test Case and each one of the two response sensors are

presented in Figure 4.7. Evidently, damage is in all cases clearly detected as the t statistic is where

it should be, that is within the dashed lines in the healthy Test Case (I) and beyond them in all

damaged Test Cases (II – IXc). Notice that the color code in the bars indicates the actual topology of

each considered damage. An important observation here is that all damages are detected, including

the “unmodelled” damage, and this is irrespectively of the damage being “local” or “remote” to the

sensor used. The importance of this result is related to the fact that even one (or a few, depending

on the structure) sensor is sufficient for detecting damage, even if that is taking place at a “remote”

location.

Damage topology (mode) identification results for each Test Case are pictorially presented in

Figure 4.8 separately for each one of the two response sensors. The hypotheses of the current damage

belonging to topology A, topology B, or topology C are considered in each Test Case (plot) using the

corresponding topology VFP-ARX model. One of these hypotheses is accepted if the corresponding



128 Chapter 4. A FM based method for damage detection, localization and magnitude estimation

I II III IV V VI VII VIII IX a IX b IX c

0

50

100

150

200

250

300

350
Vibration measurement at Point Y

t 
st

at
is

ti
c

 

 

damage mode A (local)

damage mode B (local)

damage mode C (remote)

unmodelled damage

critical points

−2

0

2

 

 

I II III IV V VI VII VIII IX a IX b IX c

0

50

100

150

200

250

300

350
Vibration measurement at Point Z

t 
st

at
is

ti
c

 

 

damage mode A (remote)

damage mode B (remote)

damage mode C (local)

unmodelled damage

critical points

−2

0

2

 

 

0

5

10

 

 

Figure 4.7: Damage detection results for the various Test Cases and each vibration measurement
position (upper plot: Point Y; lower plot: Point Z): t statistic (bars) and the critical points (- - -) at
the α = 0.05 risk level. In each Test Case damage is detected if t exceeds the critical point.

Q statistic is lower than the critical point (dashed horizontal line). The actual damage and its

characterization as either “local” or “remote” are indicated above each plot. The results of all Test

Cases are remarkable, as the actual damage topology (mode) is correctly identified by each one of the

two sensors. In the last two plots it is demonstrated that the “unmodelled” damage of Test Case IX is

correctly rejected as being associated with one of the A, B, C topologies. These results demonstrate

that correct damage topology identification is feasible based on any one of the two sensors, while the

same is true for “negative” topology identification of the “unmodelled” damage.

Damage localization and magnitude interval estimation results are presented in Figure 4.9 for

each Test Case and each one of the two response sensors (both shown in the same plot). It should be

noticed that damage detection may be also re-confirmed based on these results, by simply examining

whether or not the interval estimate of damage magnitude (at a certain risk level) includes the zero

(no damage) – this is essentially equivalent to the test of Step I of the method. In Test Case I the

structure is in fact healthy (Fo), hence the interval estimate of only the damage magnitude is depicted.

Evidently, no damage is detected as the interval estimate at the α = 0.05 risk level (shaded strip)

includes the k1 = 0 value (notice that the dashed vertical line designates the true damage magnitude

while the middle line the point estimate and the left and right vertical lines the lower and upper

confidence bounds, respectively). In the rest of the Test Cases the bivariate (k1, k2) estimates are

presented both as point estimates (diamonds) and interval (uncertainty) estimates (ellipsoids) at the

α = 0.05 risk level. The results obtained by the “local” response sensor are shown as dark (blue),

while those obtained by the “remote” sensor as light (magenta). A damage is, in each of these cases,

correctly detected as the damage magnitude’s interval (uncertainty) estimate does not include the

k1 = 0 value (vertical axis). It should be further observed that impressively accurate estimates of the
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Figure 4.8: Damage topology identification results for various Test Cases and each vibration mea-
surement position (Points Y and Z – to be read in rows): In each plot the Q statistic (bar) for the
hypothesis of the current damage belonging to each one of the A, B, C topologies is shown relative to
the critical point (- - -) at the α = 0.05 risk level. A hypothesis is accepted – and the corresponding
damage topology is accepted as true – if the Q statistic lies below the critical point. The actual
damage and its characterization as “local” or “remote” are indicated above each plot.

damage magnitude and location, also characterized by narrow uncertainties, are obtained. It is also

observed that, in general, the “local” sensors achieve slightly better performance; yet the results are

very impressive for all Test Cases.

4.5 Concluding remarks

A vibration based statistical time series method that is capable of effective damage detection, precise

localization, and magnitude estimation within a unified stochastic framework has been introduced. The

method is based on the novel extended class of Vector-dependent Functionally Pooled (VFP) models

and proper statistical decision making schemes. VFP models are capable of accurately representing

a structure in a damaged state for that state’s continuum of damage magnitudes and locations on

a particular topology. In its inspection phase, the method operates in three distinct steps taking

place within a unified framework: Step I involves damage detection, step II involves damage topology

identification, and step III involves precise damage localization and magnitude estimation within

the identified topology. Damage topologies are continuous, involving an infinite number of potential

damage locations; they are presently confined to a single dimensionality but, of course, this may be

properly generalized.
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Figure 4.9: Damage localization and magnitude interval estimation results: In each plot results of a
Test Case in terms of estimated damage magnitude and precise location are presented for two vibration
measurement positions (Points Y and Z), one characterized as “local” damage (dark – blue) and the
other as “remote” (light – magenta). Damage magnitude and location point estimates are indicated
by diamonds and interval (uncertainty) estimates by ellipsoids at the α = 0.05 risk level. Damage
detection may be also re-confirmed by examining whether the damage magnitude uncertainty includes
the zero (no damage) point. In each Test Case the actual damage is indicated by a cross in the diagram
as well as above each plot.

The method allows, for the first time within the context of statistical time series and related

methods, for complete and precise damage localization on any continuous topology of a structure of

interest using a very limited – depending on the size and complexity of the structure – number of

sensors. As demonstrated, for “simple” and “limited” size structures even a single pair of excitation-

response sensors may be sufficient. Furthermore, estimator uncertainties are fully taken into account in

all diagnostic phases, while uncertainty ellipsoids are provided for the damage location and magnitude.

The validity and effectiveness of the method have been experimentally assessed via a proof-of-

concept application involving damage detection, precise localization, and magnitude estimation on a

prototype GARTEUR type laboratory aircraft skeleton structure. Damages of different magnitudes

occurring on various topologies on the structure (and involving an infinite number of locations within

each topology) have been represented by small added masses simulating local stiffness reductions.

Although the added masses have been quite small compared to the overall skeleton mass, with their

effects on the dynamics being rather minor, the method has proved remarkably effective in detecting

damage, identifying the correct damage topology, and then precisely localizing and accurately esti-

mating the damage magnitude. No false alarm or missed damage events have been reported, while the

corresponding uncertainty ellipsoids have been impressively accurate, while providing the user with a

good feeling about estimation uncertainty.

The main lessons learnt and conclusions drawn from this chapter may be summarized as follows:

(i) First and foremost, the study – including the proof-o-concept application – has demonstrated

the important fact that effective damage detection, damage topology identification, and precise

damage localization and magnitude estimation are possible based on partial models of the struc-

tural dynamics and a very limited number of sensors (even in a single excitation-response signal
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pair). This is in sharp contrast to methods requiring detailed and “complete” models (such as

FEMs) and a multitude of sensors.

(ii) From a slightly different perspective, the study has demonstrated the very significant amount of

information on the state of the structure embedded even in a single excitation-response signal

pair. Thus an important message is that it may not be necessary to employ a “high” number of

sensors for precise damage diagnosis; instead, a “few” sensors and powerful signal analysis for

extracting the embedded information may be a much more practical and effective approach.

(iii) The diagnostic performance in terms of damage detection, topology identification, and precise

localization and magnitude estimation achieved in the proof-of-concept study (though under

controlled laboratory conditions) has been impressive. Damage localization and magnitude esti-

mation are not only excellent at the nominal (point estimation) level, but also at a probabilistic

level that provides very accurate and tight uncertainty bounds (ellipsoids).

(iv) A practically important observation is that the diagnosis performance characteristics do not

appear significantly dependent on the proximity of the damage location to the sensor used.

Although the uncertainty bounds have been somewhat tighter when estimated by “local”, rather

than “remote”, sensors, this effect has been remarkably limited in the study.

(v) “Unmodelled” damages, that is damages not belonging to any of the considered structural topolo-

gies (and thus not modelled in the baseline phase) have been very successfully detected and

“negatively” identified as not belonging to the modelled topologies. This is very important as

it provides detection and some localization information even for damages for which the method

has not been trained.

(vi) The fact that effective damage diagnosis is possible without the need for specifically designed

excitations and special testing procedures is also very important. Combined with the use of often

naturally occurring random excitation and the fact that good results may be obtained with even

low/limited frequency bandwidth (4− 90 Hz, which includes ten of the structural modes in the

present study), allows for potentially in-operation damage diagnosis. The potential use of higher

frequency range/bandwidth is expected to lead to further gain in performance.

(vii) The method may operate on any type (acceleration, velocity, displacement) of vibration signals

and may be modified to be applied to the output-only case, where only vibration response

signal(s) is (are) available. Naturally, the difficulty is higher in this case, and performance is

expected to be affected. This is an issue to be considered in future studies.

(viii) The price to be paid for the aforementioned benefits mainly involves the baseline (training)

phase, and more specifically the identification of the necessary VFP models – yet, this takes place

only once, while the inspection phase is simple and automated. Nevertheless, user expertise is

necessary in the baseline phase, along with the availability of excitation-response signal records.

Although the former is expected to be reduced in the future via more automated procedures,

excitation-response signal records still need to be obtained possibly through scale laboratory

models or via Finite Element (FE) models . The advantages over alternative (including FE

based) methods remain that the FEM is only needed in the baseline phase for inferring the

partial and much more “compact” VFP models, and that no model updating is required in the

inspection phase.

(ix) Naturally, a number of issues remain open for future work. Among them are the treatment

of multiple damage scenarios (the present method should have no problem with detection, but

precise localization or magnitude estimation are not generally possible under the current formu-

lation), as well as operation under varying operating conditions and significant uncertainties.
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Chapter 5

A Sequential Statistical Time Series
Method for Vibration Based Structural
Health Monitoring

The goal of this chapter is the introduction and experimental assessment of a sequential statistical time

series method for vibration based Structural Health Monitoring (SHM). The method is based on a

combination of binary and multihypothesis versions of the statistically optimal Sequential Probability

Ratio Test (SPRT), which employs the residual sequences obtained through a stochastic time series

model of the healthy structure. In this work the full list of properties and capabilities of the SPRT

are for the first time presented and explored in the context of vibration based damage detection,

identification (localization) and quantification. The method is shown to achieve effective and robust

damage detection, identification and quantification based on predetermined sampling plans, which are

both analytically and experimentally compared and assessed. The method’s performance is determined

a priori via the use of the analytical expressions of the Operating Characteristic (OC) and Average

Sample Number (ASN) functions in combination with baseline data records, while it requires on

average a minimum number of samples in order to reach a decision compared to Fixed Sample Size

(FSS) most powerful tests. The effectiveness of the proposed method is validated and experimentally

assessed via its application on a lightweight aluminum truss structure, while the obtained results for

three distinct vibration measurement positions prove the method’s ability to operate based even on a

single pair of measured excitation-response signals.

133
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5.1 Introduction

Vibration based damage detection, identification and quantification, also collectively referred to as

damage diagnosis, is of paramount importance for reasons associated with proper operation, reduced

maintenance costs, increased safety, and improved dynamic performance (Doebling et al. 1996, Doe-

bling et al. 1998, Farrar et al. 2001, Fassois and Sakellariou 2007, Fassois and Sakellariou 2009). The

process of implementing a damage diagnosis strategy is referred to as Structural Health Monitoring

(SHM). This process involves the online or periodical observation of a structure, the extraction of

damage sensitive quantities (features) from these measurements, and the statistical analysis of these

quantities in order to determine the current structural health state.

The need for global damage diagnosis methods that can be applied to “real” structures has

led to the development of methods that examine changes in the structural vibration characteristics.

Vibration based SHM methods are among the most accurate and effective (Doebling et al. 1998, Farrar

et al. 2001, Montalvão et al. 2006, Fassois and Sakellariou 2007, Fassois and Sakellariou 2009, Fan

and Qiao 2011). Statistical time series SHM methods form an important and rapidly evolving class,

withing the broader vibration based family of methods. Their three main elements are: (i) random

excitation and/or vibration response signals (referred to as time series), (ii) statistical model building,

and (iii) statistical decision making for inferring the health state of a structure. They offer a number

of potential advantages, including no requirement for physics based or finite element models as they

are data based (inverse type) methods, no requirement for complete modal models, effective treatment

of uncertainties, and statistical decision making with specified performance characteristics (Fassois

and Sakellariou 2007, Fassois and Sakellariou 2009, Sakellariou and Fassois 2008, Kopsaftopoulos and

Fassois 2010a, Kopsaftopoulos and Fassois 2011b).

Statistical time series methods for SHM are based on random (stochastic) vibration signals

under healthy and potentially damage structural states, identification of suitable (parametric or non-

parametric) time series models describing the dynamics in each state, and extraction of a statistical

characteristic quantity characterizing the structural state in each case (baseline phase). Damage

diagnosis is accomplished in the inspection phase via statistical decision making consisting of com-

paring, in a statistical sense, the current characteristic quantity with that of each potential state as

determined in the baseline phase. Non-parametric time series methods are those based on correspond-

ing non-parametric time series representations, such as spectral estimates (Power Spectral Density,

Frequency Response Function) (Sakellariou et al. 2001, Liberatore and Carman 2004, Bayissa and

Haritos 2007, Rizos et al. 2008, Kopsaftopoulos and Fassois 2010a). On the other hand, parametric

time series methods are those based on corresponding parametric time series representations, such as

the AutoRegressive Moving Average (ARMA) models (Ljung 1999, Fassois 2001) and their principles

have been used in a number of studies (Sohn and Farrar 2001, Sohn et al. 2003, Nair et al. 2006, Zheng

and Mita 2007, Carden and Brownjohn 2008, Gao and Lu 2009, Sakellariou and Fassois 2008, Kop-

saftopoulos and Fassois 2010a). For an extended overview of the main statistical time series methods

for SHM the interested reader is referred to Fassois and Sakellariou (2007) and Fassois and Sakellariou

(2009), while experimental assessments of various scalar and vector methods are provided in Kop-

saftopoulos and Fassois (2010a), Kopsaftopoulos and Fassois (2011b) and Kopsaftopoulos and Fassois

(2011d).

The vast majority of the work on statistical time series SHM methods literature is based on

Fixed Sample Size (FSS) hypothesis testing procedures which are used during the statistical decision

making phase for determining the actual health state of the structure. FSS hypothesis testing employs

a constant amount of observations, which is determined a priori of the experimental data acquisition.

On the other hand, sequential analysis is a method of statistical inference whose characteristic feature
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is that the number of observations required by the procedure is not determined in advance of the

experiment. The decision to terminate the experiment depends, at each stage, on the results of

the observations previously made, thus the number of observations required by the test is not pre-

determined, but a random variable. If samples can be taken one at a time and the information

from them accumulated, one would expect to be in a better position to make decisions than if no

attempt were made to look at the data until a sample of fixed size had been taken. A merit of

the sequential method, as applied to testing statistical hypotheses, is that test procedures can be

constructed which require, on average, a substantially smaller number of observations than equally

reliable test procedures based on a predetermined (fixed) number of observations (Wald 1947, Ghosh

and Sen 1991, Lehmann and Romano 2008). Moreover, a potential advantage of a damage diagnosis

method based on sequential analysis is its straightforward extension for online implementation, which

may be of great interest with respect to current SHM application requirements.

In traditional Fixed Sample Size (FSS) hypothesis testing, after a random sample is observed

one of two possible actions is taken: accept the null hypothesis Ho, or accept the alternative hypothesis

H1. In some cases the evidence may strongly support one of the hypotheses, whereas in other cases

the evidence may be less convincing. Nevertheless, a decision must be made. In sequential tests there

is a third possible course of action when the evidence is ambiguous, which is to take more observations

(uncertainty zone). Such a test typically continuous until the evidence strongly favors one of the

considered hypotheses.

Wald (1947) introduced the Sequential Probability Ratio Test (SPRT), which is a statistically

optimal test in the sense that it minimizes the expected sample size (stopping time of the test)

both under the null and under the alternative hypotheses among all tests with the same or smaller

error probabilities and with finite expected sample sizes under the two hypotheses (Wald 1947, Wald

and Wolfowitz 1948, Ghosh and Sen 1991, Lehmann and Romano 2008). Although the SPRT was

introduced over half a century ago its engineering applications have been limited to the surveillance

of nuclear power plant components (Humenik and Gross 1990, Gross and Humenik 1991), while some

numerical investigations of its performance with respect to anomaly detection in nuclear reactor noise

signals have been presented in Schoonewelle et al. (1995), Schoonewelle et al. (1996) and Glöckler

(1991). Furthermore, in the context of vibration based damage detection and Structural Health

Monitoring (SHM), the SPRT, combined with extreme value statistics, has been applied in Sohn et al.

(2003) for treating statistical damage classification in a laboratory three-story building model, as

well as in Oh and Sohn (2009) for tackling damage diagnosis under environmental and operational

variations using unsupervised support vector machines.

Although there are several situations, particularly in engineering applications, where more than

two hypotheses are considered (such as different types of structural damage), the majority of current

research on SHM employs binary FSS hypothesis testing procedures in order to face an actual multihy-

pothesis testing problem. Obviously, this leads to statistically suboptimal solutions and ineffective use

of the available data records. Nevertheless, there is a limited number of studies employing sequential

multihypothesis testing methods with examples including target detection in multiple resolution radar

(Marcus and Swerling 1962, Tartakovsky et al. 2003) and infrared systems (Emlsee et al. 1997), signal

acquisition in direct sequence code-division multiple access systems (Veeravalli and Baum 1996), and

statistical pattern recognition (Fu 1968).

The goal of the present chapter is the introduction and experimental assessment of a sequential

statistical time series method for SHM capable of achieving effective and robust damage detection,

identification and quantification under uncertainties. The method is based on a combination of binary

and multihypothesis versions of the statistically optimal Sequential Probability Ratio Test (SPRT),

which employs the residual sequences obtained through a stochastic time series model of the healthy
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structure. Moreover, the full list of properties and capabilities of the SPRT are – for the first time

– presented and explored in the context of vibration based SHM. The performance of the method is

determined a priori via the use of the analytical expressions of the Operating Characteristic (OC) and

Average Sample Number (ASN) functions in combination with baseline data records obtained under

healthy and various damage structural states.

The effectiveness of the proposed method is validated and experimentally assessed via its ap-

plication to a lightweight aluminum truss structure, while the results presented for three distinct

vibration response positions confirm the method’s ability to operate based even on a single pair of

measured excitation-response signals. The damage cases considered correspond to the loosening of

various bolts connecting certain of the truss elements. Random force excitation is provided via an

electromechanical shaker, while the vibration responses are measured at various positions via dynamic

strain gauges. The method’s main features and operational characteristics are discussed along with

practical issues, while its effectiveness is demonstrated via various test cases corresponding to different

experiments, damage scenarios, and vibration measurement positions.

The main issues addressed in this chapter are summarized as follows:

(a) Use – for the first time in the vibration based SHM context – of a combination of the binary and

multihypothesis SPRT in order to propose a complete SHM method able to achieve effective and

robust damage detection, identification and quantification under uncertainties.

(b) The method’s performance is determined a priori via the use of the Operating Characteristic

(OC) and Average Sample Number (ASN) functions, selected type I (false alarm) and II (missed

damage) error probabilities, and available baseline data records of the structure under various

potential states.

(c) Assessment of the method in terms of its damage detection and identification capability under

experimental uncertainties and various damage scenarios; multiple vibration measurement loca-

tions which are either “local” or “remote” with respect to damage location are employed; large

number of experiments under each scenario (1200 data records for the healthy structure and 900

data records for each considered damage out of a total of five types).

(d) Assessment of the ability of the method to accurately identify the actual damage type through

“local” or “remote” sensors.

The rest of the chapter is organized as follows: a brief review of the basic theory on sequential

analysis is outlined in Section 5.2, while the sequential statistical method for SHM is presented in

Section 5.3. The experimental set-up is presented in Section 5.4 and the experimental assessment of

the method is presented in Section 5.5. Concluding remarks are finally summarized in Section 5.6.

5.2 Basic theory on sequential analysis

Sequential analysis is a method of statistical inference whose characteristic feature is that the number

of observations required by the procedure is not determined in advance of the experiment. The decision

to terminate the experiment depends, at each stage, on the results of the observations previously made,

thus the number of observations required by the test is not pre-determined, but a random variable.

In testing a hypothesis, the sequential method gives a rule of procedure for making one of the

following three decisions at each stage of the experiment: (1) accept the hypothesis, (2) reject the

hypothesis, or (3) continue the experiment by taking an additional observation.
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A random experiment yields observations (data) x1, x2, . . . that are random variables (or vectors)

not necessarily independent. Sequential analysis is concerned with the statistical theory and methods

of analyzing such data in which the final number of observations need not be fixed in advance, but

may depend in some specified way on the data as they become available. Two elements characterize a

sequential statistical method (Ghosh and Sen 1991, Lehmann and Romano 2008, Mukhopadhyay and

de Silva 2009):

(i) a stopping rule that dictates whether experimentation should be stopped with (x1, x2, . . . , xn)

or continued with the additional observation xn+1 for each n ≥ 1 and

(ii) a decision rule that determines the terminal action to be taken about the given problem after

experimentation has stopped.

Formally, a stopping rule gives rise to a stopping variable N , which is an extended random

variable such that, for n = 1, 2, . . . ,∞, the event N = n is in the sigma-field En generated by

(x1, x2, . . . , xn). A decision rule δ is then an EN -measurable function taking values in some well

defined space. For a given problem there may exist more than one pair (N, δ). The goal of sequential

analysis is then to determine an “optimum” (N, δ), or under a specified N , an “optimum” δ that

meets certain desirable criteria.

Most experiments are intrinsically sequential in that they produce the observations in a temporal

or spatial order. However, the majority of the statistical literature is concerned with the analysis of

such data under fixed sample size (FSS) procedures.

5.2.1 Binary hypotheses sequential testing

It is well known that Wald’s SPRT based on iid observations minimizes the expected sample size both

under the null and under the alternative hypotheses among all tests with the same or smaller error

probabilities and with finite expected sample sizes under the two hypotheses (Wald 1947, Wald and

Wolfowitz 1948). The reason for the advantage of the sequential approach over the Fixed Sample Size

(FSS) approach lies in the ability of the sequential method to reach an early decision for samples that

are favorable to either the null (Ho) or alternative (H1) hypothesis. The SPRT frequently results in a

saving of about 50% in the number of observations over the most efficient test procedure based on a

fixed number of observations (Wald 1947, Ghosh and Sen 1991). The savings that can be realized by

the sequential approach may be even greater than theory would indicate, as in “real life” experiments

the actual outcome might heavily favor either Ho or H1 (Hoel 1984, Mukhopadhyay and de Silva 2009).

Wald (1947) derived an optimality property for the SPRT which states that the test minimizes

the average sample size under Ho and H1 among all sequential tests with no greater type I and type

II error probabilities. Moreover, although the SPRT is most commonly applied in the case of iid

observations, there are important examples where this is not the case (Ghosh and Sen 1991, Chapter

3), as the observations need to be neither independent nor identically distributed.

5.2.1.1 The Sequential Probability Ratio Test (SPRT)

Consider a sequence of successive observations on x, denoted by x1, x2, . . ., having the common prob-

ability density function (pdf) f(x/θ) for x ∈ X ⊆ R and θ ∈ Θ ⊆ R. Let the hypothesis to be tested

be

Ho : θ = θo (5.1a)
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and the alternative hypothesis

H1 : θ = θ1, (5.1b)

with θo 6= θ1 being two specified parameters in the parameter space Θ. Thus, the distribution of x

under Ho (when Ho is true) is given by f(x/θo) and under H1 (when H1 is true) is given by f(x/θ1).

Moreover, let two preassigned values 0 < α, β < 1 with α+ β < 1, correspond to the type I and type

II error probabilities.

For any positive value n the likelihood function of θo and θ1 with respect to the sequence

x1, x2, . . . , xn is given by

L(θo/x1, . . . , xn) =
n∏

t=1

f(xt/θo) and L(θ1/x1, . . . , xn) =
n∏

t=1

f(xt/θ1), (5.2)

respectively. In general, we write the likelihood function under the Ho and H1 hypotheses as

L(θo/x1, . . . , xn) =

n∏

t=1

f(xt/Ho) and L(θ1/x1, . . . , xn) =

n∏

t=1

f(xt/H1), (5.3)

respectively.

Having observed the sequence xn = (x1, x2, . . . , xn), the most powerful (MP) level α (type I

error probability) test, according to the Neyman–Pearson lemma, is based on the likelihood ratio

Reject Ho if and only if Λ =
L(θ1/xn)

L(θo/xn)
=

∏n
t=1 f(xt/H1)∏n
t=1 f(xt/Ho)

≥ k, (5.4)

where k (k > 0) is to be determined appropriately. The test given in Equation (5.4) is the best among

FSS tests, for a sample size equal to n, at level α. Nevertheless, its type II error probability β can be

quite larger than the preassigned target value. The Neyman-Pearson method chooses as critical region

those sample points for which the likelihood ratio is larger than a certain constant k. The region in

which this ratio is smaller than k constitutes the region for accepting Ho. The SPRT is constructed

by extending this FSS approach to include a region for continuous sampling in order to meet both

(α, β) error probabilities requirements.

Consider the sequence xt and the sequence of successive likelihood ratios:

Λ(t) =
L(θ1/xt)

L(θo/xt)
, t = 1, 2, . . . . (5.5)

By analogy to the FSS test, the acceptance region of Ho may be chosen for the sample points for

which (5.5) is small, while the acceptance region of H1 for the sample points for which (5.5) is large.

The main idea in sequential testing is to use part of the sample space X for a third region such that

if the sample point falls in this region the decision to accept Ho or H1 will be postponed. Thus, the

postponement region consists of those sample points for which (5.5) is neither small nor large.

The SPRT for testing Ho against H1 is defined as follows:

Definition 5.2.1 (Sequential Probability Ratio Test) Let A and B two positive constants with

B < A. To test the hypothesis Ho : θ = θo against the alternative H1 : θ = θ1, at each stage t (t > 1)

of the experiment calculate the likelihood function ratio Λ(t) and process as follows:

(i) if Λ(t) ≤ B accept Ho (5.6a)

(ii) if Λ(t) ≥ A accept H1 (5.6b)

(iii) if B < Λ(t) ≤ A take an additional observation. (5.6c)
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Then, the stopping time for the SPRT is defined as

N̂ = min
t

inf {n | Λ(t) ≤ B or Λ(t) ≥ A, t > 1}. (5.7)

�

The above terminal decision rule works in practice, as it has been proved that the sampling terminates

with probability one under both Ho, H1, thus N is finite with probability one (Wald 1947, Ghosh and

Sen 1991, Mukhopadhyay and de Silva 2009).

In sequential testing the values of the type I and type II error probabilities (α, β) may be

determined in advance, rather than fix the type I error probability and then be forced to calculate the

type II, which is the case in FSS tests. The following theorem provides two inequalities satisfied by

the quantities α, β, A and B (Wald 1947, Ghosh and Sen 1991, Mukhopadhyay and de Silva 2009):

Theorem 5.2.1

B ≥ β

1− α and A ≤ 1− β
α

. (5.8)

�

For a proof of the theorem the interested reader may see Wald (1947), Ghosh and Sen (1991) and

Mukhopadhyay and de Silva (2009).

The inequalities of Theorem 5.2.1 are derived under the assumption that the successive ob-

servations x1, x2, . . . , xn are independent observations (Wald 1947). Nevertheless, the validity of the

inequalities is by no means restricted to the case of independent observations. They are generally

valid also for dependent observations (Wald 1947, Ghosh and Sen 1991, Lehmann and Romano 2008).

Theorem 5.2.2 (Wald 1947) If a SPRT is desired such that the probability of an error of the first

kind (type I error) does not exceed α, and the probability of an error of the second kind (type II error)

does not exceed β, then use

B =
β

1− α and A =
1− β
α

(5.9)

and carry out the SPRT as defined in Definition 5.2.1. �

Theorem 5.2.2 provides excellent approximations for the thresholds A and B, which are defined

by the in advance specified type I and type II error probabilities (α, β). On the other hand, the sample

required to reach a decision is unknown, as the sample size needed n is now a random variable. In

subsection 5.2.1.3, a general formula for calculating the mean value of n will be presented, so that the

sample size n may be determined in advance.

Since the original SPRT is purely sequential in nature, it may continue sampling for quite some

time, even though P (N < ∞/Hi) = 1, i = 0, 1. Nevertheless, it may be possible that one decides to

terminate sampling when the sample reaches a limit stopping time K. Determination of K may take

into account sampling cost approaches and time constraints. The truncation of the SPRT is given by

the following definition:

Definition 5.2.2 (Truncated Sequential Probability Ratio Test) Implement the SPRT of def-

inition 5.2.1 and let T = min{N,K}, with N defined as in Equation (5.7) and K a user defined
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stopping time. Then:

(i) if T = N decide as the SPRT of Definition 5.2.1 (5.10a)

(ii) if T = K and Λ(K) ≤ 1

2
(A+B) accept Ho (5.10b)

(iii) if T = K and Λ(K) ≥ 1

2
(A+B) accept H1 (5.10c)

�

In other words, once N reaches K but the original SPRT (Definition 5.2.1) still needs to continue

sampling, it may be stopped at that stage and make the decision to accept Ho or H1 depending on the

closeness of Λ(K) (likelihood ratio of xK) to B or A on a intuitive ground (Mukhopadhyay and de

Silva 2009, Ghosh and Sen 1991). Such truncation will obviously affect the sizes of the attained type

I and type II error probabilities. The size of the impact on the error probabilities largely depends on

the magnitude of K (Mukhopadhyay and de Silva 2009, Tantaratana and Thomas 1977). For small

probabilities of error truncating the SPRT at the sample size of the corresponding FSS test leaves the

SPRT essentially unaffected when the samples are distributed according Ho and H1.

In the case where the hypotheses to be tested are composite, which this is the general case, hence

Ho : θ ≤ θo and H1 : θ ≥ θ1, and the preassigned values of type I and type II error probabilities are α

whenever θ ≤ θo and β whenever θ ≥ θ1, respectively, the corresponding SPRT of strength (α, β) (see

Definition 5.2.1) for testing Ho : θ = θo and H1 : θ = θ1 should be employed.

In the next two subsections the Operating Characteristic (OC) and the Average Sample Number

(ASN) functions of the SPRT will be presented, as their comparison aids in judging the relative merits

of different test procedures.

5.2.1.2 The Operating Characteristic (OC) function

After a particular SPRT has been adopted (choice of strength (α, β)) the probability that the process

will terminate with the acceptance of hypothesis Ho depends only on the distribution f(x/θ) of the

random variable x under consideration. Since the distribution of x is determined by the parameter

point θ, the probability of accepting Ho is a function of θ. This function is called the Operating

Characteristic (OC) function and is denoted by L(θ) (Wald 1947, Ghosh and Sen 1991). Obviously,

the probability of rejecting Ho is equal to 1−L(θ). The OC function is considered more favorable the

higher the value of L(θ) for θ consistent with Ho and the lower the value of L(θ) for θ not consistent

with Ho.

Definition 5.2.3 (Operating Characteristic (OC) function (Wald 1947)) Consider a param-

eter value θ and the parameter space Θ with θ ∈ Θ. Then, L(θ) is defined as the probability of accepting

Ho when θ is the true parameter value. �

The OC function describes how well the test procedure achieves its objective of making correct

decisions. It is clear that L(θo) = 1− α and L(θ1) = β. Moreover, if the points (θ, L(θ)) ∀ θ ∈ Θ are

plotted, the corresponding figure is the OC function curve.

It is proved that if A = 1−β
α and B = β

1−α , an approximation of L(θ) is given by Wald (1947,

pp. 48–52) and Mukhopadhyay and de Silva (2009, p. 42):

L(θ) ≈

(
1−β
α

)h(θ)
− 1

(
1−β
α

)h(θ)
−
(

β
1−α

)h(θ)
. (5.11)
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For each value θ, the value of h(θ) is determined so that h(θ) 6= 0 and

∫ +∞

−∞

[
f(x/θ1)

f(x/θo)

]h(θ)

f(x/θ)dx = 1. (5.12)

5.2.1.3 The Average Sample Number (ASN)

It was pointed out before that the number of observations required by a sequential test is not predeter-

mined, but a random variable, as at any stage of the experiment the decision to terminate the process

depends on the results of the observations made so far. For any given test procedure of strength (α, β)

the expected value of N depends only on the distribution of the sequence x. Since the distribution of x

is determined by the parameter point θ, the expected value of N depends only on θ. For a parameter

point θ, the expected value of N is denoted by Eθ(N).

Definition 5.2.4 (Average Sample Number (ASN) function (Wald 1947)) Consider a param-

eter value θ with θ ∈ Θ. Then, the Average Sample Number (ASN) function is defined as Eθ(N) when

θ is the true parameter value. �

The ASN function represents the price to be paid in terms of the number of observations required

by the test. For a SPRT of strength (α, β) Wald proposed the following approximation formula

(Wald 1947, pp. 52–54):

Eθ{N} ≈
L(θ) log β

1−α + [1− L(θ)] log 1−β
α

Eθ{z}
(5.13)

with

Eθ{z} = Eθ{log Λ} (5.14)

designating the expected value of the logarithm of the likelihood ratio when θ is the true parameter

value.

Under Ho and H1, the OC function equals to L(θo) = 1 − α and L(θ1) = β, respectively, thus

equation (5.13) may be further reduced to:

Eθo{N} ≈
(1− α) log β

1−α + α log 1−β
α

Eθo{z}
(5.15a)

Eθ1{N} ≈
β log β

1−α + (1− β) log 1−β
α

Eθ1{z}
. (5.15b)

One of the most celebrated results regarding the SPRT is referred to as its optimality property

among all comparable tests, including the FSS most powerful test (Wald and Wolfowitz 1948, Lehmann

and Romano 2008, Mukhopadhyay and de Silva 2009). The original result was proved in Wald and

Wolfowitz (1948).

Theorem 5.2.3 (Optimality property of the SPRT) Consider the hypothesis test of Ho : θ = θo
versus H1 : θ = θ1. Then, among all tests, fixed sample size (FSS) or sequential, for which the type

I error probability ≤ α, the type II error probability ≤ β, and for which Eθ(N) <∞ when θ = θo, θ1,

the SPRT with error probabilities α and β minimizes Eθ(N) when θ = θo, θ1 and α+ β < 1. �
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The main conclusion from the above theorem is that among all reasonable tests, including the

most powerful FSS test, having type I and II error probabilities ≤ α and ≤ β, respectively, from a

practical point of view the SPRT with error probabilities α, β would on average require the minimum

number of observations at termination. Moreover, the SPRT beats Neyman-Pearson’s most powerful

test with comparable type I and II error probabilities (Wald and Wolfowitz 1948),(Mukhopadhyay

and de Silva 2009, p. 44).

5.2.2 Sequential multihypothesis testing

The problem of sequential testing of multiple hypotheses is considerably more difficult than that of

testing two hypotheses (Ghosh and Sen 1991, Chapter 9),(Lehmann and Romano 2008). Published

work on this problem has taken two approaches. One approach has aimed at finding an optimal

multihypothesis sequential test via a recursive solution to the optimization problem in Bayesian setting

(Tartakovsky 1989, Zacks 1971, Lai 2000, Dragalin et al. 1999). However, this approach is very

complex and impractical except in certain special cases. A second approach has been to extend

and generalize the SPRT to the case of more than two hypotheses with “nearly optimal” procedures.

Several such multihypothesis tests have been proposed and studied, namely the Sobel-Wald (Sobel and

Wald 1949) and the Simons (Simons 1967) tests, which examine the case of three hypotheses in normal

distributions, the Armitage test (Armitage 1950), the Lorden test (Lorden 1972), and m−SPRTs

(Lorden 1976, Baum and Veeravalli 1994, Dragalin et al. 1999). A survey of several multihypothesis

tests may be found in Ghosh and Sen (1991, Chapter 9).

Combinations of one-sided SPRT’ s are shown to be “nearly optimal” for problems involving

a finite number of possible underlying distributions. For sequential decision problems simple explicit

procedures are proposed which “do exactly what a Bayes solution would do” with probability approach-

ing one as the cost per observation c goes to zero (Lorden 1977, Baum and Veeravalli 1994, Dragalin

et al. 1999). It is well known that for binary hypotheses testing (k = 2) Wald’s SPRT is optimal,

in the sense that it simultaneously minimizes both expectations of the sample size among all tests,

sequential and FSS tests, for which the probabilities of type I and II errors do not exceed predefined

values (Wald 1947, Wald and Wolfowitz 1948, Ghosh and Sen 1991, Lehmann and Romano 2008).

Unfortunately, if the number of hypotheses is greater or equal than three (k ≥ 3) it is not clear if

there even exists a test that minimizes the expected sample size for all hypotheses. Moreover, existing

research indicates that even if such a test exists it would be very difficult to find its structure (Dragalin

et al. 1999).

In the case of k ≥ 3 hypotheses there are two different generalizations of the type I and II error

probabilities α, β. There are the k(k − 1) error probabilities αij = P (δ = Hi/Hj) for i 6= j, and there

are the k correct decision probabilities αii = P (δ = Hi/Hi), with δ denoting the decision rule of the

sequential test. Furthermore, one can control the vector of correct decision probabilities (Sobel and

Wald 1949) or the matrix of error probabilities (Armitage 1950, Simons 1967, Lorden 1972). It is

generally impossible to duplicate the optimality of the SPRT, that is minimize the expected sample

sizes under all hypotheses for k ≥ 3 (Ghosh and Sen 1991, p. 231). Thus, in sequential multihypothesis

testing the goal is to achieve specified bounds on either the error probabilities or the correct decision

probabilities while controlling the expected sample size under all hypotheses “as well as possible”. In

general, it does not exist a multihypothesis test which is optimal in the sense that the SPRT is optimal

in the case of two hypotheses (Ghosh and Sen 1991, Chapter 9).

In the present work the Armitage multihypothesis test (Armitage 1950) will be employed, as it

constitutes a generalization of the SPRT that can be defined for any number of hypotheses.
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5.2.2.1 The Armitage multihypothesis test

The Armitage multihypothesis test is a generalization of the SPRT that can be defined for any number

of hypotheses (Armitage 1950),(Ghosh and Sen 1991, pp. 237–238). Consider k simple hypotheses

H1, H2, . . . ,Hk and denote the likelihood under hypothesis Hi (Hi is true) as Li. There are 1
2k(k− 1)

likelihood ratios for the various pairs of hypotheses, though each of these may be expressed in terms

of k− 1 independent likelihood ratios, which may be chosen in any one of a number of different ways:

Λij(t) =
Li(θi/xt)
Lj(θj/xt)

, i, j = 1, 2, . . . , k, i 6= j, t = 1, 2, . . . . (5.16)

Definition 5.2.5 (Armitage multihypothesis test) Consider k simple hypotheses H1, H2, . . . ,Hk.

Let Aij be the upper boundary, and let Bij = A−1
ji be the lower boundary of the hypothesis Hi versus

Hj. Each component SPRT is extended until for some j all k− 1 SPRTs involving Hj simultaneously

lead to the decision Hj. Since Λij = Λ−1
ji and Bij = A−1

ji the multihypothesis test is defined by the

pair (N, δ), where N is the stopping time and δ the final decision, which are defined in the following

manner:

N = min
j=1,...,k−1

inf
{
t ≥ 1 : Λij(t) ≥ Aij ∀ i 6= j

}
(5.17a)

with decision δ:

δ = arg min
j=1,...,k−1

N (5.17b)

�

The interpretation of the multihypothesis SPRT is that it stops the first time t at which there

exists some hypothesis Hj for which each likelihood ratio Λij(t) between Hi and Hj is greater than

or equal to a chosen threshold Aij . For the above sequential procedure it has been proved that the

probability that no decision has been reached by the nth stage tends to zero as n increases indefinitely

(Armitage 1950).

Let aij the probability of accepting Hi when in fact Hj is true (error probabilities), that is

αij = P (δ = Hi/Hj), i 6= j, and let aii the probability of accepting Hi when in fact Hi is true

(correct decision probabilities), that is αii = P (δ = Hi/Hi). Armitage proved that αij ≤ A−1
ij = Bij

(Armitage 1950, Ghosh and Sen 1991), thus the error probabilities aij may be controlled via suitable

selection of the Aij ’s:

αii = 1−
∑

i 6=j
αij ≥ 1−

∑

i 6=j
A−1
ij . (5.18)

Using the above inequalities the Armitage test of Definition 5.2.5 can control the whole matrix of

error probabilities αij , as well as the vector of correct decision probabilities αii. By choosing the Aij
sufficiently large, the probabilities of arriving at the correct conclusion, when any one of the Hi is true,

can be made as large as we wish. These inequalities are, however, conservative, in the sense that the

true probabilities may be considerably higher than the lower bound given in (5.18) (Armitage 1950).

5.3 A sequential statistical time series method for SHM

Like all statistical time series methods for SHM (Fassois and Sakellariou 2007, Fassois and Sakellariou

2009, Sakellariou and Fassois 2008, Kopsaftopoulos and Fassois 2010a, Kopsaftopoulos and Fassois

2011b), the sequential statistical time series method for SHM consists of two phases: (a) The baseline



144 Chapter 5. A sequential statistical time series method for vibration based SHM

phase, which includes modeling of the healthy structure, as well as the potential1 modeling of the

structure under predetermined damage types via stochastic time series models, and (b) the inspection

phase, which is performed during the structure’s service cycle or continuously (on-line), and includes

the functions of damage detection, identification and quantification.

5.3.1 The workframe

Let So designate the structure under consideration in its nominal (healthy) state, SA, SB, . . . the

structure under damage of type A,B, . . . and so on, and Su the structure in an unknown (to be

determined) state. Each damage type may include a continuum of damages which are characterized

by common nature or location, for instance, damage in a specific structural element.

The sequential statistical time series method is based on discretized, scalar or vector, excitation

x[t] and/or response y[t] (for t = 1, 2, . . . , n) random vibration data records. Note that t refers to

discrete time, with the corresponding actual time being (t − 1)Ts, where Ts stands for the sampling

period. Like before, a subscript (o,A,B, . . . , u) is used for designating the corresponding structural

state that provided the signals. Note that all collected signals need to be suitably pre-processed

(Fassois and Sakellariou 2007, Fassois and Sakellariou 2009, Doebling et al. 1998, Fassois 2001). This

may include low or band-pass filtering within the frequency range of interest, signal subsampling

(in case the originally used sampling frequency is too high), sample mean subtraction, as well as

proper scaling (in the linear dynamics case). The latter is not only used for numerical reasons, but

also for counteracting –to the extent possible– different operating (including excitation levels) and/or

environmental conditions.

Damage detection, identification and quantification is based on the residual sequence obtained

by driving the current (unknown) signal(s) xu[t], yu[t] through a predetermined, in the baseline phase,

model Mo corresponding to the healthy structural state. Let the residual series obtained by driving the

current signals xu[t], yu[t] through the healthy model Mo be designated as eou[t] and characterized by

variance σ2
ou. The first subscript designates the model employed, while the second the structural state

corresponding to the current excitation and/or response signal(s) employed. The general idea is that

the residual sequence obtained by a model that truly reflects the actual (current) structural state will

be characterized by a standard deviation which becomes minimal, thus will be below a predetermined

threshold.

Damage detection may be then based on the fact that under the Ho hypothesis (the structure

being in its healthy state) the residual series generated by driving the current signal(s) xu[t], yu[t]

through the model Mo possesses the property:

Under Ho : eou[t] ∼ iid N (0, σ2
ou) (5.19)

with

σ2
ou < σ2

V u for any structural state V (5.20)

thus, the corresponding residual variance (or standard deviation) will be minimal.

5.3.2 Baseline phase

5.3.2.1 Baseline modeling of the structure

The obtained data records are employed for the identification and validation of appropriate parametric

time series models, which may be scalar (univariate) models in the case of a single vibration response

1Modeling of the structure under predetermined damage types is not always necessary. See Section 5.3.3.2 for details.
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measurement location, or vector (multivariate) models or an array of scalar models in the case of

several vibration response measurement locations. In the response-only case, AutoRegressive (AR) or

AutoRegressive Moving Average (ARMA) models may be employed (Box et al. 1994, pp. 52–53), which

may be alternatively set into state space form (Box et al. 1994, pp. 163–164),(Ljung 1999, Section 4.3).

In the excitation-response case, AutoRegressive with eXogenous excitation (ARX) or AutoRegressive

Moving Average with eXogenous excitation (ARMAX) models may be used (Ljung 1999, Section 4.2),

(Fassois 2001), or their corresponding state space representations (Ljung 1999, Section 4.3). For the

case of vector time series models and their identification, the interested reader is referred to Lütkepohl

(2005).

In this study an array of three single excitation and single response AutoRegressive with eXoge-

nous excitation (ARX) models is used. An ARX(na, nb) model is of the form2 (Fassois 2001, Ljung

1999):

y[t] +
na∑

i=1

ai · y[t− i] =
nb∑

i=0

bi · x[t− i] + e[t] e[t] ∼ iidN
(
0, σ2

e

)
(5.21)

with t designating the normalized discrete time (t = 1, 2, 3, . . . with absolute time being (t − 1)Ts,

where Ts stands for the sampling period), x[t], y[t] the measured excitation and vibration response

signals, respectively, na, nb the AutoRegressive (AR) and eXogenous (X) orders, respectively, and

e[t] the stochastic model residual (one-step-ahead prediction error) sequence, that is a white (serially

uncorrelated), Gaussian, zero mean with variance σ2
e sequence, uncorrelated with the excitation x[t].

The symbol N (·, ·) designates Gaussian distribution with the indicated mean and variance, and iid

stands for identically independently distributed.

The model is parameterized in terms of the parameter vector θ = [ai
... bi

... σ2
e ]
T to be estimated

from the measured signals (Fassois 2001, Ljung 1999). Model estimation may be achieved based on

minimization of the Ordinary Least Squares (OLS) or the Weighted Least Squares (WLS) criteria

(Fassois 2001, Ljung 1999). The modeling procedure involves the successive fitting of ARX(na, nb)

models for increasing orders na and nb, until an adequate model is selected (Fassois 2001). Model

order selection, which is crucial for successful identification, may be based on a combination of tools,

including the Bayesian Information Criterion (BIC), which is a statistical criterion that penalizes

model complexity (order) as a counteraction to a decreasing quality criterion (Fassois 2001),(Ljung

1999, pp. 505–507), monitoring of the RSS/SSS (Residual Sum of Squares / Signal Sum of Squares)

criterion, monitoring of the residual autocorrelation function (MATLAB function autocorr.m) (Ljung

1999, p. 512), and use of “stabilization diagrams” which depict the estimated modal parameters

(usually frequencies) as a function of increasing model order (Fassois 2001, Ljung 1999). Final model

validation is based on formal verification of the residual (one-step-ahead prediction error) sequence

uncorrelatedness (whiteness) hypothesis (Ljung 1999, pp. 512–513).

5.3.3 Inspection phase

Let xu[t], yu[t] (t = 1, 2, . . . , n) represent the current excitation and response signals, respectively,

obtained from the structure in an unknown (to be classified) state. Damage detection, identification

and quantification are based on the pre-determined in the baseline phase time series model for the

healthy structure (Mo). The current excitation and response signals are driven through this model

and estimates of the current residual series eou[t] are obtained. Subsequently, these estimates are used

for tackling the damage detection, identification and quantification tasks.

2Lower case/capital bold face symbols designate vector/matrix quantities, respectively.
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5.3.3.1 Damage detection

The SPRT of Definition 5.2.1 is used in order to detect a change in the standard deviation σou of the

model residual sequence obtained by driving the current (unknown) excitation and response signals

through the baseline healthy model Mo. By using the SPRT it is possible to specify two values σo
and σ1 for the residual standard deviation, such as the classification of the structure as healthy is

considered whenever σou ≤ σo, while the classification of the structure as damaged is considered

whenever σou ≥ σ1. The zone between σo and σ1 is the uncertainty zone, thus whenever σou lies in

this range the decision is postponed and the experiment continues by using an additional observation.

The probability of classifying the structure as damaged should not exceed a preassigned value

α whenever σou ≤ σo (type I error probability), while the probability of classifying the structure as

healthy should not exceed a preassigned value β whenever σou ≥ σ1 (type II error probability). The

values σo and σ1 are user defined values and express the increase of the standard deviation ratio

q = σ1/σo for which the structure is considered to be in a damage state. For example, a ratio of

q = 1.1 means that the structure is considered damaged whenever there is a increase of 10% in the

standard deviation σou of the current residual sequence compared to its nominal value σo.

Damage detection is based on the following hypothesis testing problem implemented via the

SPRT of strength (α, β), with α, β the type I (false alarm) and II (missed damage) error probabilities,

respectively:
Ho : σou ≤ σo (null hypothesis – healthy structure)
H1 : σou ≥ σ1 (alternative hypothesis – damaged structure)

(5.22)

with σo, σ1 designating user defined values.

Under the null hypothesis the residuals eou[t] are iid zero mean Gaussian with variance σ2
ou,

hence:

Under Ho : eou[t] ∼ iid N (0, σ2
ou) t = 1, 2, . . . , n (5.23)

and the probability density function of the residual sequence eou[t] (t = 1, 2, . . . , n) is given by:

f(eou[t]/σ) =
1

(2π)
n
2 σn

exp

{
− 1

2σ2

n∑

t=1

e2
ou[t]

}
. (5.24)

The likelihood ratio Λ is computed at each stage n of the experiment as follows:

Λ(n) =
L(σ1/eou[1], . . . , eou[n])

L(σo/eou[1], . . . , eou[n])
=

∏n
t=1 f(eou[t]/σ1)∏n
t=1 f(eou[t]/σo)

=

1

(2π)
n
2 σn1

exp

{
− 1

2σ2
1

∑n
t=1 e

2
ou[t]

}

1

(2π)
n
2 σno

exp

{
− 1

2σ2
o

∑n
t=1 e

2
ou[t]

}

Taking logarithms and dividing by (1/2σ2
o)− (1/2σ2

1) the logarithm of the likelihood ratio is obtained:

log Λ(n) = n · log
σo
σ1

+
σ2

1 − σ2
o

2σ2
oσ

2
1

·
n∑

t=1

e2
ou[t] . (5.25)

The basis of the SPRT is the logarithm of the likelihood ratio function based on n samples with

log Λ(n) designating the decision parameter of the method.

Based on the SPRT of Definition 5.2.1, the following test of strength (α, β) is constructed:

log Λ(n) ≤ logB accept Ho (healthy structure)
log Λ(n) ≥ logA accept H1 (damaged structure)

logB < log Λ(n) ≤ logA no decision is made (continue the test)
(5.26)
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with B = β
(1−α) and A = (1−β)

α obtained from Theorem 5.2.2.

Then, the stopping time for the SPRT is defined as:

N̂ = min
t

inf {n | log Λ(t) ≤ logB or log Λ(t) ≥ logA, t > 1}. (5.27)

Following a decision at a stopping time N̂ , it is possible to continue the test by reseting

log Λ(N̂ + 1) to zero and continue the experiment by using additional residual samples. Thus, by

using finite vibration response data records xu[t], yu[t] with t = 1, 2, . . . ,K and the corresponding

residual sequences, the SPRT is able to take multiple decisions, hence multiple damage detections can

be achieved.

The Operating Characteristic (OC) function

According to Definition 5.2.3, for any value σ, the OC function L(σ) denotes the probability

that the SPRT for damage detection will terminate with the acceptance of the null hypothesis Ho that

the structure is in healthy state. For A = 1−β
α and B = β

1−α and by applying the Equations (5.11)

and (5.12) we obtain:

L(σ) =

(
1−β
α

)h
− 1

(
1−β
α

)h
−
(

β
1−α

)h (5.28)

where h is the rot of the equation:

1√
2πσ

σho
σh1

∫ +∞

−∞

(
exp
{
− 1

2σ2
1
e2
ou[t]

}

exp
{
− 1

2σ2
o
e2
ou[t]

}
)h

exp
{
− 1

2σ2
e2
ou[t]

}
de = 1 (5.29)

The integral on the left side of Equation (5.29) has a finite value only if (h/σ2
1)− (h/σ2

o) + (1/σ2) > 0.

Hence, Equation (5.12) may be written as:

σ

(
σ1

σo

)h
=

√
1

h
σ2
1
− h

σ2
o

+ 1
σ2

. (5.30)

Instead of solving (5.30) with respect to h, it is solved with respect to σ. Thus, we obtain:

σ =

√√√√
(
σo
σ1

)2h − 1
h
σ2
1
− h

σ2
o

. (5.31)

Using Equations (5.28) and (5.31) the OC function curve may be plotted by computing the pair

(σ, L(σ)) for a sequence of values h, which has to be sufficiently large in order to obtain enough OC

function points.

Figure 5.1a presents the OC function for various residual standard deviation ratios q = σ1/σo
and constant strength (α, β), while Figure 5.2a presents the OC function for various strengths (α, β)

and constant residual standard deviation ratio q = σ1/σo = 1.1. By calculating the OC function of

various candidate SPRT sampling plans of strength (α, β) (see Figure 5.1b) and residual standard

deviation ratios q = σ1/σo (see Figure 5.1a), the user is able to determine the corresponding proba-

bilities of acceptance of the null hypothesis Ho (healthy structure) and thus, compare in a systematic

way the various sampling plans. Moreover, in the case that a number of baseline healthy data records
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Figure 5.1: (a) Operating Characteristic (OC) and (b) Average Sample Number (ASN) functions for
various residual standard deviation ratios q = σ1/σo and constant strength (α, β) = 0.01. The vertical
colored dashed lines designate the σ1 values for the corresponding ratios q.
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Figure 5.2: (a) Operating Characteristic (OC) and (b) Average Sample Number (ASN) functions for
various strengths (α, β) and constant residual standard deviation ratio q = σ1/σo = 1.1.

is available, the user may estimate the corresponding residual standard deviations and check the prob-

ability that the candidate SPRT sampling plans will accept them, indeed, as belonging to the healthy

structural state. This way, using the available baseline data records, the behavior of various SPRT

sampling plans may be investigated with respect to damage detection robustness and potential false

alarm rates, and the sampling plan with the best performance may be selected for final implementation.

The Average Sample Number (ASN) function

The ASN function represents the average number of inspection samples required by the SPRT

to reach a decision. As the number of observations required by a sequential test is not predetermined,

but a random variable, the ASN is an approximation of the expected value Eσ(N) of the number of

residual samples required by a sampling plan of strength (α, β) and residual standard deviations σo, σ1

in order to reach a terminal decision.

The expected value of the ASN function based on Equation (5.13) is given by Wald (1947, p.
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131):

Eσ{N} ≈
L(σ) log β

1−α + [1− L(σ)] log 1−β
α

Eσ{z}
(5.32)

where

z = log Λ =

1
σ1

exp
{
− 1

2σ2
1
e2
ou[t]

}

1
σo

exp
{
− 1

2σ2
o
e2
ou[t]

} = log
σo
σ1

+
1

2

(
1

σ2
o

− 1

σ2
1

)
e2
ou[t] . (5.33)

Eσ(z) denotes the expected value of the likelihood ratio when σ is the standard deviation of the

residual sequence, hence:

Eσ{z} = Eσ{log Λ} = log
σo
σ1

+
1

2

(
1

σ2
o

− 1

σ2
1

)
E{e2

ou[t]} = log
σo
σ1

+
1

2

(
1

σ2
o

− 1

σ2
1

)
σ2 . (5.34)

From Equations (5.28), (5.31), (5.32) and (5.34) the ASN function of various candidate SPRT

sampling plans may be calculated. This is of great importance in the design of a SPRT sampling

plan for damage detection, as by pre-specifying the test strength (α, β) and the residual standard

deviation ratio q = σ1/σo for which the structure is considered to be in a damage state, one may have

an approximation of the expected number of residual samples that the SPRT needs in order to accept

hypothesis Ho or H1 and terminate. Hence, along with the OC function, the ASN function constitutes

an additional analytical tool which may contribute to the optimal selection of a SPRT sampling plan.

Figure 5.1b shows the ASN function for various residual standard deviation ratios q = σ1/σo and

constant strength (α, β), while Figure 5.2b depicts the ASN function for various strengths (α, β) and

constant residual standard deviation ratio q = σ1/σo = 1.1.

Based on Theorem 5.2.3, the SPRT of strength (α, β) minimizes, under Ho (healthy structure)

and H1 (damaged structure), the expected value Eσ{N} of the ASN among all tests, FSS or sequential,

for which the type I error probability is equal or less than α and the type II error probability is equal

or less than β. Thus, in order to tackle damage detection and infer the health state of a structure,

based on the adopted sampling plan of the SPRT, the above procedure requires a minimum number

of observations for reaching a terminal decision.

The truncated SPRT

In the case that the expected number of samples Eσ{N}, as approximated by the ASN function,

indicates that an increased number of residual samples is required by the adopted SPRT sampling

plan with respect to the available or “desired” number of residual samples to be employed, then the

truncated SPRT version of Definition 5.2.2 may be used. Moreover, the truncated SPRT may also be

employed in the case where the SPRT stopping time N reaches the limit stopping time K (length of

the current residual sequence eou[t]) and still needs to continue sampling to reach a terminal decision.

Based on the truncated SPRT of Definition 5.2.2, the following test of strength (α, β) is con-

structed based on a user defined stopping time K:

log Λ(K) ≤ log 1
2(A+B) accept Ho (healthy structure)

log Λ(K) ≥ log 1
2(A+B) accept H1 (damaged structure)

(5.35)

with B = β
(1−α) and A = (1−β)

α obtained from Theorem 5.2.2.

The truncation of the SPRT will affect the type I and II error probabilities α and β, respec-

tively, and as a result of this the strength (α, β) of the test. Nevertheless, the size of the impact on

the error probabilities depends on the number of samples K based on which the SPRT is truncated
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(Mukhopadhyay and de Silva 2009). Hence, if the truncation is implemented for a large value of K

the strength of the test will be practically unaffected. For small probabilities of type I (false alarm)

and II (missed damage) errors, truncating the SPRT at stopping time K leaves the SPRT essentially

unaffected when the samples are distributed under Ho (healthy structure) and H1 (damaged struc-

ture) (Mukhopadhyay and de Silva 2009, Tantaratana and Thomas 1977). Furthermore, the truncated

SPRT compares favorably with the corresponding FSS most powerful test when the probabilities of

error are small (Tantaratana and Thomas 1977).

5.3.3.2 Damage identification and quantification

Consider k hypotheses HA, HB, . . . with each one indicating the acceptance of the corresponding, as

determined in the baseline phase, damage type A,B, . . ., respectively, as current. Damage identifi-

cation may be treated via two statistical procedures: (i) k pairwise binary SPRTs based hypothesis

testing similarly to damage detection, and (ii) sequential multihypothesis testing. In this section both

methods will be presented, along with their corresponding pros and cons.

Pairwise binary SPRT based method

The current excitation and response signals xu[t], yu[t] (t = 1, 2, . . . , n), obtained from the

structure under an unknown (to be classified) damage state are driven through predetermined, in the

baseline phase, damage type models MA,MB, . . .. Afterwards, estimates of the current residual series

eAu[t], eBu[t], . . . are obtained that are used for the damage identification task3.

Thus, damage identification may be achieved via similar to (5.26) pairwise SPRTs implemented

using the corresponding residual series eAu[t], eBu[t], . . .. For, say damage type V , the following test

of strength (α, β) is used:

Ho : σV u ≤ σo (null hypothesis – damage is of type V )
H1 : σV u ≥ σ1 (alternative hypothesis – damaged in not of type V )

(5.36)

with σo, σ1 designating user defined values.

Then, the SPRT is implemented as follows:

log ΛV (n) ≤ logB accept Ho (damage is of type V )
log ΛV (n) ≥ logA accept H1 (damaged in not of type V )

logB < log ΛV (n) ≤ logA no decision is made (continue the test)
(5.37)

with B = β
(1−α) and A = (1−β)

α obtained from Theorem 5.2.2 and

log ΛV (n) = n · log
σo
σ1

+
σ2

1 − σ2
o

2σ2
oσ

2
1

·
n∑

t=1

e2
V u[t] . (5.38)

The above testing procedure is used in order to detect a change in the standard deviation σV u
of the model residual sequence obtained by driving the current (unknown) excitation and response

signals through the baseline damage type models MA,MB, . . .. The classification of the structural

state as being under damage type V is considered whenever σV u ≤ σo, while the classification of the

3The first subscript designates the model employed and the second the structural state of the current excitation-
response signals.
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structure as not belonging to damage type V is considered whenever σV u ≥ σ1. Whenever σV u lies

in the uncertainty zone another residual sample is used and the experiment continues. Similarly to

the damage detection case, a ratio of q = σ1/σo designates that the structure is not considered to be

under damage type V whenever there is an increase in the nominal standard deviation σo equal to q.

If the increase is less than q then the structure is determined to be under damage type V .

Notice that this pairwise binary procedure in order to be implemented requires the baseline

modeling of the structure under the considered damage types via appropriate parametric time series

models MA,MB, . . ..

Sequential multihypothesis testing based method

Although binary hypothesis testing procedures similar to the above have been proved to be

able to effectively tackle damage identification (Fassois and Sakellariou 2007, Fassois and Sakellariou

2009, Kopsaftopoulos and Fassois 2010a, Kopsaftopoulos and Fassois 2011b), they may nevertheless

be considered statistically “awkward” and suboptimal, as pairwise binary hypothesis testing is used

in order to treat an actual multiple hypothesis decision problem (k ≥ 3). For this reason, the present

work proposes a multihypothesis sequential test for achieving damage identification and quantification,

which is based on the Armitage test (Ghosh and Sen 1991, pp. 237–268),(Armitage 1950) of Definition

5.2.5.

Consider the k hypotheses HA, HB, . . . with each one belonging to a predetermined, in the

baseline phase, damage type. Then, the multihypothesis test to be implemented is expressed as

follows:
HA : σou = σA Hypothesis A – damage is of type A
HB : σou = σB Hypothesis B – damage is of type B

...
...

(5.39)

with σou designating the standard deviation of the residual series obtained by driving the current

excitation-response signals xu[t], yu[t] through the identified, in the baseline phase, model Mo repre-

senting the structure in its healthy state. The standard deviation values σA, σB, . . . are user defined

values determined based on the available baseline data obtained from the structure under damage

types A,B, . . ., respectively. A typical selection of σA, σB, . . . could be the mean values of the resid-

ual standard deviations σoA, σoB, . . . estimated from the available baseline data records under the

corresponding damage structural states4.

By denoting the likelihood under hypothesis Hi (Hi is true, i = A,B, . . .) as Li there are
1
2k(k − 1) log likelihood ratios for the various pairs of hypotheses, with each one expressed in terms

of k − 1 independent likelihood ratios:

log Λij(t) =
Li(σi/eou[1], . . . , eou[t])

Lj(σj/eou[1], . . . , eou[t])
= n · log

σj
σi

+
σ2
i − σ2

j

2σ2
jσ

2
i

·
n∑

t=1

e2
ou[t] i, j = A,B, . . . and i 6= j.

(5.40)

Then, the multihypothesis test termination is defined by the pair (N, δ), with N indicating the

stopping time and δ the final decision:

N̂ = min
j=1,...,k−1

inf
{
t ≥ 1 : log Λij(t) ≥ logAij ∀ i 6= j

}
, (5.41)

δ̂ = arg min
j=1,...,k−1

N. (5.42)

4The standard deviation σoA is obtained by driving the data obtained under damage type A through the nominal
(healthy) baseline model Mo.
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The upper bounds Aij of the likelihood ratios are obtained via Equation (5.18) by defining the

matrix of error probabilities aij (the probability of accepting Hi when in fact Hj is true), which also

yields the vector of correct probabilities aii (the probability of accepting Hi when in fact Hi is true).

Using Equation (5.18) the above testing procedure can control the whole matrix of error probabilities

αij , as well as the vector of correct decision probabilities αii. By choosing the Aij sufficiently large,

the probabilities of arriving at the correct decision, when any one of the Hi is true, can be made as

large as desired.

Notice that in the multihypothesis damage identification procedure no baseline damage type

modeling for the considered damage structural states is involved, as this method employs just the

nominal (healthy) model Mo of the structure in order to obtain the residual sequences. Hence, although

multihypothesis testing is more elaborate than hypothesis binary testing, the proposed method avoids

the potentially complicated task of damage type identification, which is necessary in the case of the

binary hypothesis testing method.

Nevertheless, it is possible that different damage types may have a similar effect on the residual

sequences eou[t] and thus in the residual standard deviation σou. In this case the multihypothesis

method will not provide clear classification results for the corresponding damage types, nevertheless

will provide an indication of the potential damage types. If it is desired to reach a single final

decision with respect to the current “actual” damage type, the user may apply, in a second stage, the

binary hypothesis damage identification method between the candidate damage types indicated by

the multihypothesis testing.

Damage quantification is treated simultaneously with the damage identification task. The prede-

termined residual standard deviation values σA, σB, . . . under the corresponding damage types consti-

tute an indication of the damage severity. This is due to the fact that as damage severity increases the

current structural dynamics deviate from the nominal healthy behavior, thus the nominal model Mo

belonging to the healthy structure will not be able to accurately represent them, leading to increased

residuals and corresponding standard deviation values. Moreover, by considering a nominal standard

deviation σoo for the healthy structure, damage detection may also be considered. Nevertheless, in this

case, the advantages of the SPRT based damage detection method (predetermined strength (α, β),

analytical comparison of candidate sampling plans via the OC and ASN functions) will be neglected.

Structural State Description Total Number of Data Sets

Healthy — 1200 (100 baseline )
Damage type A loosening of bolt A1 900 (100 baseline )
Damage type B loosening of bolts A1 and B1 900 (100 baseline )
Damage type C loosening of bolts C1 and C2 900 (100 baseline )
Damage type D loosening of bolt D1 900 (100 baseline )
Damage type E loosening of bolt E1 900 (100 baseline )

Sampling frequency: fs = 256 Hz, Signal bandwidth: [0.5− 100] Hz
Signal length N in samples (s): Non-parametric analysis: N = 30 720 (120 s)

Parametric analysis: N = 1 000 (3.9 s)

Table 5.1: The considered damage types, number of experiments, and vibration signal details.
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Figure 5.3: The aluminum truss structure and the experimental set-up: The force excitation (Point
X), the vibration measurement positions (Points Y1 – Y3), and the considered damage types (A, B,
C, D, and E).

5.4 The experimental set-up

5.4.1 The structure

The truss structure is depicted in Figure 5.3, suspended through a set of cords. It consists of twenty

eight elements with rectangular cross sections (15 × 15 mm) jointed together via steel elbow plates

and bolts. All parts are constructed from standard aluminum with the overall dimensions being

1400× 700× 800 mm.

5.4.2 The damage types and the experiments

The damages considered correspond to the complete loosening of various bolts at different joints of the

structure. Five distinct types are specifically considered (Figure 5.3): The first damage type, referred

to as damage type A, corresponds to the loosening of bolt A1 joining together an horizontal with a

vertical element. The second damage type, referred to as damage type B, corresponds to the loosening

of bolts A1 and B1 joining together an horizontal with a vertical element. Damage type B affects the

same elements as damage type A, but it is more severe, as loosening of two bolts is involved. The third

damage type, referred to as damage type C, corresponds to the loosening of bolts C1 and C2 joining

together an horizontal with a diagonal element. The fourth damage type, referred to as damage type

D, corresponds to the loosening of bolt D1 joining together an horizontal with a vertical element.

Finally, the fifth damage type, referred to as damage type E, corresponds to the loosening of bolt E1

joining together a vertical with a diagonal element. All damage types considered are summarized in

Table 5.1.

The force excitation is a random Gaussian signal applied vertically at Point X (Figure 5.3) via

an electromechanical shaker (MB Dynamics Modal 50A, max load 225 N) equipped with a stinger, and

measured via an impedance head (PCB 288D01, sensitivity 98.41 mV/lb). The vibration responses are

measured at different points via dynamic strain gauges (PCB ICP 740B02, 0.005−100 kHz, 50 mV/µε;

sampling frequency fs = 256 Hz, signal bandwidth 0.5−100 Hz). The force and strain signals are driven

through a signal conditioning device (PCB 481A02) into the data acquisition system (SigLab 20-42). In

this study the damage detection, identification and quantification are results based on each one of the

three vibration response signals (Points Y1, Y2 and Y3 – Figure 5.3). This allows the examination
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Figure 5.4: Frequency Response Function (FRF) magnitude estimates for the healthy and damage
structural states: (a) Point X – Point Y1 and (b) Point X – Point Y3 transfer functions.

and assessment of the sequential method’s ability to achieve damage detection, identification and

quantification with respect to the vibration response measurement locations employed. For this reason,

the results are characterized as “local” or “remote” with respect to the distance between the damage

and the response point employed.

A significant number of test cases is considered in the experimental assessment: In each test case

a specific data set (out of a total of 1200 data sets for the healthy structure and 900 data sets for each

damage state, with 100 from each category reserved for the baseline phase – Table 5.1) and a specific

vibration response measurement position (Points Y1 – Y3, Figure 5.3) are employed. Experimental

details are presented in Table 5.1. Notice that the sample mean is subtracted from each signal and

scaling by the signal’s sample standard deviation is implemented.

5.5 Damage detection, identification and quantification results

Damage detection, identification and quantification results are based on a single excitation-response

signal pair for each test case. The excitation force is always measured at Point X, but the vibration

response measured either at Points Y1, Y2, or Y3 (Figure 5.3 is used in each test case. Depending on

the distance of the employed sensor from the damage occurrence location, the damage is characterized

either as “local” or “remote”. Of course, the interesting point being investigated here is whether the

potential proximity of the sensor seems to provide a significant advantage in the damage detection

robustness and the identification and quantification accuracy. The considered damage test cases are

summarized in Table 5.1.



Chapter 5. A sequential statistical time series method for vibration based SHM 155

50 100 150

−5

−4.5

−4

−3.5

−3

−2.5
Response Y1

B
IC

ARX(n, n)
50 100 150

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1
Response Y3

ARX(n, n)

110 120 130 140 150

−5.22

−5.2

−5.18

−5.16

50 100 150

−5.5

−5

−4.5

−4

−3.5

−3

−2.5
Response Y2

ARX(n, n)

125 130 135 140 145 150
−5.84

−5.82

−5.8

−5.78

100 105 110
−4.33

−4.32

−4.31

−4.3

ARX(112,112) ARX(136,136) ARX(103,103)

Figure 5.5: BIC order selection criterion for ARX(n, n) type parametric models in the healthy case
for all vibration response measurement locations.

5.5.1 Baseline phase: structural identification under the healthy structural state

5.5.1.1 Non-parametric identification

Non-parametric identification of the structure is based onN = 30 720 (≈ 120 s) sample-long excitation-

response signals. An L = 2048 sample-long Hamming data window with zero overlap is used (number

of segments K = 15) for the FRF Welch based estimation (MATLAB function tfestimate.m). The

obtained response FRF magnitude estimates for the healthy and damage states of the structure (Point

X – Point Y1 and Point X – Point Y3 transfer functions) are depicted in Figure 5.4. As it may be

observed, the healthy and damage curves are rather similar for both transfer functions in the 0.5− 30

Hz range, where the first twelve modes are included. In the case of Point X – Point Y3 transfer

function, significant differences between the healthy and damage types C, D and E curves are seen in

the 30 − 58 Hz range, where the next three modes are included. Finally, in the 58 − 100 Hz range

where the next eight modes are included, the Point X – Point Y1 FRF magnitude curves are quite

similar except for the damage type E curve, while discrepancies are more evident for damage types C

and E in the Point X – Point Y3 transfer function case.

5.5.1.2 Parametric identification

Parametric identification of the structural dynamics is based on N = 10 000 (≈ 39 s) sample-long

excitation and single response signals which are used for estimating AutoRegressive with eXogenous

excitation (ARX) models (MATLAB function arx.m). The modeling strategy consists of the succes-

sive fitting of ARX(na, nb) models (with na, nb designating the AR and X orders, respectively; in

this study na = nb = n) until a suitable model is selected. Model parameter estimation is achieved

by minimizing a quadratic Prediction Error (PE) criterion leading to a Least Squares (LS) estimator

(Fassois 2001),(Ljung 1999, p. 206). Model order selection, which is crucial for successful identifica-

tion, may be based on a combination of tools, including the Bayesian Information Criterion (BIC)

(Figure 5.5), which is a statistical criterion that penalizes model complexity (order) as a counterac-

tion to a decreasing quality criterion (Fassois 2001),(Ljung 1999, pp. 505–507), monitoring of the

RSS/SSS (Residual Sum of Squares / Signal Sum of Squares) criterion, monitoring of the residual

autocorrelation function (MATLAB function autocorr.m) (Ljung 1999, p. 512), and use of “stabiliza-

tion diagrams” (Figure 5.6) which depict the estimated modal parameters (usually frequencies) as a

function of increasing model order (Fassois 2001, Ljung 1999).
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Figure 5.6: Frequency stabilization diagram for ARX(n, n) type models in the healthy case for all
vibration response measurement locations. The dashed red lines indicate the selected model orders in
each case.

An approximate plateau in the BIC sequences is achieved for model order n > 100 (Figure 5.5).

Furthermore, as indicated in the frequency stabilization diagram of Figure 5.6, model orders of n > 90

are adequate for most natural frequencies to get stabilized. Notice the color bar in Figure 5.6, which

demonstrates the damping ratios for each frequency for increasing model order. In the 0.5 − 50 Hz

range, higher damping ratios for model order n < 100 are observed for certain structural modes.

The above identification procedure leads to the selection of an ARX(112, 112), ARX(136, 136)

and ARX(103, 103) model for vibration measurement positions Y1, Y2 and Y3, respectively. The

selected ARX models, as well as their estimation details and corresponding numbers of the estimated

parameters, Sample Per Parameter (SPP), BIC, and RSS/SSS values are summarized in Table 5.2.

Note that the identification procedure generally leads to different ARX models (including somewhat

different model orders) for each vibration measurement position.

Response Selected Model No of estimated parameters SPP BIC RSS/SSS (%)

Y1 ARX(112, 112) 225 parameters 44.4 −5.19 0.43

Y2 ARX(136, 136) 273 parameters 36.6 −5.83 0.22

Y3 ARX(103, 103) 207 parameters 48.3 −4.31 1.07

Parameter estimation method: Weighted Least Squares (WLS), QR implementation, N = 10 000 samples

Table 5.2: Selected models and estimation details.
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5.5.2 Inspection phase

5.5.2.1 Damage detection

Damage detection is based on the binary SPRT presented in Section 5.3.3.1. Prior to implementing the

SPRT for tackling damage detection an appropriate sampling plan should be selected. The selection of

the sampling plan involves the determination of the following three aspects: (i) the nominal residual

standard deviation σo under which the structure is considered to be in its healthy state, (ii) the

standard deviation ratio q = σ1/σo, which constitutes the standard deviation increase under which

the structure is determined to be in a damage state, and (iii) the SPRT strength (α, β),

The determination of the nominal residual standard deviation σo under which the structure

is considered to be healthy is based on the available 100 baseline data records obtained from the

healthy structure (Table 5.1). For each considered vibration measurement location (Figure 5.3, Points

Y1, Y2 and Y3), the corresponding identified ARX model, as presented in Section 5.5.1.2 and Table

5.2, is employed in order to obtain the 100 baseline residual sequences. A typical selection for the

nominal residual standard deviation could be σo = E{σ̂ou} + 1.96 · std{σ̂ou}, which represents the

95% confidence interval of the standard deviation with respect to the baseline residual sequences. The

selected nominal σo values for all three vibration responses are presented in Table 5.3.

The determination of the residual standard deviation ratio q may be based on the OC and ASN

functions of the SPRT (Section 5.3.3.1) for various q ratios, along with the use of the baseline healthy

data records. Figures 5.7a and 5.7b present, for vibration response Y2, the OC and ASN functions,

respectively, for various candidate ratios q and constant SPRT strength (α, β) = 0.01. In both figures,

the σo value is shown as gray vertical dashed line, while the σ1 values corresponding to the considered

q = σ1/σo ratios are shown in colored vertical dashed lines. Along with the OC and ASN function

curves, the standard deviation values obtained from the 100 baseline residual sequences are depicted

in vertical cyan dashed lines.

In Figure 5.7a the intersections of the vertical lines, belonging to the residual standard deviation

values, with the OC function curves for the various q ratios correspond to the probabilities of accep-

tance of the null hypothesis Ho (healthy structure) for each ratio, while in Figure 5.7b correspond to

the expected number of residual samples required to reach a decision. The OC function (Figure 5.7a)

is considered more favorable the higher the value of L(σ) for σ consistent with Ho and the lower the

value of L(σ) for σ not consistent with Ho. Thus, by plotting the OC and ASN functions, not only do

we may have an indication of the probability of acceptance for various residual standard deviations σ,

but we also obtain an approximation of the number of residual samples that are required for reaching

a terminal decision.

In order to design a robust, yet effective in detecting small damages, SPRT for damage detection,

the lowest q ratio with the highest probabilities of acceptance of the null hypothesis Ho for the plotted

baseline residual standard deviations should be selected. In a second stage, the expected number of

residual samples required to reach a decision should be checked in order to assure that its value is in

accordance with the experimental specifications and the potential online implementation requirements.

Notice that the lower the selected ratio q, the greater is the expected number of the required samples

Response Y1 Response Y2 Response Y3

Nominal σo 0.0866 0.0660 0.1168

σo obtained as mean value out of 100 baseline residual sequences.

Table 5.3: Selected nominal residual standard deviation σo values for the damage detection SPRT.



158 Chapter 5. A sequential statistical time series method for vibration based SHM

0.06 0.065 0.07 0.075 0.08 0.085
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

OC function (Healthy − Response Y2)

standard deviation σ

L
(σ

)

σo

 

 
q = 1.1

q = 1.15

q = 1.2

q = 1.25

q = 1.3

0.06 0.065 0.07 0.075 0.08 0.085
0

200

400

600

800

1000

1200

ASN function (Healthy − Response Y2)

standard deviation σ

E
σ
{N

}

 

 

σo

q = 1.1

q = 1.15

q = 1.2

q = 1.25

q = 1.3

(a) (b)
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Figure 5.8: Healthy structure: (a) Operating Characteristic (OC) and (b) Average Sample Number
(ASN) functions for various strengths (α, β) and residual standard deviation ratio q = σ1/σo = 1.1
(vibration response Y2). The vertical cyan dashed lines represent the residual standard deviation
values obtained from the 100 baseline healthy data sets.

to reach a terminal decision. Moreover, notice that the largest amount of residual samples required

to reach a decision arises when the value of the current standard deviation σ lies in the middle of the

(σo, σ1) range. This is due to the fact that in this case the standard deviation σ favors neither the

null Ho (healthy structure) nor the alternative H1 (damaged structure) hypothesis.

For tackling damage detection in the aluminum truss structure a standard deviation ratio q =

σ1/σo equal to 1.1 has been selected as adequate for the implementation of the SPRT.

After the selection of the residual standard deviation ratio q, the final SPRT strength (α, β)

should be determined as well. Similarly to the q selection procedure, Figures 5.8a and 5.8b depict

the OC and ASN functions, respectively, for various test strengths (α, β) and constant ratio q = 1.1.

Again, the standard deviation values for the baseline residual sequences are shown in vertical cyan

dashed lines. Based on the standard deviation acceptance probabilities under the null hypothesis

Ho (Figure 5.8a) and the corresponding expected number of the required residual samples to reach
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Figure 5.9: Damage type A: (a) Operating Characteristic (OC) and (b) Average Sample Number
(ASN) functions for various residual standard deviation ratios q = σ1/σo and constant strength
(α, β) = 0.01 (vibration response Y3). The vertical cyan dashed lines represent the residual stan-
dard deviation values obtained from the 100 baseline damage type A data sets.

a decision (Figure 5.8b) the user may select an appropriate strength (α, β). Notice that the lower

the selected α, β values, the greater is the expected number of required samples to reach a terminal

decision.

For tackling damage detection in the aluminum truss structure a SPRT strength equal to (α, β) =

0.01 has been selected as adequate.

Figures 5.9a and 5.9b depict the OC and ASN function curves (response Y3), respectively, for

various candidate ratios q and constant SPRT strength (α, β) = 0.01, along with the standard deviation

values (vertical cyan dashed lines) obtained from the 100 baseline residual sequences that belong to

damage type A (see Table 5.1). In the case where baseline data from various potential damage types

are available, either by corresponding experiments or tuned Finite Element (FE) models, Figure 5.9a

constitutes an additional means of validation of the determined SPRT sampling plan for damage

detection. If for the selected sampling plan the probability of acceptance of damage type A standard

deviation values is considerably high (vertical axis of Figure 5.9a) then there is an increased probability

of missed damage occurrence, as the adopted sampling plan will not be able to clearly distinguish the

standard deviation values between the healthy and the damage structural state. Furthermore, Figure

5.9b depicts the expected number of residual samples that are required to reach a terminal decision

versus the damage type A standard deviation values. As it may observed, all the plotted baseline

standard deviation values require less than 200 samples in order to accept the underlying alternative

hypothesis H1 (damaged structure).

Indicative damage detection results, for the vibration response of Point Y1, based on the im-

plemented SPRT sampling plan of standard deviation ratio q = 1.1 and strength (α, β) = 0.01 are

presented in Figure 5.10. A damage is detected when the test statistic (vertical axis) exceeds the

upper critical point (dashed horizontal lines), while the structure is determined to be in a healthy

state when the test statistic exceeds the lower critical point. After a critical point is exceeded a de-

cision is made, while the test statistic is reset to zero and the test continues. Hence, during testing

multiple decisions are made, as each inspection residual sequence contains 1000 samples. Evidently,

correct detection (Figure 5.10) is obtained in each test case, as the test statistic is shown to exceed

multiple times (multiple correct decisions) the lower critical point in the healthy case, while it also

exceeds multiple times the upper critical point (multiple correct damage detections) in the damage

test cases. Inside each subplot of Figure 5.10 is indicated whether the corresponding damage type
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Figure 5.10: Indicative damage detection results for response Y2 at the α = β = 0.01 risk levels
(q = σ1/σo = 1.1). The actual structural state is shown above each plot.

is “local” or “remote” with respect to the vibration sensor employed. Thus, damage types A and B

are characterized as “local” with respect to sensor Y2, while damage type C, D and E as “remote”.

Observe that damage type A (Table 5.1) appears harder to detect, as the number of detections in this

case is the smallest one among all the damage test cases, while damage types C and E appear easier

to detect. This is in agreement with the remarks made in subsection 5.5.1.1 and Figure 5.4.

Figure 5.11 depicts the average number of correct detections under the healthy structural state

versus the residual standard deviation ratio q for various SPRT strengths (α, β). The dashed blue

lines correspond to the experimental correct detection point estimates obtained from the 1100 healthy

inspection data sets of 1000 samples each, while the gray shaded areas correspond to the ±1.96

standard deviation confidence intervals. The dashed red lines correspond to the theoretical number

of correct detections as approximated via the ASN function under the null hypothesis Ho (healthy

structure). Notice that the greater the α, β error probabilities are, the larger is the number of correct

detections per data set. Nevertheless, keep in mind that increased values of type I and II error

probabilities may lead to an increased false alarms rates.

Moreover, notice that the theoretical numbers of correct detections for the various test strengths

in Figure 5.11 are smaller than the corresponding experimental ones in all test cases. This is due to

the fact that in “real life” applications the experimental data often heavily favor either the null (Ho)

or the alternative (H1) hypothesis. In this case, the experimental inspection data were obtained under

the healthy structural state, thus the corresponding residual samples strongly favor the null hypothesis

of the healthy structure. This constitutes a strong indication that the proposed method may actually

perform effectively in “real life” applications, and thus evade from being exclusively used in laboratory

assessments.
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Figure 5.11: Average number of correct detections for the healthy structure (response Y2): experi-
mental (dashed blue lines ±1.96 standard deviation confidence intervals from 1100 inspection healthy
data sets of 1000 samples each) and theoretical (dashed red lines) point estimates for various SPRT
strengths (α, β) versus residual standard deviation ratio q = σ1/σo. The actual strength is shown
above each plot.

Figure 5.12 presents the false alarm percentages for all three vibration measurement locations

versus the residual standard deviation ratio q for various SPRT strengths (α, β). These rates have been

extracted from the 1100 healthy inspection data records and the corresponding residual sequences. As

the ratio q increases the false alarm percentages slightly increase too. This may seem awkward at first,

as one would expect that as the standard deviation q increases the false alarm rates would decrease.

Nevertheless, this is not the case, as by increasing the ratio q the number of correct detections largely

increases (see Figure 5.11) and as a result, as the SPRT becomes more “sensitive”, there is a slight

increase in the false alarms.

For the damage detection implemented SPRT of q = 1.1 and strength (α, β) = 0.01 the false

alarm percentages (green lines in Figure 5.12) for all vibration responses are practically zero, a fact

that demonstrates the effectiveness and robustness of the designed test.

Finally, Figure 5.13 depicts the average number of correct detections for the three vibration

responses and various test strengths (α, β) under damage type A versus the residual standard deviation

ratio q. The lowest mean correct detection values are obtained for vibration response Y1, while the

largest values are obtained for vibration response Y3. This implies that damage type A, which is

the least severe among all considered damages, is easier detected via vibration response Y3 and

harder via response Y1. Nevertheless, it is obvious from Figure 5.13 that the SPRT for damage
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Figure 5.12: False alarms percentage for all vibration response measurement locations and various
SPRT strengths (α, β) versus residual standard deviation ratio q = σ1/σo; 1100 healthy inspection
data sets are used.

detection is capable of accurately detecting the least severe damage type via all the considered vibration

measurement locations.

The summarized damage detection results for each vibration response are presented in Table

5.4. The healthy detections and false alarm numbers are mean estimates per data set, as they are

extracted from the 1100 healthy inspection data sets of 1000 samples each. For all the considered

vibration responses the mean false alarm values are extremely low, as well as the mean missed damage

Damage Detection

Response Mean Mean Mean missed damage values

healthy false

detections alarms damage A damage B damage C damage D damage E

Y1 4.40 0.011 0.390 0 0 0 0

Y2 4.34 0.005 0.048 0 0 0 0

Y3 3.61 0.005 0 0 0 0 0

Test strength (α, β) = 0.01; Residual standard deviation ratio q = σ1/σo = 1.1.

Mean healthy detections and false alarms per data set out of 1100 healthy inspection data sets.

Mean missed damage values per data set out of 900 damage inspection data sets.

Table 5.4: Damage detection summary results for the three vibration responses (Y1, Y2 and Y3).
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Figure 5.13: Average number of correct damage detections under damage type A for all vibration
response measurement locations and various SPRT strengths (α, β) versus residual standard deviation
ratio q = σ1/σo; 800 damage type A inspection data sets are used.

values which are zero, except for the case of the less severe damage type A (see Figures 5.3, 5.4 and

Table 5.1), which exhibits its maximum mean value of false alarms for response Y1 equal to 0.39.

Overall, the method exhibits excellent performance in tackling damage detection.

5.5.2.2 Damage identification and quantification

Damage identification and quantification is based on the multihypothesis SPRT presented in Section

5.3.3.2. Prior to implementing the multihypothesis test for tackling damage identification and quan-

tification an appropriate sampling plan should be selected, similarly to the damage detection task.

The selection of the sampling plan involves the determination of the following two aspects: (i) the

nominal residual standard deviation values σA, . . . , σE under which the structure is considered to be in

the corresponding damage type A, . . ., E state, respectively, and (ii) the matrix of error probabilities

αij (see Equation (5.18)). As it may be observed from Equation (5.18), the vector of correct decision

probabilities αii is indirectly obtained via the determination of the error probabilities matrix.

The determination of the nominal residual standard deviation values σA, . . . , σE under which

the structure is considered to be under the corresponding damage type is based on the available 100

baseline data records obtained from the structure under each damage state (Table 5.1). For each

considered vibration measurement location (Figure 5.3, Points Y1, Y2 and Y3), the corresponding
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Figure 5.14: Indicative damage identification results for response Y1 at the αij = 0.01 error probabil-
ities level, with the actual damage being of type C. The actual structural state is shown above each
plot.

identified ARX model, as presented in Section 5.5.1.2 and Table 5.2, is employed in order to obtain the

100 baseline residual sequences for each damage type. In the damage identification and quantification

case the nominal residual standard deviation values σA, . . . , σE that are needed to implement the

multihypothesis test are selected as the mean values of the 100 baseline residual standard deviations

under each damage type. The selected nominal σA, . . . , σE values for all three vibration responses are

presented in Table 5.5.

As it may be observed from Table 5.5 the nominal residual standard deviation values σB and

σD, that belong to the corresponding damage types B and E, are quite similar for all three vibration

responses. This is due to the fact that these two damage types have a similar effect on the residual

sequences obtained by driving the baseline data under each damage type through the nominal models

of the healthy structure (see Table 5.2).

Indicative damage identification results for vibration response Y1 at the αij = 0.01 error proba-

bilities level are presented in Figure 5.14, with the actual damage being of type C. Inside each subplot

of Figure 5.14 is indicated whether the considered damage type is “local” or “remote” with respect to

the vibration sensor employed (sensor Y1), hence damage type C is characterized as “local”, whereas

damage types A, B, D and E are characterized as “remote”. The vertical axes in each subplot desig-

nate whether the corresponding hypothesis is accepted or rejected, while the horizontal axes indicate

the 1000 residual samples under each damage type. Once the multihypothesis test reaches a terminal

decision the corresponding damage type hypothesis is accepted, thus the sample for which this termi-

nal decision is made constitutes the stopping time of the test (see Equations (5.41) and (5.42)). In

Figure 5.14 the hypotheses belonging to damage types A, B, D, and E are correctly rejected, while the

hypothesis that belongs to damage type C is correctly accepted. Moreover, notice that the stopping

Response Nominal residual standard deviations

σA σB σC σD σE
Y1 0.1056 0.1617 0.2304 0.1492 0.3259

Y2 0.0991 0.1361 0.2672 0.1211 0.2806

Y3 0.1633 0.3377 1.7264 0.3475 0.4857

σA, . . . , σE mean values out of 100 baseline damage data sets each.

Table 5.5: Nominal residual standard deviation values σA, . . . , σE for damage identification.
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time for the terminal decision of hypothesis C acceptance is reached before 50 samples (≈ 0.19 s),

which demonstrates the ability of the multihypothesis test to arrive at an early decision.

Summary identification results for all vibration responses are presented in Table 5.6. The correct

damage classification percentages are presented for all damage type inspection sets, along with the

corresponding mean stopping times. As it may be observed the multihypothesis test damage classifi-

cation results obtained for all vibration responses are very accurate for damage types A, C and E, as

the percentages of correct classification are very high. Nevertheless, the method faces difficulties in

accurately classifying damage types B and D. As already mentioned, this is due to the fact that these

damage types have a similar effect on their corresponding residual standard deviation values obtained

through the healthy models (see Table 5.2 and Table 5.5).

In this case, as presented and explained in Section 5.3.3.2, the user may apply the binary damage

identification method for the candidate damage types. Nevertheless, this procedure would require the

baseline modeling of at least one of these types.

Indicative damage identification results for damage types B and D via the binary damage iden-

tification method at the α = β = 0.01 risk levels and q = σ1/σo = 1.1 are presented in Figure 5.15

for vibration response Y2. The model orders that were employed for the ARX modeling of damage

types B and D are the same that are used for the modeling of the healthy structure (Table 5.2). As it

may be observed from Figure 5.15, although the multihypothesis method faces difficulties in correctly

classifying these damage types, the binary damage identification method is capable of accurately iden-

tifying the actual damage type as current, while the summarized results exhibit zero misclassification

numbers. Nevertheless, this method requires the baseline modeling of the potential damage structural

states, a procedure which is avoided by the multihypothesis method.

Damage quantification is indirectly treated via the damage identification task. The nominal

residual standard deviation values σA, . . . , σE , as determined in the multihypothesis damage identifi-

cation method, constitute an indication of damage severity for the corresponding damage types. This

is due to the fact that as damage severity increases the current structural dynamics deviate from the

nominal healthy behavior, thus the nominal model Mo belonging to the healthy structure will not be

able to accurately represent them, leading to increased residual sequence values and corresponding

standard deviations.

Table 5.5 presents the selected nominal standard deviation values for all damage types (see

also Figure 5.3). For vibration responses of Points Y1 and Y2 damage type E is the most severe

followed by damage type C. Damage types B and D are of the same severity level, which justifies the

misclassification issues for these types, while damage type A is the least severe and thus hardest to

detect. For the vibration response of Point Y3 damage type C is the most severe, followed by damage

type E. Again, damage types B and D are of the same severity level, while damage type A is the least

Damage Identification

Actual Damage classification (%)

damage damage A damage B damage C damage D damage E

Type A 99.33/98.22/100 0.11/0/0 0/0/0 0.55/1.78/0 0/0/0

Type B 0/0/0 45.65/69.77/66.55 2.33/0/0 52/30.22/33.44 0/0/0

Type C 0/0/0 0/0/0 98.32/95.10/100 0/0/0 0.66/4.89/0

Type D 0/0/0 46.33/11.22/49.99 0/0/0 53.55/88.77/51.01 0/0/0

Type E 0/0/0 0/0/0 0.11/1.11/0.77 0/0/0 99.88/98.88/97.65

Mean N̂ 15.68/22.84/8.76 174.35/172.32/176.26 36.18/117.99/3.81 200.08/167.34/231.98 18.54/90.33/27.21

Damage classification percentage for points Y1/Y2/Y3 out of 800 inspection data sets; αij = 0.01.

Mean stopping time in samples for points Y1/Y2/Y3 out of 800 inspection data sets of 1000 samples each.

Table 5.6: Damage identification summary results for the three vibration responses (Y1, Y2 and Y3).
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Figure 5.15: Indicative damage identification results for response Y2 at the α = β = 0.01 risk levels
(q = σ1/σo = 1.1) for damage types B and D. The baseline model of damage type B is used with the
actual structural state shown above each plot.

severe. The above conclusions are in agreement with the non-parametric FRFs presented in Figure

5.4 and the remarks of subsection 5.5.1.1.

5.6 Concluding remarks

A vibration based sequential statistical time series method for SHM was presented. The method,

which is based on binary and multihypothesis versions of the statistically optimal SPRT, was shown

to be capable of achieving effective and robust damage detection and accurate identification and

quantification. The main conclusions drawn from this study may be summarized as follows:

• The method was shown to effectively tackle damage detection and identification, achieving ex-

cellent performance with practically zero false alarms and missed damage rates.

• An optimal sampling plan was determined a priori via the use of the Operating Characteristic

(OC) and Average Sample Number (ASN) functions, selected type I (false alarm) and II (missed

damage) error probabilities, and available baseline data records of the structure under various

potential states.

• The method was shown to have global and robust damage detection capability, as it was able to

detect both “local” and “remote” damage with respect to the sensor position employed.

• The multihypothesis damage identification procedure faced some difficulties in classifying two

damage types with similar effects on the residual series, an issue that was tackled via the baseline

modeling of these damage types and sequential binary hypothesis testing.

• The method was able to accurately quantify damage with respect to its effect on model residuals.

• The method was shown to achieve early damage detection and identification (< 0.19 s) as it

required a minimum number of residual samples in order to reach a decision.

• The availability of baseline data records corresponding to various potential damage scenarios

is necessary in order to treat damage identification. This may not always be possible with the

actual structure itself, but laboratory scale models or analytical (Finite Element) models may

be used for this purpose.
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• Potential extension for online implementation is straightforward, as the method is based on sim-

ple conventional time series models (ARX, ARMAX, state space, and so on) and is characterized

by computational simplicity.
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Chapter 6

Conclusions

The final chapter of the thesis is divided into two sections: Section 6.1 contains a brief summary of

the thesis chapters. Section 6.2 gives an overall discussion and outlook of the issues treated in this

thesis, while Section 6.3 discusses the future perspectives of the main subjects of the thesis.

6.1 Thesis summary

Chapter I

Chapter I contains the thesis introduction. The general problem was divided into two main topics:

(i) the vibration based damage diagnosis and (ii) the stochastic system identification under multiple

operating conditions. The main focus of the thesis has been the development of novel vibration

based statistical time series methods for SHM capable of effectively and robustly treating the damage

detection, identification and quantification subproblems within a unified framework. The secondary

focus of the thesis has been the postulation of generalized FP model structures for the identification of

stochastic systems under multiple or varying operating conditions with the ultimate goal being to be

employed in the damage diagnosis context. Furthermore, the current state-of-the-art was outlined and

discussed, and the specific thesis goals were presented. Finally, the thesis chapters were analytically

presented and their individual contributions outlined.

Chapter II

The goal of the second chapter was to provide an experimental assessment and critical comparison of

vibration based statistical time series methods for SHM via their application to prototype laboratory

structures. An overview of the principles and techniques of the main non-parametric and parametric

methods was provided, including response-only and excitation-response, as well as scalar (univariate)

and vector (multivariate) schemes. Damage detection and identification results for several distinct

vibration measurement positions on the structures were presented. The non-parametric and paramet-

ric identification was presented, while the damage diagnosis methods’ effectiveness was assessed via

multiple experiments under various damage scenarios. The results of the study confirmed the high

potential and effectiveness of statistical time series methods for SHM.

169
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Chapter III

The goal of this chapter has been the identification of stochastic systems under multiple or varying

operating conditions via Vector-dependent Functionally Pooled (VFP) models. Chapter III addressed

the problem of identifying a globally valid and parsimonious system model based on input-output data

records obtained under a sample of operating conditions characterized by more than one parameters

(for instance operating temperature and humidity). Thus, models that include a vector characteriza-

tion of the operating condition (operating parameter vector) were postulated. The problem was tackled

within the novel Functional Pooling (FP) framework that postulates proper global models of the ARX

and ARMAX types, data pooling techniques, and statistical parameter estimation. Corresponding

Vector-dependent Functionally Pooled (VFP) ARX and ARMAX models were postulated, and proper

estimators of the Least Squares (LS), Maximum Likelihood (ML), and Prediction Error (PE) types

were developed. Model structure estimation was achieved via customary criteria, such as the Akaike

and Bayesian information criteria (AIC and BIC, respectively), and a novel Genetic Algorithm (GA)

based procedure. The strong consistency of the VFP-ARX least squares and maximum likelihood

estimators was established, whereas the effectiveness of the complete estimation and identification

method was demonstrated via two Monte Carlo studies.

Chapter IV

A vibration based statistical time series method that is capable of effective damage detection, pre-

cise localization, and magnitude estimation within a unified stochastic framework was introduced in

Chapter IV. The method constitutes an important generalization of the recently introduced Functional

Model Based Method (FMBM) in that it allows, for the first time in the statistical time series meth-

ods context, for complete and precise damage localization. More precisely, the proposed method was

demonstrated to accurately localize damage anywhere on properly defined continuous topologies on the

structure, instead of pre-defined specific locations. Estimator uncertainties were taken into account,

and uncertainty ellipsoids were provided for the damage location and magnitude. To achieve its goal,

the method is based on the extended class of Vector-dependent Functionally Pooled (VFP) models,

which are characterized by parameters that depend on both damage magnitude and location, as well

as on proper statistical estimation and decision making schemes. The method was validated and its

effectiveness was experimentally assessed via its application to damage detection, precise localization,

and magnitude estimation on a prototype GARTEUR-type laboratory scale aircraft skeleton structure.

The damage scenarios considered consist of varying size small masses attached to various continuous

topologies on the structure. The method was shown to achieve effective damage detection, precise

localization, and magnitude estimation based on even a single pair of measured excitation-response

signals.

Chapter V

The goal of this chapter has been the introduction and experimental assessment of a sequential sta-

tistical time series method for vibration based SHM. The method is based on a combination of binary

and multihypothesis versions of the statistically optimal Sequential Probability Ratio Test (SPRT),

which employs the residual sequences obtained through a stochastic time series model of the healthy

structure. In this work the full list of properties and capabilities of the SPRT were for the first time

presented and explored in the context of vibration based damage detection, identification and quan-

tification. The method was shown to achieve effective and robust damage detection, identification and

quantification based on predetermined sampling plans, which were both analytically and experimen-
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tally compared and assessed. The method’s performance was determined a priori via the use of the

analytical expressions of the OC and ASN functions in combination with baseline data records, while

it required on average a minimum number of samples in order to reach a decision (early damage de-

tection) compared to most powerful Fixed Sample Size (FSS) tests. The effectiveness of the proposed

method was validated and experimentally assessed via its application on a lightweight aluminum truss

structure, while the obtained results for three distinct vibration measurement positions proved the

method’s ability to operate based even on a single pair of measured excitation-response signals.

Chapter VI

The final chapter of the thesis presents the general conclusions of the thesis, as well as the future

perspectives.

6.2 Concluding remarks

6.2.1 General conclusions

The general conclusions drawn form this thesis may be summarized as follows:

• The experimental assessment and critical comparison of several non-parametric and parametric

vibration based statistical time series SHM methods demonstrated their effectiveness and poten-

tial, as well their limitations with respect to damage detection, identification and quantification.

The methods were shown to be able to achieve effective damage detection and identification

(damage classification) using a limited number of vibration response sensors, although paramet-

ric methods demand increased user expertise and are more prone to experimental and modeling

uncertainties. The methods are able to treat damage identification as a discrete classification

problem.

• The novel FP framework was extended and improved via the VFP parametrization that includes

a vector characterization of all the admissible operating conditions. VFP models now allow for

the analytical inclusion of both damage location and damage magnitude effects on the dynamics.

Appropriate estimators were developed, while their strong consistency was established. Model

structure selection is treated via a GA procedure.

• Based on the postulated VFP parametrization, the extension and generalization of the FMBM

was proposed, which is now capable of achieving – for the first time in the statistical time

series methods context – unified and effective damage detection, along with complete and precise

damage localization and magnitude estimation on continuous structural topologies. The method

was experimentally validated and assessed via a proof-of-concept application on a prototype

laboratory scale aircraft skeleton structure.

• A statistical sequential time series method was introduced capable of achieving effective and

robust damage detection, identification and quantification under experimental, operational and

modeling uncertainties. The method is more robust and less sensitive to uncertainties compared

to FSS hypothesis testing based time series methods. Moreover, via its experimental application

and assessment the method was shown to achieve early damage detection and identification,

while its computational simplicity renders it suitable for online SHM implementation.
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6.2.2 Chapter conclusions

The general conclusions obtained from comparative experimental assessment of vibration based statis-

tical time series methods for SHM via their application to damage diagnosis in a lightweight aluminum

truss structure and a scale aircraft skeleton structure may be summarized as follows:

• Statistical time series methods for SHM achieve damage detection and identification based on

(i) scalar or vector random excitation and/or vibration response signals, (ii) statistical model

building, and (iii) statistical decision making under uncertainty.

• Both non-parametric and parametric methods were shown to effectively tackle damage detection

and identification, with parametric methods achieving excellent performance with zero false

alarm, missed damage, and damage misclassification rates.

• Both scalar and vector statistical time series methods for SHM have been shown to effectively

tackle damage detection and identification, with the vector methods achieving excellent perfor-

mance with zero false alarm, missed damage and damage misclassification errors.

• Both non-parametric and parametric methods were shown to have global damage detection

capability, as they are able to detect “local” and “remote” damage with respect to the sensor

position used.

• Both scalar and vector methods have “global” damage detection capability, as they are able to

detect “local” and “remote” damage (with respect to the sensor location being used).

• All methods were shown to be capable of correctly identifying the actual damage type, with the

exception of the FRF based method which exhibited a small number of damage misclassification

errors, irrespectively of the vibration measurement position used.

• Parametric time series methods are more elaborate and demand increased user expertise com-

pared to their generally simpler non-parametric counterparts. Yet, they were shown to offer

increased sensitivity and accuracy.

• The availability of data records corresponding to various potential damage scenarios is necessary

in order to treat damage identification. This may not be possible with the actual structure itself,

but laboratory scale models or analytical (Finite Element) models may be used for this purpose.

The main issues addressed with respect to the identification of stochastic systems under multiple

or varying operating conditions and the postulated VFP model structure are the following:

• Extension of the FP models employing a scalar operating parameter to the Vector-dependent

FP models employing the operating parameter vector.

• Model structure estimation was achieved via customary criteria such as the BIC and the AIC,

as well as via a Genetic Algorithm (GA) based procedure offering potential automation and

complete solution to the functional basis dimensionality subproblem.

• A new VFP model form was introduced in which the innovations sequence variance is projected

to a functional subspace, so now it may be available not only for the sample of operating

conditions (available data records), but it may be efficiently estimated for all the potential

admissible operating conditions, thus for all the potential operating parameter vectors k.
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• The strong consistency of the least squares and the maximum likelihood estimators was estab-

lished, as well as the asymptotic distribution of the all the considered estimators.

• Assessment of the proposed estimators and structure selection procedures via two Monte Carlo

studies, investigating both the cases of complete and non-complete functional subspaces.

• Discussion of the estimators main features, as well as their corresponding computational times.

The main conclusions drawn from the generalized functional model based method for damage

detection, precise localization, and magnitude estimation are the following:

• First and foremost, the study – including the proof-o-concept application – has demonstrated

the important fact that effective damage detection, damage topology identification, and dam-

age precise localization and magnitude estimation are possible based on partial models of the

structural dynamics.

• The study has demonstrated the very significant amount of information on the state of the

structure embedded even in a single excitation-response signal pair. Thus an important message

is that it may not be necessary to employ a “high” number of sensors for precise damage diagnosis;

instead, a “few” sensors and powerful signal analysis for extracting the embedded information

may be a much more practical and effective approach.

• The diagnostic performance in terms of damage detection, topology identification, and precise lo-

calization and magnitude estimation achieved in the proof-of-concept study has been impressive.

Damage localization and magnitude estimation are not only excellent at the nominal (point esti-

mation) level, but also at a probabilistic level that provides very accurate and tight uncertainty

bounds (ellipsoids).

• A practically important observation is that the diagnosis performance characteristics do not

appear significantly dependent on the proximity of the damage location to the sensor used.

Although the uncertainty bounds have been somewhat tighter when estimated by “local”, rather

than “remote”, sensors, this effect has been remarkably limited in the study.

• “Unmodelled” damages, that is damages not belonging to any of the considered structural topolo-

gies (and thus not modelled in the baseline phase) have been very successfully detected and

“negatively” identified as not belonging to the modelled topologies. This is very important as it

provides detection and some localization information even for damages not formally accounted

for by the method.

• The fact that effective damage diagnosis is possible without the need for specifically designed

excitations and special testing procedures is also very important. Combined with the use of often

naturally occurring random excitation and the fact that good results may be obtained with even

low/limited frequency bandwidth (4− 90 Hz, which includes ten of the structural modes in the

present study), allows for potentially in-operation damage diagnosis. The possible use of higher

frequency range/bandwidth is expected to lead to further gain in performance.

• The method may operate on any type (acceleration, velocity, displacement) of vibration signals

and may be modified to be applied to the output-only case, where only vibration response

signal(s) is (are) available. Naturally, the difficulty is higher in this case, and performance is

expected to be affected. This is an issue to be considered in future studies.
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• The price to be paid for the aforementioned benefits mainly involves the baseline (training)

phase, and more specifically the identification of the necessary VFP models – yet, this takes place

only once, while the inspection phase is simple and automated. Nevertheless, user expertise is

necessary in the baseline phase, along with the availability of excitation-response signal records.

Although the former is expected to be reduced in the future via more automated procedures,

excitation-response signal records need to be obtained possibly through scale laboratory models

or via Finite Element Models (FEMs). The advantages over alternative (including FEM based)

methods remain that the FEM is only needed in the baseline phase for inferring the partial and

much more “compact” VFP models, and that no model updating is required in the inspection

phase.

The main conclusions drawn from the study on the vibration based sequential statistical time

series method for SHM may be summarized as follows:

• The method was shown to effectively tackle damage detection and identification, achieving ex-

cellent performance with practically zero false alarms and missed damage rates.

• An optimal sampling plan was determined a priori via the use of the Operating Characteristic

(OC) and Average Sample Number (ASN) functions, selected type I (false alarm) and II (missed

damage) error probabilities, and available baseline data records of the structure under various

potential states.

• The method was shown to have global and robust damage detection capability, as it was able to

detect both “local” and “remote” damage with respect to the sensor position employed.

• The multihypothesis damage identification procedure faced some difficulties in classifying two

damage types with similar effects on the residual series, an issue that was tackled via the baseline

modeling of these damage types and sequential binary hypothesis testing.

• The method was able to accurately quantify damage with respect to its effect on model residuals.

• The method was shown to achieve early damage detection and identification (< 0.19 s) as it

required a minimum number of residual samples in order to reach a decision.

• The availability of baseline data records corresponding to various potential damage scenarios

is necessary in order to treat damage identification. This may not always be possible with the

actual structure itself, but laboratory scale models or analytical (Finite Element) models may

be used for this purpose.

• Potential extension for online implementation is straightforward, as the method is based on sim-

ple conventional time series models (ARX, ARMAX, state space, and so on) and is characterized

by computational simplicity.

6.3 Future perspectives

The purpose behind this section is to focus on the issues that must be addressed by future research

in order to make damage diagnosis using vibration measurements a viable, practical, and commonly

implemented technology:
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• The acquisition of baseline (training) data records is an extremely important issue, especially

for the damage localization and quantification tasks. Excitation-response data records need to

be obtained possibly through scale laboratory models or via analytical or tuned Finite Element

(FE) models under potential damage structural states. This way the baseline phase of the

statistical time series methods will be greatly facilitated. Nevertheless, while it is doubtful that

all dependence on prior models and data can be eliminated, certainly steps can and should be

taken to minimize the dependence on such information.

• As already demonstrated, statistical time series methods are capable of treating damage diag-

nosis based on limited or even on a single pair of excitation-response measurements and may

also achieve a certain level of automation. Nevertheless, it is of critical importance that their

performance on “real”, large scale structures should be further investigated in order to exist a

chance for wide future implementation in aeronautical, engineering or civil infrastructure.

• The treatment of multiple damage scenarios on the same structure is another important issue.

Current methods are able to detect multiple damage, nevertheless they fail to identify the distinct

damages when the happen simultaneously on the same structure.

• The selection of the number and position of measurement sensors is another important issue.

Several vibration based damage diagnosis techniques that appear to work well in test cases

may perform poorly when subjected to the measurement constraints imposed by actual testing.

Techniques that are to be seriously considered for implementation in the field should demonstrate

that they can perform well under limitations of a small number of measurement positions and

under the constraint that these positions should be selected a priori, without a priori knowledge

of the damage location.

• The extension of the statistical time series methods to the more general multivariate case should

be investigated. This case requires the use of corresponding vector models and multivariate

statistical decision making procedures and needs to be fully investigated in the future.

• With regard to long-term SHM of large structures such as bridges and offshore platforms, the

need to reduce the dependence on measurable excitation forces is noted. The ability to use

vibrations induced by ambient environmental or operating loads for the assessment of structural

integrity is an area that merits further investigation.

• The postulated VFP model identification needs to be further validated via data obtained from

analytical or FE models, or –even better– by additional experimental set-ups under multiple op-

erating conditions in order to fully understand and investigate the complete range of capabilities,

pros and cons of this representation.

• The need for methods capable of working under varying operational and environmental condi-

tions and “real” levels of uncertainties is extremely important and also the subject of current

research (for instance see Hios and Fassois 2009a, Michaelides and Fassois 2008).
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