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ABSTRACT
Guided-wave-based acousto-ultrasound structural health monitoring (SHM) methods have attracted the interest of the
SHM community as guided waves can travel long distances without significant dissipation and are capable of detecting
small damage sizes of several types. However, when subject to changing environmental and operational conditions
(EOC), guided-wave-based methods may give false indications of damage as they exhibit increased sensitivity to
varying EOC. In order to improve the reliability and enable the large-scale applicability of these methods, and to build
a robust SHM system, it is necessary to quantify the uncertainty in guided wave propagation due to changing EOC. In
this paper, a rigorous investigation on the uncertainty involved in the propagation of Lamb waves due to the variation
in temperature and material properties of nominally-identical structures has been performed both numerically and
experimentally. A high fidelity finite element model is established to study the effect of small temperature perturbation
on the S0 and A0 modes of Lamb waves and the associated uncertainty is quantified. Then experiments are performed
under ambient laboratory temperature variations during an eleven day period. The experimental results have indicated
that temperature variations as small as 0.5 0C may result variations in the amplitude of Lamb waves and affect the
damage index. Then uncertainty due to the variation in material properties has been considered by taking into account
the statistical Gamma distributed dependency between Young’s modulus and Poisson ratio jointly and the associated
variation in the damage index is also investigated.

INTRODUCTION

In order to increase the reliability, safety and performance of
aircraft/rotorcraft systems, it is pervasive to integrate Struc-
tural Health Monitoring (SHM) technologies (Ref. 1) which
also enable the efficient life-cycle management of the system.
SHM methods utilize distributed, permanently installed sen-
sors at certain structural regions and apply diagnostic algo-
rithms to extract meaningful health information from the sens-
ing data. Such sensing data are subjected to various sources
of uncertainty associated with all aspects of the inspection
environment and operating conditions. In contrast to tradi-
tional nondestructive evaluation (NDE) procedures, where the
factors due to operator pose the dominant uncertainty, SHM-
based technologies are mainly challenged by in situ effects
(Refs. 2–4). The robustness and accuracy of existing state-
of-the-art SHM methods is questionable when exposed to dif-
ferent environmental conditions, such as temperature and hu-
midity variations, as well as different loading and boundary
conditions. The effect of varying environmental and oper-
ating conditions is to alter the sensing signals, oftentimes
masking the effects of structural damage, and/or leading to
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false alarms and missed damage detection. When it comes to
active-sensing acousto-ultrasound SHM techniques, a certain
amount of uncertainty is inherent to the propagation of guided
waves due to the varying environmental conditions and there-
fore, it is critical to quantify this uncertainty and properly take
it into consideration in order to develop a robust SHM system,
and enable proper reliability quantification and probabilistic
decision making (Ref. 2).

Uncertainty quantification and propagation has become a
subject of central importance as real world structures in-
volve uncertainties due to material property variation, differ-
ent manufacturing processes and varying environmental con-
ditions. Engineering uncertainties are categorized into two
broad classes, namely aleatory and epistemic uncertainties ac-
cording to the nature of uncertainty sources (Ref. 5). Aleatory
uncertainty stems from sources that are inherently random,
such as the pressure field in a fully developed turbulent bound-
ary layer. Epistemic uncertainty results from the incomplete
or lack of knowledge, ignorance and modeling of a real phys-
ical system. In this paper, the case of epistemic uncertainty of
guided wave propagation is considered.

Lamb waves are a type of guided waves that propagate
through thin structures (Ref. 6). For performing active-
sensing SHM based on lamb waves, a baseline or reference
signal, usually from a healthy structure is subtracted from
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later measurements, which yields a residual or scatter signal.
Depending on the nature of this scatter signal, damage can be
detected (see Figures 1 and 2). This method is known as Base-
line Subtraction method. Recent studies have shown that by
analyzing both numerically and experimentally the A0 mode
of Lamb wave propagation even a slight temperature change
produces a level of residual or scatter signal that may mask
the actual damage information, and thereby providing false
indication of damage (Refs. 7–10). Temperature causes geo-
metrical changes in a structure due to the increased molecu-
lar vibration of the materials which in turn causes changes in
Young’s modulus (Ref. 11). Temperature may also affect the
boundary conditions of a system (Ref. 12). Again, the propa-
gation velocity of both shear and longitudinal waves is depen-
dent on Young’s modulus. As a result, temperature changes
the propagation velocities of these two waves, which imparts
uncertainties in the propagation of Lamb waves.
In a recent study (Ref. 13), the authors have proposed a novel
physics-based temperature compensation strategy. In this pa-
per different physical properties, such as Young modulus, den-
sity, etc. of the base substrate, piezo-transducer, and adhe-
sive interface were considered as functions of temperature and
a functional relationship between the propagation of guided
waves and temperatures were established. It was found that
up to a certain temperature range this functional relationship is
linear. Capitalizing on this information, a numerical tempera-
ture compensation model was proposed to relate the changes
in the signal projection coefficients to the changes in the ma-
terial properties induced by temperature variation. In order
to verify this numerical scheme, experimental measurements
were performed on flat rectangular aluminum plates and stiff-
ened aluminum plates. Croxford et al. (Ref. 14) proposed a
temperature compensation model where they used a combina-
tion of optimal baseline selection (OBS) and baseline signal
stretch (BSS) methods. In the OBS method, multiple base-
line measurements are required while in BSS method only a
single baseline measurement is needed. In general, a temper-
ature shift may alter the propagation of guided waves in such
a way that it changes the shape, amplitude and arrival time of
each of the individual wave packets. However, the change in
the time of arrival may be considered as the dominant effect
of changing temperature. In the OBS method, a best match is
sought between the ensemble of collected baseline signal and
the current signal. In BSS method, a stretch factor is used on
the single baseline measurement to match the current signal.
In general, flaws exist in materials in the form of voids, de-
fects and inclusions. Again, defects and in-homogeneity can
be introduced in the materials by manufacturing processes.
On the other hand, micro-structures are inherently stochastic
in nature. Specimens made from the same manufacturing pro-
cess may have point to point variations in the micro-structure
as well as different specimens obtained from the same metal
billet. This micro-structure variation may occur due to the
stress and temperature gradient variability during processing.
A varying degree of recrystallization after annealing may also
contribute to the stochastic nature of micro-structures.
Therefore, it is natural that material properties such as

Fig. 1. Schematic diagram of the working principle of the
acousto-ultrasound based SHM.

Fig. 2. Detailed side view of the substrate, adhesive and
piezo sensors. Two modes of Lamb wave propagation, the
symmetric (S0) and antisymmetric (A0), can be observed.

Young’s modulus, Poisson ratio and density may be also con-
sidered as random variables and can vary from specimen to
specimen. If wave propagation in real structures is modeled
assuming all material properties are a constant quantity, then
a slight change in material properties from specimen to spec-
imen or different parts of a large structure may give a false
indication of damage. Because wave propagation in real struc-
tures can be altered due to such variations in material proper-
ties, corresponding damage indices are subsequently affected.
As a result, in order to quantify the effects of variation in
temperature and material properties and devise robust SHM
methods that avoid false alarms of damage, it is essential to
quantify the uncertainty involved in the process and observe
and model the way damage indices are affected.

PROBLEM STATEMENT

It is a well known fact that Lamb waves are sensitive to differ-
ent environmental and boundary effects such as temperature,
humidity and loading conditions (Ref. 15). Although it is pos-
sible to acquire sufficient amount of baseline signals for data-
driven environmental compensation models in a controlled or
lab environment, it is not possible to capture baseline signals
of all of the uncertain sources that a structure may be exposed
to in service or its course of operation. In addition, it is not
feasible in terms of the amount of time needed and cost in-
volved. In this respect, a probabilistic model or approach for
SHM systems in general, and environmental compensation in
particular may go a long way. In this approach, only one base-
line signal will be collected and a confidence interval will be
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provided based on the possible standard deviation of different
uncertain sources.

However, in order to build this probabilistic model, it is re-
quired to have a deeper understanding of different uncertain
sources and their associated uncertainties. Hence, the main
objective of this paper is to rigorously investigate the uncer-
tainty involved in Lamb wave propagation due to:

1. Temperature variation: How temperature imparts un-
certainty in different modes of wave propagation by im-
plementing numerical simulation and experimental in-
vestigation.

2. Variation in material properties: How different modes
of wave propagation are affected by uncertainty in mate-
rial properties from sample to sample or different struc-
tural elements of nominally-identical populations made
of the same materials.

METHOD OF APPROACH

In order to address the uncertainty in the propagation of
acousto-ultrasound diagnostic waves in isotropic materials
due to changing environmental conditions, both numerical
and experimental studies are performed. In order to study
the problem numerically, a high-fidelity finite element model
(FEM) has been developed (Figure 3). The FEM is based on a
simple aluminum plate with two piezoelectric Lead Zirconate
Titanate (PZT) disk transducers (diameter: 6.35 mm; thick-
ness: 0.25 mm) attached to the plate through a thin layer of
adhesive material (Loctite EA 9394). One transducer acts as
the actuator and the other as the sensor in a pitch-catch mode.
A 5-peak tone burst signal is applied on the actuator and the
corresponding signal is received at the sensor.

Monte Carlo (MC) simulations have been performed to inves-
tigate the effect of temperature on a statistical basis. A base-
line temperature of 20 0C was selected to run the MC simula-
tions. Then, a standard deviation of 0.5 0C was assumed and
samples were drawn assuming Gaussian distribution. Thirty
simulations were subsequently performed for each base tem-
perature. Next, experiments were performed on a rectangular
aluminum plate under ambient temperature (Figure 4 ). The
aluminum plate was outfitted with two piezoelectric sensors
attached via the use of adhesive (Loctite EA 9394), similar
to the FEM. A digital temperature sensor was also attached
to the plate in order to measure the temperature during data
acquisition.

In order to address the uncertainty quantification due to varia-
tions in material properties considering statistical dependence
between the components of random elasticity tensors, a sec-
ond round of MC simulations has been conducted following
the procedure outlined in the theoretical formulation section.
By defining the mean values of the bulk and shear moduli and
assuming that they follow independent Gamma distributions,
the statistically dependent random Young’s modulus and Pois-
son ratio can be obtained. These values are then used in the
FEM for the MC analysis.

Fig. 3. High fidelity FEM model which consists of an alu-
minum plate, adhesive and piezo-sensors

Fig. 4. Experimental setup that corresponds to the FEM
simulations

The structure of the paper can be outlined as follows: First,
the FEM-based Monte Carlo analysis under varying tempera-
ture is presented and the experimental validation of the simu-
lations under varying temperature is addressed. Next, FEM-
based Monte Carlo analysis under varying materials proper-
ties taking into account the statistical dependence of Young’s
modulus and Poisson ratio is outlined. Finally, the discussion
and critical assessment of the obtained results are presented in
terms of the uncertainty involved in active-sensing SHM.

THEORETICAL BACKGROUND

Material properties as random variables

Although in practice materials exhibit random behavior, for
theoretical and numerical convenience it is oftentimes as-
sumed that they do preserve deterministic properties. Then
it is natural to ask how the components of the elasticity ten-
sors are related. Are these quantities statistically dependent?
Physics suggest that the answer to this question might be affir-
mative. Guilleminot and Soize (Ref. 16) have provided a sta-
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tistical framework for modeling such dependencies between
elasticity tensors by invoking Information Theory and Maxi-
mum Entropy Principle. As a result of this analysis, it can be
deduced that the Young’s modulus and Poisson ratio are not
independent, but statistically dependent Gamma distributed
random variables. A brief overview and derivation is pro-
vided in the following (for the detailed formulation the inter-
ested reader may refer to (Ref. 17).

Let Ela be the set of all the fourth order elasticity tensors
verifying the usual properties of symmetries and positiveness.
Hence, Elasym ⊆ Ela defines the subset of all the fourth order
elasticity tensors that belong to the material symmetry class
“sym”. It is known that any element [[Csym]] ∈ Elasym can be
decomposed as (Ref. 17):

[[Csym]] =
N

∑
i=1

ci[[E
(i)
sym]] (1)

where [[E(i)
sym]], i = 1, . . . ,N is a tensor basis and cN

i=1 is a set of
coefficients satisfying some algebraic properties related to the
positiveness of [[Csym]]

Extending the aforementioned decomposition to the case of
random elasticity tensors, [[Csym]] then denotes the random
variables with values in Elasym, whose probability distribu-
tion is sought and can be written as:

[[Csym]] =
N

∑
i=1

Ci[[E
(i)
sym]] (2)

where CN
i=1 is now a set of random variables whose proba-

bility distributions and mutual statistical dependence must be
defined.

The values of parameter N is given in Table 1 for the eight
linear elastic symmetries. Let the isotropic random elasticity
matrix [C] be decomposed as:

[C] = 3C1[E(1)]+2C2[E(2)] (3)

with C1 designating the random bulk modulus, C2 the random
shear modulus, E1 and E2 being the matrix representation of
the classical fourth order symmetric tensors [[E(1)]] and [[E(2)]]
defined as:

[[E(1)]]i jkl = (1/3)δi jδkl , [[E(2)]]i jkl = [[I]]i jkl− [[E(1)]]i jkl
(4)

Here [[I]]i jkl represents the fourth order symmetric identity ten-
sor.

The probability model for random vector C can be constructed
by invoking the Maximum Entropy principle, which allows
for explicit determination of probability distributions under a
set of constraints defining some available information. Stated
differently,the probability density function estimated by this
principle is the function which maximizes the uncertainties
under some set of constraints. Mathematically, the constraints
can be written as:

E{C}= c,c = (c1, . . . ,cN) (5)

which means the mean value of the tensor Csym is given, and∫
S

Pc(c)dc = 1 (6)

which means the p.d.f Pc satisfies the usual normalization con-
dition, and

E{log(det(
N

∑
i=1

Ci[[E
(i)
sym]))}= νc, | νc |<+∞ (7)

which means the elasticity tensor has a finite second order
moment. It can be shown that the p.d.f Pc(c) takes the general
form:

Pc(c) = 1S(C)ksolexp{−< λsol ,g(c)>} (8)

where c 7→ 1S is the characteristic function of S, ksol =
exp{−λ 0

sol} is the normalization constant, c 7→ g(c) is the
mapping defined on S such that g(c) = (c,φ(c)), and the map-
ping φ : S 7→ R is given by:

φ(c) = log(det(
N

∑
i=1

Ci[[E
(i)
sym])) (9)

Having recognized these constraints, it can be shown that for
the isotropic case:

φ(c) = log96c1c5
2 (10)

Therefore, it follows that

PC(c) = PC1(c1)PC2(c2) (11)

with
PC1(c1) = 1R+(c1)k1c−λ

1 exp{−λ1c1}, (12)

PC2(c2) = 1R+(c2)k2c−5λ

2 exp{−λ2c2}, (13)

where k1 and k2 are positive normalization constants. Thus,
the random bulk and shear moduli are Gamma-distributed
statistically independent random variables, with parameters
(α1,β1) = 1−λ ,1/λ1 and (α2,β2) = (1−5λ ,1/λ2).

The normalization constants k1 and k2 are found to be k1 =

λ
(1−λ )
1 /Γ(1−λ ) and k2 = λ

(1−5λ )
2 /Γ(1−5λ ). It can also be

deduced that c1 = (1−λ )/λ1 and c2 = (1−5λ )/λ2.

Thus, it can be said that, for isotropic class, the bulk and shear
random moduli C1 and C2 are independent Gamma distributed
random variables, with parameters (1−λ ,c1/1−λ ) and (1−
5λ ,c2/1−5λ ), where c1 and c2 are given mean values of C1
and C2 and λ ∈ [−∞,1/5] is a model parameter controlling
the level of statistical fluctuation (Ref. 17).

The coefficients of variation of bulk and shear moduli are then
given by 1/

√
1−λ and 1/

√
1−5λ , respectively. It can be

observed that the two moduli do not exhibit the same level of
fluctuations.

Let E and ν be the random Young modulus and Poisson ratio,
associated with the isotropic random elasticity tensor, defined
as E = 9C1C2/(3C1 +C2) and ν = (3C1−2C2)/(6C1 +2C2).
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The joint p.d.f (e,n) 7→ PE,ν(e,n) of random variables E and
ν can be readily deduced from Eqs. (11), (12) and (13) and is
given by:

PE,ν(e,n)

= 1S(e,n)(
e

3(1− 2n)
)−λ (

e
2(1 + n)

)−5λ e
2(1 + n)2(1− 2n)2

× exp{−λ1
e

3(1− 2n)
− λ2

e
2(1 + n)

}

(14)

with S = [0,+∞]× [−1,1/2]. As a result, the random Young
modulus and Poisson ratio turn out to be statistically depen-
dent random variables.

Based on this theoretical formulation, the implementation of
the statistical dependency between Young modulus and Pois-
son ratio can be realized with the following equations:

C1 ≡ Γ(α1,β1), with α1 = 1−λ1, β1 =
c1

1−λ1
(15)

C2 ≡ Γ(α2,β2), with α2 = 1−λ2, β2 =
c2

1−λ2
(16)

The mean value of the bulk modulus c1 and shear modulus c2
can be calculated using the following equations:

c1 =
E

3(1−2ν)
, c2 =

E
2(1+ν)

(17)

where E is the mean value of Young’s modulus and ν repre-
sents the mean value of the Poisson ratio.

Now, the Young modulus (E) and Poisson ratio (ν) are related
to the bulk modulus (C1) and shear modulus (C2) through the
following equations:

E =
9C1C2

(3C1 +C2)
, ν =

(3C1−2C2)

(6C1 +2C2)
(18)

Although the Young modulus and Poisson ratio are statisti-
cally dependent Gamma distributed random variables, they
can be realized through two independent Gamma distributed
random variables, namely, bulk modulus and shear modu-
lus (Ref. 17).

The material density ρ can also be randomized using Gamma
distribution around its mean value as follows:

ρ ≡ Γ(α3,β3), with α3 = 1−λ3, β3 =
ρ

1−λ3
(19)

where λ3 ∈ [−∞,1] controls the statistical fluctuation.

Materials properties as function of temperature

In order to investigate the effect of temperature on the propa-
gation of lamb waves and the associated uncertainty, the mate-
rials properties that constitute the SHM system are considered
as functions of temperature T . As a result, as the temperature
changes, the corresponding material properties also change

Table 1. Dimension N for all material symmetry classes
Material symmetry N
Isotropic 2
Cubic 3
Transversely isotropic 5
Trigonal 6
Tetragonal 6 or 7
Orthotropic 9
Monoclinic 13
Triclinic 21

Table 2. Nominal material property values at 25 0C
Materials Property name Values
Piezo-electric:

PZT-5A Density (ρ) 7750 kg/m3

Young’s
modulus (GPa)

E11 =
E22 = 60.97
E33 = 53.19

Poisson ratio
ν13 =

ν23 = 0.4402
ν12 = 0.35

Piezo-elctric charge
constant (m/V)

d31 = d32
=171e−12

d33 = 374e−12
d15 = d24

=558e−12

Dielectric constant
ε11 = ε22

= 15.32e−9
ε33 = 15e−9

Aluminum Density (ρ) (Kg/m3) 2700
Young’s

modulus (E GPa) 68.9

Poisson ratio 0.33
Adhesive Density (ρ) (Kg/m3) 1100

Young’s
modulus (E GPa) 2.19

Poisson ratio 0.30

according to the empirical formulas that are derived experi-
mentally (Refs. 18–20). In this way, it is possible to incorpo-
rate the effect of temperature into the numerical simulation ap-
proach, and thereby investigate the uncertainty that is initiated
by the change in temperature. In this study, the SHM system
consists of an aluminum plate, piezo-electric sensors and ad-
hesive materials that bond the piezo-electric sensors with the
aluminum plate (Ref. 13). The nominal values of the material
properties have been provided in Table 2.

The established functional relationships are outlined in the
following.

Properties of piezoelectric materials:

∂ρ

∂T
= 7751.80−7.26e−02T

E11 = E22 = 60.45+2.09e−02T

E33 = 52.95+9.8e−03T
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ν13 = ν23 = 0.43+3e−04T −3e−06T 2−1e−09T 3

ν12 = 0.35+2e−04T −8e−07T 2 +2e−09T 3

d31 = d32 = 170.78−7.1e−03T +6e−04T 2 +2e−16T 3

d33 = 369.12+1.49e−01T +1.9e−03T 2−4e−09T 3

d15 = d24 = 556+4.9e−02T +2e−06T 2−2e−09T 3

ε11 = ε22

= 14.9e−09+1.42e−11T +9.74e−14T 2+4.43e−17T 3

ε33

= 14.60e−09+1.47e−11T +1.18e−13T 2−5.31e−18T 3

Properties of aluminum:

EAl = 69.62−2.63e−02T

∂ρ

∂x
= 2794.60−1.84e−01T

νAl = 0.32+3e−04T

Properties of the adhesive:

Eadh = 3.2−0.065T +1.18e−03T 2−7.72e−06T 3

Gadh = 1+0.001T −4e−05T 2

WAVE PROPAGATION NUMERICAL
SIMULATIONS

In order to simulate the effect of temperature and induced
variation in material properties, a high fidelity finite element
model was constructed by using commercial finite element
software ABAQUS 2018. At the beginning, three separate
parts were created namely: an aluminum plate, adhesive, and
piezo-electric disk (PZT) following the dimension given in
Table 3. Then material properties were defined for each part
and assigned to the individual sections. The material prop-
erties of aluminum, adhesive and PZT can be found in Table
2. Once the material properties were assigned to the specific
sections, all separate parts are assembled together to form a
unified part or model. Then, interactions between different
parts were created by defining master and slave surfaces. The
interaction between the PZT and adhesive were created by se-
lecting the bottom surface of PZT as the master surface and
the top surface of adhesive as the slave surface. This has to be
done for each pair of adhesive and PZT disk. The discretiza-
tion method has to be surface to surface.

Then interaction properties were defined, namely, tangential
and normal behavior. Under tangential behavior, rough fric-
tion formulation was used. Under normal behavior, hard con-
tact was selected for pressure-overclosure option. Then con-
straints were defined between aluminum and adhesive, as well
as PZT and adhesive as much of the same way as interactions
were defined. Abaqus implicit or standard were used instead

Table 3. Dimensions of aluminum plate, PZT sensors and
adhesive.

Object Dimension
Thickness of aluminum plate 2.286 mm
Thickness of PZT sensor 0.25 mm
Diameter of PZT sensor 6.35 mm
Thickness of adhesive 0.05 mm
Length of aluminum plate 304.8 mm
Width of aluminum plate 152.4 mm

of Abaqus explicit, as Abaqus explicit cannot handle PZT el-
ements.

For the wave propagation simulations, a total time period of
0.0001 s and a time step or incrementation of 1e− 7 s were
used. For defining the actuation signal, a 5-peak-tone burst
signal with a center frequency of 250 KHz was used. As
boundary conditions, the two ends of the aluminum plate were
kept fixed. Then an electric potential boundary condition was
applied at two end surfaces of piezo-electric disk. An elec-
tric potential of zero volt and 100 volt were applied at the
bottom and top surfaces of the piezoelectric actuator disk, re-
spectively. This sets up an electric field between the two sur-
faces of disk. For the sensor disk, zero voltage is applied only
at the bottom surface and top surface is kept free.

The electric potential (EPOT) is selected as the response sig-
nal from the piezo-sensor disk. The output signal can be col-
lected from ant single node on the top surface of the PZT sen-
sor. However, signals obtained obtained from different nodes
on the surface are different. Hence, it is necessary to obtain
the average of all the signals from all the nodes on the top
surface of the PZT sensor. This task of averaging can be per-
formed by using equation constraints. Under an equation con-
straint, a single node is selected as a master node and all other
nodes on the surface are constrained with respect to this mas-
ter node. This forces the electric potential to be same on all
other nodes on the surface as same as of the master node. It
was found that averaging the signals from all the nodes on the
surface is equivalent to using the equation constraint where a
master node is used to constrain all other nodes on the surface.
The coefficient used for the master node and the other nodes
were 1 and -1, respectively. The degrees of freedom used for
PZT material were 9.

In order to facilitate meshing, partitioning was performed on
all of the three parts, namely, aluminum plate, adhesive mate-
rials and PZT disk. For all three parts, structured hexahedron
mesh was used. In order to select the mesh size, a convergence
study was performed. Based on this study, a global mesh size
of 0.001 was chosen for the aluminum plate. The total num-
ber of elements in the plate were 93330. For the adhesive and
PZT material, a global mesh size of 0.0004 was used. The
total number of elements in adhesive and PZT disk were 480.
It was ensured that at least 20 elements exist per wave length.
The mesh size can be further reduced, but that increases com-
putational cost with no significant increase in the accuracy.

Linear 3D stress element (C3D8R) were selected. For the PZT
disk, 8-node linear piezo-electric brick elements were used.
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Fig. 5. Temperature distribution with a mean of 20 0C.
With all these specifications, a single simulation takes about 6
hours.

Temperature simulations

In order to investigate and quantify the uncertainty involved
in the propagation of Lamb waves due to changes in tempera-
ture, the material properties were considered to be a function
of temperature according to the equations provided in the the-
ory section. This functional dependence in material properties
is reflected in the output signal. It is assumed that tempera-
ture follows a normal distribution. For simulation purposes,
the mean of the temperature normal distribution was assumed
20 0C. Then, random samples were drawn from this distribu-
tion with a standard deviation of 0.5 0C. For this study, 30
samples were drawn from the distribution. It has been shown
that at least 28 samples are required to properly represent a
normal distribution (Ref. 21). For each drawn temperature
sample, a separate simulation was conducted by changing 20
material parameters (see equations of previous section) and
the output signals were collected. Once all the output signals
were collected for the drawn samples, statistical analysis was
performed to quantify the uncertainty involved in the wave
propagation. Figure 5 shows the distribution of temperature
that was used in the simulations.

Material properties simulations

In order to numerically study the effects of variation in ma-
terial properties on the propagation of Lamb waves, Young’s
modulus, Poisson ratio, and material density were considered
as random variables. From the theoretical formulation, it was
deduced that Young’s modulus and Poisson ratio are depen-
dent random variables and they jointly follow Gamma distri-
bution. Sixty samples were drawn from this Gamma prob-
ability distribution taking into account the dependency be-
tween Young’s modulus and Poisson ratio. The mean value
for Young’s modulus was taken to be 68.9 GPa with a stan-
dard deviation of 1.332 GPa. The mean value of Poisson ratio
was taken to be 0.33 with a standard deviation of 0.007. The
value of the parameter λ that controls the statistical fluctua-
tion was selected as −450.

Table 4. Young’s modulus variation for aluminum 6061.
Mean Standard deviation

Suresh (Ref. 25) 66.4795 GPa 5.0168 GPa
Oliver (Ref. 26) 81.6117 GPa 2.2018 GPa
Doermer (Ref. 27) 81.2671 GPa 2.2188 GPa

Fig. 6. This plot shows the distribution of material proper-
ties used in the simulation
The density of the aluminum plate also follows a Gamma
distribution (Ref. 22). The mean value for density was se-
lected as 2700 kg/m3 with a standard deviation of 2.7022
kg/m3 (Refs. 23, 24). The value of the parameter λ was cho-
sen to be -800000 in order to achieve the specified standard
deviation.

The value of the standard deviation or fluctuation of Young’s
modulus of the aluminum plate (aluminum 6061) was chosen
to be 1.332 GPa which was motivated by experimental stud-
ies carried out by several researchers such as (Refs. 25–27).
The summary of the findings from these experimental studies
are summarized in table 4. The standard deviation of Poisson
ratio for an aluminum plate is controlled by the standard de-
viation of Young’s modulus as they are considered dependent
random variables.

Once the sample of E, ν , and ρ were drawn from their re-
spective distribution, for each triplet (E, ν , and ρ where E
and ν dependent), a separate simulation was performed and
output signal was collected. In this way, 60 output signals
were recorded and uncertainty involved were quantified. The
distribution of materials properties can be seen from figure 6

UNCERTAINTY QUANTIFICATION:
RESULTS AND DISCUSSION

Temperature effects

Figure 7 shows the results of 30 simulations for 30 differ-
ent temperatures, plotted on the same graph, that were drawn
from a normal distribution. The signals from the time instant
3e− 5 seconds to 4.5e− 5 seconds constitute the S0 mode
which has 5 distinct peaks and the signals from 5.5e−5 sec-
onds to 7.5e− 5 seconds constitute the A0 mode which also
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Fig. 7. Uncertainty quantification due to temperature. The
dotted line represents the ± 3 standard deviations and the
solid line represents the signal mean.

has 5 distinct peaks. However, the third peak of both S0 and
A0 mode are more pronounced than all other peaks. In this
case, the peaks of S0 mode is smaller than the peaks of A0
mode. After the time instant 7.5e−5, the rest of the peaks are
considered as coming from the boundary reflections. When
all the 30 plots are overlaid on each other, the variation in the
signal due to the change in temperature is not apparent. How-
ever, in the inset plot which has been zoomed in from the third
peak of the S0 mode does show a marked difference between
the signals. The amplitude of the third peak of the of the S0
mode, which is the most prominent peak in the S0 mode, is
seen to vary between 0.060 and 0.062 V.

In the inset plot, the dotted blue line on the top and bottom
represents the± 3 standard deviations of the signal. The solid
line represents the mean of all 30 signals. It can also be ob-
served that the standard deviation near the peak of the signal
is much higher than the standard deviation of the signal that
is offset from the peak. Another important observation from
this inset plot is that the maximum value of the peak occurs at
the same time instant, that is, no change in the time of flight
(phase) of the wave packet occurs when the standard devia-
tion of the temperature distribution is low. In order to provide
a single maximum or minimum value of the signal, a Hilbert
transform was performed on the S0 and A0 modes of all the
signals and their minimum and maximum values were identi-
fied. The results are shown in Table 5

Figure 8 shows the error bar representation of the variation of
all 30 signals over the entire time period of the output signal.
These error bars have been plotted at a specific time interval

Table 5. Hilbert transform statistics of the S0 and A0 modes
due to temperature variation.

S0 mode A0 mode
Maximum 0.0618 V 0.1464 V
Minimum 0.0609 V 0.1451 V
Mean 0.0613 V 0.1457 V
Standard deviation 2.088E−4 V 2.796E−4 V

Fig. 8. Uncertainty quantification due to temperature. The
error bar represents the ± 3 standard deviation and has
been plotted against the whole signal.

over the entire signal and represent± 3 standard deviations of
the signal. For example, by zooming in on the second peak
of the A0 mode, it can be deducted that the variation would
be confined between 0.1 and 0.105 V for this specific temper-
ature distribution. For real life applications, if the tempera-
ture distribution of the environment is specified or determined,
then it is possible to predict what would be the uncertainty in
the wave propagation and construct the SHM system accord-
ingly so that it would take into account that uncertainty due to
temperature.

In order to investigate the effects of temperature on the prop-
agation of Lamb waves, a wide range of temperatures were
considered. For this purpose, 16 simulations were carried out
from 20 0C to 100 0C with an increment of 5 0C. In Figure
9, four output signals are plotted simultaneously, which cor-
responds to 25 0C, 45 0C, 65 0C and 85 0C. By zooming in on
the 3rd peak of the A0 mode, it can be observed that the max
amplitude as well as the phase of each signal changes which
is in contrast to Figure 7 where only the maximum amplitude
changes.

It can also be observed that the change in amplitude with the
increase in temperature is not linear. From 25 0C to 45 0C, the
amplitude of the signal increases. Then, from 45 0C to 65 0C
and from 65 0C to 85 0C, the amplitude gradually decreases.
This nonlinearity in amplitude change may be attributed to the
fact that the PZT disks are mounted on the aluminum plate
through adhesives which are polymeric materials. At higher
temperature, these polymeric materials may soften due to the
increased vibration of the polymeric chains. This softening
effect may hamper the proper stress transfer between the alu-
minum plate and PZT sensors which would result in a de-
creased voltage in the PZT sensor (Ref. 20).

Although the amplitude change is nonlinear, the phase change
due to the increase in temperature is linear. As the tempera-
ture increases, the material expands and this expansion would
delay the wave to reach a certain point. It can be observed
from Figure 9 that with the increase in temperature, the peak
of each signal shifts to the right.
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Fig. 9. Wave propagation signals under increasing temper-
ature.
Figure 10 depicts the change in indicative damage indices
(DIs) proposed in the literature due to temperature variation.
A normalized Root Mean Square Deviation (RMSD) DI can
be defined as the ratio of the sum of the scattered signal
squared to the sum of the baseline signal squared. Mathe-
matically,

DI =
∑

N
n=1(Vinspection[t]−Vbaseline[t])2

∑
N
n=1(Vbaseline[t])2

(20)

The difference between the inspected signal and the baseline
signal is called the scattered signal. Different researchers have
proposed different formulations for damage indices which of-
ten do not have a theoretical background, but are rather based
on signal processing and normalization techniques. However,
the sensitivity to the damage provided by a damage index de-
pends on how that damage index has been formulated. In
order to study the effect of temperature on the damage in-
dex, two different damage indices are presently considered
(Refs. 2, 28):

DIQui = 1−

√
∑

N
t=1(yh[t] · yd [t])2

∑
N
t=1 y2

d [t] ·∑
N
t=1 y2

h[t]
(21)

and

DIJanapati =
N

∑
t=1

(Ndamage−Nre f erence)
2 (22)

with

Ndamage =
yd [t]√

∑
N
t=1 y2

d [t]

Nre f erence =
∑

N
t=1(yh[t] ·Ndamage)

∑
N
t=1 y2

h[t]
· yh[t]

with yh[t] designating the healthy or baseline signal and yd [t]
the unknown/damaged signal.

In Figure 10, the value of the signal at 20 0C has been consid-
ered as the baseline signal. The value of the signal for all other
temperatures may be considered as the unknown (or damaged)
signal.

Fig. 10. Damage index variation for a normally distributed
temperature variation with a mean of 20 0C and standard
deviation of 0.5 0C.

In Figure 10, the blue dots corresponds to the damage index
provided by Janapati et al. (Ref. 2) while the red dots corre-
spond to the damage index provided by Qui et al. (Ref. 28).
It can be observed that for a specific temperature, the damage
index provided by Janapati et al. has higher value than that
of Qui et al. which suggests that the former one may have a
higher sensitivity to damage.

In order to verify this numerical results as well as to gain more
insight on the effect of temperature on the wave propagation,
a series of experiments were performed both in ambient and
elevated temperatures. Figure 11 shows 50 experimental sig-
nal plotted on the same graph which have been collected in
ambient lab temperature. The third peak of the A0 mode has
been zoomed in at the inset plot. The two dotted lines at the
top and bottom represent the ± 3 standard deviations, respec-
tively. The solid line represents the mean of the signal. It can
be observed that, although the experiment has been performed
at the ambient temperature, the signals occupy most of the re-
gion within the ± 3 standard deviation, and even exceed in
one case. This variation may be due to the small change in
temperature about a mean ambient temperature, similar to the
case in Figure 7, which has been studied numerically.

In order to explore this phenomenon more rigorously, a highly
sensitive temperature sensor was mounted to the aluminum
plate, which can measure slight variations in surrounding tem-
perature. Wave propagation signals were collected for about
a month. In each day, at least forty signals were collected
at different time instants and the corresponding temperature
was also recorded. Figure 12 shows the temperature distri-
bution for 11 representative days. The box plot for each day
shows the distribution of 40 recorded temperatures which cor-
responds to the forty recorded wave signals obtained at differ-
ent instant of time within a single day.

The horizontal red line in the box plot represents the mean
value of the temperature distribution. The blue box represents
the inter-quartile range, that is, from 25th to 75th percentile
values. The two whiskers on both sides represent the range
which is 1.5 times the inter-quartile range. The red dots rep-
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Fig. 11. Experimental signals collected at ambient lab tem-
perature showing variations in their amplitude. In the in-
set plot, the solid line represents the mean and dotted lines
represent the ± 3 standard deviation.

resent the individual outliers or the values that falls outside
the 1.5 times the inter-quartile range.

From Figure 12, it can be observed that a potential seasonal
variation exists between the mean temperatures of all the days
which fluctuate about 24 0C. The temperature distribution of
day 3 is slightly off from the usual trend. In order to confirm
such a seasonal trend, data obtained during a longer period of
time would be required to confirm this observation.

Having known this temperature distribution for all eleven days
from Figure 12, the associated uncertainty in wave propaga-
tion on an aluminum plate is quantified by finding the per-
centage change of the amplitude of the S0 and A0 modes for
each individual day. The results are presented in Figure 13
and Figure 14 for the S0 and A0 modes, respectively. For each
day, forty signals were used in the analysis.

A closer observation of Figure 13 reveals that a potential sea-
sonal trend exists between the mean values of the S0 ampli-
tude change over the eleven days. The same seasonal trend
can also be found in Figure 14 for A0 amplitude change. In
Figures 13 and 14, normalization was performed with respect
to the maximum value of the S0 and A0 mode amplitude. From
Figure 13, it can be readily observed that the percentage am-
plitude change for S0 mode ranges within 1-1.5% for all days.
On the other hand, from Figure 14, it can be observed that
the percentage amplitude change for A0 mode ranges between
0.3-0.6% for all days. Although the absolute value of ampli-
tude variation is higher for the A0 mode than in S0 mode, the
percentage variation in amplitude change is higher for the S0
mode. Therefore, it can be concluded that the uncertainty in-
volved in the variation of amplitude due to the temperature
change is higher in S0 mode and SHM systems should be de-
signed taking into account this uncertainty.

Figure 15 shows the normalized mean amplitude of S0 and A0
modes and associated standard deviation as a function of the
wave actuation center frequency for a single day. The cen-
ter frequency of the input signal was varied from 250 KHz
to 700 KHz and corresponding output signals were recorded.

Fig. 12. Temperature distribution for eleven different
days. Each day contains 40 temperature recordings. The
red line in the boxplot represents the mean and the blue
box represents the inter-quartile range.

Fig. 13. Amplitude change percentage of the S0 mode over
the eleven days. The red line in the boxplot represents the
mean and the blue box represents the inter-quartile range.

For each frequency, 40 signals were collected and their mean
and standard deviation were determined. From Figure 15, it
can be observed that as the frequency increases from 250 to
500 KHz, the amplitude of S0 mode gradually increases and
becomes maximum at 500 KHz. From 550 KHz the frequency
of the S0 mode starts to decrease again, however, the amount
of decrease is very small. For the A0 mode, the frequency
gradually decreases from 250 to 350 KHz, and then increases
again until 550 KHz. After that, it starts to decrease again.
The amplitude of A0 mode becomes maximum at 550 KHz.

Material properties analysis

Figure 16 shows the plot of 60 different signals which were
generated taking into account the variation in material proper-
ties. The solid blue line represents the mean of all 60 signals
and the dotted blue lines on top and bottom represent the ±
3 standard deviation of the signals. It can be observed that
due to the change in material properties, the amplitude of the
signals were affected as well as their phase.
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Fig. 14. Amplitude change percentage of the A0 mode over
the eleven days. The red line in the boxplot represents the
mean and the blue box represents the inter-quartile range.

Fig. 15. Amplitude variation of S0 and A0 modes for differ-
ent actuation frequencies for a single day.

A Hilbert transform was also performed for the S0 and A0
modes, and their minimum and maximum values were deter-
mined. Table 6 shows the mean, standard deviation, mini-
mum and maximum values of the Hilbert transform due to the
variation in material properties. In this case, Young’s modu-
lus and Poisson ratio were considered as random variables of
dependent Gamma distributions and they were sampled from
their joint probability distribution. Density was also consid-
ered as a Gamma distributed random variable.

As the variation in material properties causes changes in the
signal amplitude and phase, it can mask the effect of damage.

Table 6. Hilbert transform statistics of the S0 and A0 modes
due to variation in material properties.

S0 mode A0 mode
Maximum 0.0413 V 0.0992 V
Minimum 0.0356 V 0.0774 V
Mean 0.0383 V 0.0881 V
Standard deviation 0.0012 V 0.0052 V

Fig. 16. Variation in the propagation of the waves due to
variation in material properties.

Hence, it is of interest to investigate the damage index varia-
tion due to variation in material properties. Unlike the dam-
age index due to the variation in temperature, two variables
are involved in this case, namely, the Young’s modulus and
Poisson ratio, as they are dependent on each other and they
jointly contribute to the damage index. Figure 17, depicts the
change in the damage index due to the joint change in Young’s
modulus and Poisson ratio. Here, Young’s modulus has been
plotted in the x-axis and Poisson ratio has been plotted in the
y-axis, while the corresponding damage index has been plot-
ted in the z-axis (MATLAB function scatter3.m). For calcu-
lating the damage index, two different DI formulations were
used (Refs. 2, 28). The blue dots indicate the damage index
provided by Janapati et al. while the red dots indicate the
damage index provided by Qui et al. It can be observed from
Figure 17 that the damage index index provided by Janapati et
al. is higher than that of Qui et al. for the same material prop-
erties, that is, the Janapati DI is more sensitive to the variation
in material properties.

The baseline signal was constructed by considering the nom-
inal values of the material properties for aluminum plate, i.e.
68.9 GPa and 0.33 were the nominal values for the Young’s
modulus and Poisson ratio, respectively. It can be seen from
Figure 17 that as the material properties deviate from the nom-
inal values, the calculated DIs increase. Figure 18 depicts the
damage index plot for the variation in Young’s modulus and
density. As the values of Young’s modulus and density deviate
from the nominal values, the calculated DIs also increase.

CONCLUSIONS

In this study, a preliminary investigation on the variability of
the wave propagation due to the variations in temperature as
well as material properties was presented. In order to do so,
a high fidelity FEM model was constructed and Monte Carlo
simulations were performed both for temperature and material
properties. For the temperature analysis, samples were drawn
from a normal distribution, while for the case of the material
properties a thorough theoretical analysis and derivation was
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Fig. 17. Variation in the damage index due to the varia-
tion in Young’s modulus and Poisson ratio based on two
different damage index formulations. The Young’s modu-
lus and Poisson ratio are considered as dependent random
variable.
outlined. Samples were drawn from a Gamma distribution
considering the dependency of Young’s modulus and Pois-
son ratio. The variation in the wave propagation signals was
quantified based on both numerical simulations and a series
of laboratory experiments under both ambient and elevated
temperatures. The variation in current state-of-the-art dam-
age index formulations due to temperature as well as material
properties was also quantified and assessed. This work con-
stitutes an introductory study aiming to tackle the significant
challenge of active-sensing SHM reliability quantification in
terms of environmental and material factors. The preliminary
results presented herein will pave the way for the postulation
of a thorough quantification framework that accounts for envi-
ronmental and operational variations and uncertainty with the
ultimate aim of integrating this analysis with active-sensing
SHM technologies in order to increase their robustness and
subsequent reliability.
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