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Figure 1. Integration of verification process into DDDAS development workflow

INTRODUCTION

Dynamic data-driven aerospace systems [3–6] involve the dynamic integration and
unification of sensor data, models, and computation. These systems, which fall under
the multidisciplinary umbrella of dynamic data-driven application systems (DDDAS),
are characterized by their capability both to incorporate runtime data in an executing
process and to allow that same executing process to influence the measurement and col-
lection of runtime data. However, these dynamic data-driven behaviors introduce signif-
icant complexity when analyzing system correctness, often to the point that exhaustive
system testing becomes infeasible due to the dynamic nature of the data reintegration
process and the continuous nature of the runtime data itself. Techniques from formal
methods, and in particular formal software verification techniques, can be used to al-
leviate the burden this complexity places upon system development and analysis. We
have adapted techniques traditionally used in the analysis of discrete systems (e.g., pro-
gramming languages) and adapted them to continuous stochastic systems, enabling us to
analyze the reliability of DDDAS in a precise and principled manner (Figure 1).

We propose verification of correctness properties for a stochastic system modulo pre-
cise safety envelopes. We formally verify some high-level correctness properties of an
archetypal data-driven model for stall detection on an aircraft. In the process, we address
challenges related to the correct treatment of unpredictable runtime data in a formal set-
ting. We develop a proof framework that highlights and enables compositional reason-
ing, stressing the reusability of lower-level formal theories in the specification and proof
of higher-level stochastic properties. This framework emphasizes the dynamic nature of
the systems at play through the generation of runtime sentinels from envelope specifi-
cations, allowing the runtime system to respond intelligently to changes in the formal
environment inhabited by the current system configuration and runtime state. This cul-
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Figure 2. Visualization of experimental signal energy used to train model

minates in the continuing development of a hierarchy of algebraic and analytic theories
enabling high-level reasoning about stochastic properties of data-driven systems.

Formal Methods

Typically, verification efforts focused on cyber-physical systems are primarily con-
cerned with applying automated methods, for example, model checking. More recently,
however, there has been interest in applying interactive / human-guided techniques. For
example, see the VeriDrone project [7], which builds upon existing work using differen-
tial dynamic logic [8] to verify properties of hybrid systems [9] foundationally using an
interactive theorem-proving system.

Interactive theorem-proving is the process of formally specifying properties, and then
formally proving that these properties are correct within a proof assistant. One popular
proof assistant is Coq [10], developed at INRIA, which we use in this work. Using a
proof assistant is much like developing a proof of correctness on paper, except that the
proof assistant ensures that proofs are sound, i.e., that theorems are logical consequences
of axioms. There are some barriers to using such tools: in particular, it requires the user
to work at a level of specificity and detail that is not typical of even the most formal
mathematical reasoning on paper. Further, the user must have access to a formalization
of every definition and theorem they require, either by using a library (for example, Co-
quelicot [11] for real analysis) or by developing the required formalization “in-house”.

Interactive methods are interesting because they can be used without sacrificing the
undoubtedly-useful automated methods. Tools like SMT solvers can be used to auto-
matically discharge simple propositions, while more complex propositions that would
be intractable in a purely-automated approach can be tackled “manually”. There is ex-



Figure 3. Safety envelope for data-driven model

isting work on integrating such tools with interactive theorem-provers [12–14], allowing
us to use the theorem-prover for high-level organization and proofs of difficult lemmas,
while leaving the mundane and well-understood work to automated tools. As such, we
believe that a high-level interactive theorem-proving system like Coq is an essential tool
in nearly any complex verification task by merit of forcing propositions to be organized
in a principled way, even if most of the actual “proving” is done automatically.

A NONPARAMETRIC DATA-DRIVEN MODEL

We consider a model presented by Kopsaftopoulos [15,16] that associates the signal
energy from a piezoelectric sensor on a wing with the likelihood that an aircraft is in a
stall state. The model is based upon experimental wind tunnel data, obtained by control-
ling the angle of attack and airspeed configuration and recording the mean and variance
of signal energy. Figure 2 illustrates a visualization of the signal energy collected from
one sensor on the wing (for a fixed airspeed of 15 m/s and for a fixed angle of attack of
7 degrees, with a sampling rate of 1000 Hz). Specific angle of attack / airspeed configu-
rations correlate with aeroelastic properties, allowing certain signal energy distributions
to be associated with stall/no stall conditions.

There are two distinct scenarios related to this model where we would like to verify
correctness properties. First, given the assumption that the experimental signal energy
data is normally distributed, we want to be sure that the model behaves “correctly”. Ad-
ditionally, there should be some interval (or union of intervals) of signal energies that the
model classifies as unlikely to correspond to the stall state (assuming some reasonable
significance level). It is important to distinguish these cases and to treat them appropri-
ately. In the end, we can view the model as a function

m : Rn ! (R ! {Stall,No Stall})

where n is the size of the training data (in our model n = 90000). This function can be



uncurried to a function

m0 : Rn ⇥ R ! {Stall,No Stall},

which will allow us to treat pairs of training data and runtime signal energy as system
states. Thus, we can formally define a safety envelope as a constraint on these training
data and signal energy pairs, an important simplification that enhances the modularity of
the verification process.

Formal Safety Envelope

A formal safety envelope, analogous to a flight safety envelope describing the safe
operating conditions of an aircraft, is a computable subset of the DDDAS state space
that describes the (ideally weakest possible) constraints on the operating conditions un-
der which a correctness guarantee is valid. This subset can involve both continuous
constraints (e.g. membership in some interval of the state space) and non-continuous
constraints (e.g. Gaussian distribution of the sample history of a sensor). Figure 3 shows
a depiction of the continuous constraint placed upon runtime signal energy. Alongside
this continuous constraint is a statistical constraint on the distribution of signal energy
sensor data at the time of training.

Correctness Results

Assuming both of these constraints hold for a given training data / runtime signal en-
ergy pair, we wish to prove that the model always correctly classifies that runtime signal
energy. This proof relies on some extensional properties of the model function m0. Here,
we treat m0 as follows: There is a set of signal energy means and variances D(T ) taken
from the experimental data T at various airspeeds and angles of attack. Certain such
airspeed / angle of attack configurations correspond to stall (using physical properties,
or even observationally), and therefore a certain subset of signal energy means and vari-
ances S(T ) ✓ D(T ) correspond to stall states. The model function m0 tests the runtime
signal energy against every mean and variance in that subset S(T ) assuming normality,
and we are sure that it classifies that runtime signal energy as likely to correspond to
stall if it is suitably likely (e.g., 99%) to occur in any such distribution, while also being
suitably unlikely (e.g. 1%) for all distributions in D(T ) \ S(T ). Analogously, we are
sure that it classifies that runtime signal energy as unlikely to correspond to stall if it is
likely in any D(T ) \ S(T ), while also unlikely in all S(T ).

From here, it is relatively easy to verify model correctness. Since we know that
the experimental data is normally distributed, we know that each distribution in D(T )
is normal. We wish to prove that for all signal energies in a given interval, the model
behaves in a predictable way. Formally, we might express this proposition for the “No
Stall” classification as

8(hx, T i : R⇥ Rn).hx, T i 2 Safe ! m0(hx, T i) = No Stall



Material
set theory

Algebraic
theories

TopologyLinear algebra

Real analysis

Measure
theory and
integration,

formal
probability

Higher-level
statistical

results

Figure 4. Hierarchical nature of theories for reasoning about high-level stochastic properties

where Safe, the safe subset, is all hx, T i satisfying

(8(d 2 D(T )).Gaussian(d))

^ (8(d 2 S(T )) |x� µ(d)| > 3�(d))

^ (9(d 2 D(T ) \ S(T )) |x� µ(d)| < 3�(d)),

where µ(d) and �(d) are the mean and standard deviation of the distribution d, respec-
tively. Analogously, the corresponding proposition for the “Stall” classification is similar
except for an inversion of the roles of S(T ) and D(T ) \ S(T ):

8(hx, T i : R⇥ Rn).hx, T i 2 Safe0 ! m0(hx, T i) = Stall

where the new safe subset Safe0 is all hx, T i satisfying

(8(d 2 D(T )).Gaussian(d))

^ (8(d 2 D(T ) \ S(T )) |x� µ(d)| > 3�(d))

^ (9(d 2 S(T )) |x� µ(d)| < 3�(d)).

To prove these, we rely on the previously expressed properties of m0: we can simply
compute the CDF of each Gaussian distribution (known from the first assumption in the
safe subsets) given minimum / maximum values for x (µ±3�, from the second and third
assumptions in the safe subsets). While this is simple on paper, involving just simple al-
gebra and some mechanical computation, the nature of foundational verification makes
it a somewhat daunting task in the formal setting of a proof assistant. In Figure 4, we
see the hierarchy of mathematical theories that must be (in full or in part) formalized in
order to allow high-level reasoning about statistics and properties of stochastic systems.
This complexity hides beneath even the simplest statements related to e.g., probability,
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Figure 6. Normality visualization for preprocessed and non-preprocessed data

introducing challenges that are not present in domains involving only deterministic com-
putation. For example, to even express the notion that a variable follows a continuous
normal distribution, we need a large number of definitions from across mathematics: the
real numbers (either as Cauchy sequences or Dedekind cuts or otherwise) and various
algebraic properties thereof, the Lebesgue integral, some amount of measure theory and
topology to express the prior, etc.

To manage this underlying complexity, we adopt a divide-and-conquer approach that
synthesizes both “bottom-up” and “top-down” proof development. In order to demon-
strate the applicability of the methods involved, we take as axioms certain high-level sta-
tistical theorems, allowing us to prove interesting properties about DDDAS. At the same
time, we develop the lower-level theory modules for algebra, analysis, measure theory,
etc., with the goal of eventually replacing the axiomatization of high-level propositions
with actual proofs.

SAFETY ENVELOPE SENTINEL

The nature of the safety envelope coupled with the dynamic aspects of data-driven



systems has encouraged us to explore runtime-accessible envelope representations. The
runtime sentinel represents a high-level system configuration / state constraint as an
executable program in a runtime-accessible programming language (e.g. C or even
architecture-specific machine code). In general, it is desirable to automatically generate
these sentinels from a proof-accessible embedded domain-specific language, allowing
sentinel correctness to be verified in the same manner as the code-generation module of
a verified compiler [17], but at present we manually implement C-language sentinels to
showcase the techniques involved. Integrating sentinels into the larger system (Figure 5)
presents unique opportunities for runtime awareness of formal properties.

We have implemented a sentinel that checks both of the previously-discussed cor-
rectness conditions. First, it detects the normality of the sensor signal energy in the
training data. This sentinel relies upon a standard statistical test for normality and some
appropriate significance level. Next, the sentinel detects the continuous condition that
the runtime signal energy falls within some safe interval. (By safe interval, we refer only
to an interval where the model we are sure of the model’s classification.) This is done
using C floating-point arithmetic.

It is important to note that in both cases presented above, the sentinel does not cor-
respond exactly with the formal assumption. In the first case, it is obvious that a test for
normality up to some significance level does not imply that the data is actually normal.
Further complicating things is the often-necessary introduction of a nontrivial prepro-
cessing step: filtering, downsampling, etc. In Figure 6, we demonstrate the effects that
pre-processing can have on the normality assumption. Perhaps less obviously, there is a
similar concern in the second case, although it is far simpler: floating point arithmetic is
not the same as arithmetic over the real numbers (e.g. floating point addition is not guar-
anteed to be commutative or associative in C). In future work, we would like to establish
a formal connection between proof assumptions and runtime sentinels, but we expect
this to be extremely complex even in the simplest cases. For now, sentinels provide a
useful estimate of assumption validity at runtime.

Existing developments using runtime monitors in tandem with a verified system (e.g.
ModelPlex [18]) focus on using runtime monitors to validate the system model against
real behavior at runtime. Notably, the Copilot system [19] generates C runtime moni-
tors from specifications written in a Haskell embedded domain-specific language, and
can verify the equivalence of different code-generation backends using CompCert [20]
and CBMC [21], a model-checking tool. Our use of runtime monitoring techniques is
essentially similar, but different in character: rather than focusing on whether all of the
properties proven about a model hold, we use runtime monitoring to alert users about
which properties hold given the current system state.

CONCLUDING REMARKS

In this paper, we described an organizational scheme for proving stochastic prop-
erties about data-driven systems. This scheme is centered around safety envelopes,
propositions of a particular structure that facilitate the generation of runtime sentinels.
These sentinels inform a runtime system about the validity of static guarantees in a given
instantaneous-time system state. We analyzed and discussed the assertions one might



make contingent upon such safe subsets when in the context of a broader data-driven
system. In the future, we plan to use this architecture as the base for a complete “tool-
box” for formalizing and proving correctness properties about data-driven systems. We
also intend to explore more thoroughly some areas that were not touched upon explicitly
here, in particular formalizing dynamic reintegration of data into the models.
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