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the design phase of the vehicle that determines its flight envelope. As a result, there are
safety margins included in the design of these control systems that ensure the vehicle
is only operational in a particular portion of the envelope for the majority of its life.
Autonomous “fly-by-feel” aerial vehicles have the potential to overcome this limitation
by allowing the system to analyze its own health and environmental conditions, and make
decisions that optimize reduction in cost, risk and benefit overall safety and performance
[1]. Such autonomous decisions will be made without direct communication, enabling
increased survivability in adverse conditions. Allowing for maximum utilization of the
flight envelope by adjusting the service region of the aircraft will extend its life span
compared to traditional vehicle maintenance and operational procedures [1, 2].

When it comes to the aeroelastic behavior, dynamic aeroelastic effects resulting from
the interaction of the aerodynamic, elastic, and inertial forces require careful consider-
ation throughout the design phase of the aircraft and pose a major safety-critical factor
in the qualification of aircraft into service [3–6]. Efforts towards developing system and
model identification techniques for data-driven aeroelastic modeling, damage assess-
ment and online parameter estimation have been previously made [1,7–10], however the
treatment of constantly varying operating and structural states remains a significant chal-
lenge that needs to be addressed. Previous work has introduced a stochastic global iden-
tification framework utilizing Vector-dependent functionally pooled (VFP) models based
on experimental data from a self-sensing composite wing [11], while various forms of
VFP models have been also used in previous studies on the topic of probabilistic damage
detection, localization and quantification [12–14].

The main objective of this study is the data-driven stochastic identification of the
aeroelastic response of a UAV under collectively-varying flight (airspeed) and struc-
tural (healthy and damaged) states. The second objective is the critical assessment of
stochastic non-parametric and parametric approaches under the considered operating
states. This paper utilizes the ASWING software platform [15, 16] for the low-fidelity
approximation of the aeroelastic response of the UAV and collection of dynamic simula-
tion data during free flight. The obtained signals are subsequently used for the stochastic
identification of the aeroelastic response of the UAV via non-parametric and paramet-
ric time-series representations, including autoregressive (AR) and “global” VFP model-
based approaches.

THE UAV MODEL AND RECORDED SIGNALS

The aircraft model investigated is a modified Hawk Ultralight sailplane. The UAV
is simulated in ASWING, a low fidelity aeroelastic platform for efficient analysis of
aerodynamic, structural and control response of mid to high aspect ratio flexible aircraft.
Aircraft structures are represented as a series of interconnected Euler-Bernoulli beams,
representing the fuselage, wing, horizontal and vertical stabilizers with aerodynamic
and structural properties defined at various points along the beam. The control surfaces
are also represented as lift and moment derivatives along the length of the wing. The
aerodynamic effects are modelled with a lifting line model using the Prandtl-Gluaert
compressibility transformation and wing aligned trailing vorticity [15].

Figure 1 shows the model in the ASWING environment. The sensors are defined



Figure 1. UAV in ASWING environment with prescribed sensors along wing.

at specific locations along the wing and their function is determined by the specified
output variable. Various collocated sensors have been used to obtain acceleration, strain,
displacement, and angle of attack data. The model has 18 sensors distributed along
its wing, 15 along the main axis and 3 along the trailing edge. The indicative results
presented in this work use the acceleration data from sensor 18 along the trailing edge.
The dynamic simulation from ASWING outputs a time series signal of the data to which
identification techniques are applied. The software, in addition, has the capability to
complete modal analysis of the input model and identify the modal frequencies and
flutter speed [16]. This capability allows identification of the relevant modes to wing
vibration that may be captured by the sensors. The flutter speed is determined from
this aeroelastic analysis to be at 160 ft/s. For each flight state probed, the airspeed,
attitude and sensor data are collected. The flight states captured here maintain a range
of airspeeds and damage sizes. The damage is introduced as a reduction in the local
stiffness of up to 24% in a beam element located near the wing root. Table I lists the
modal frequencies for the considered damage cases, indicating the limited effect of the
damage on the system dynamics.

The sampling frequency was set at 100 Hz. The signal length used for analysis is
a 30 s section during steady state free-flight of the UAV in simulation. The accelera-
tion signals are filtered through a low pass Chebyshev Type II filter to cut off the higher
frequency data and downsampled, reducing the bandwidth to 25Hz. The signal prop-
erties and simulation parameters are summarized in Table II. A set of flight states are
considered with airspeeds ranging from 40 to 150 ft/s with an increment of 10 ft/s and
damage size variation of 0% to 24% with an increment of 4%. The combination of both
parameters results in a grid of 84 unique flight states. White-noise excitation signals to
the wing are stimulated through minor flap deflection.

TABLE I. SYSTEM MODAL FREQUENCIES (V = 150 FT/S)
Mode 0% 4% 8% 12% 16% 20% 24%

1 3.9155 3.9130 3.9104 3.9077 3.9051 3.9023 3.8981
2 5.0384 5.0310 5.0235 5.0157 5.0077 4.9995 4.9868
3 6.4785 6.4746 6.4706 6.4666 6.4625 6.4584 6.4520
4 7.3482 7.3367 7.3252 7.3136 7.3019 7.2902 7.2724
5 7.4281 7.4288 7.4294 7.4299 7.4303 7.4307 7.4309



Figure 2. Non-parametric power spectral density magnitude estimates versus airspeed for the
healthy (left) and maximum-damage size (24% reduced stiffness) states (right).

NON-PARAMETRIC IDENTIFICATION

Non-parametric analysis is conducted on 30-second-long acceleration signals using
Welch-based power spectral density (PSD) estimation (MATLAB function pwelch.m).
The method applies a Hamming window, with a segment length of 1000, to the data with
98% overlap. This identification process allows for extraction of useful information on
the system dynamics from the sensor signals, also serving to set a precedent for the
parametric analysis.

In Figure 2, the PSD estimates are presented for increasing airspeed in the range [40�
150] ft/s and a specified value for damage size. The left subplot indicates the PSD for
the healthy state (0% reduced stiffness) and the right subplot the corresponding PSD for
maximum damage size (24% reduced stiffness). The onset of flutter due to the coupling
of modes is expected for the UAV model as the airspeed increases. Both subplots indicate
the convergence of modes in the lower frequency range [0 - 10] Hz. Strong frequency
responses observed at approximately 5 and 8 Hz coalesce at 6Hz, providing an indication
of flutter. In addition, the PSD of the damaged state reveal the effect of damage on the
structure through increased amplitude of vibration approaching the flutter speed.

Figure 3 presents the PSD estimates for two indicative airspeeds, 60 ft/s and 150
ft/s, versus increasing damage size in the range [0 - 24] %. Comparing both subplots,

TABLE II. SIGNAL PARAMETERS
Sampling frequency: fs = 100 Hz
Filter: Low pass Chebyshev Type II
Signal bandwidth: 25 Hz
Airspeed: 40� 150 ft/s with 10 ft/s increment
Damage Size: 0� 24 % with 4% increment
Total number of states: 84
Signal length in samples (s): N = 3000 (30 s)



Figure 3. Non-parametric spectral density magnitude estimates versus damage size for set
airspeeds 60 ft/s (left) and 150 ft/s (right).

the PSD amplitude is greater, as expected, for the higher airspeed (V = 150 ft/s, right
subplot). The wing aeroelastic frequencies remain more or less constant across different
damage sizes which is in agreement with Table I. The small size of the damage would
explain the negligible effect it has on the dynamics of the UAV.

GLOBAL MODEL IDENTIFICATION UNDER VARYING STATES

Global model identification using the available signals involves baseline model iden-
tification for a single state and global model identification for the entire range of states.
The model identification involves model order selection through autoregressive (AR)
models and model parameter estimation through the VFP framework. The resulting
models are VFP-AR models, which combine both AR and VFP model structures to as-
sist in determining the model parameters as explicit functions of the flight states that in
this case are defined by the airspeed and the structural health state.

An AR model of order n is fit to the output sensor data for one single flight state
to determine a suitable model order to capture the system dynamics. The AR model is
defined as [17]:

y[t] +
nX

i=1

ai · y[t� i] = e[t] e[t] ⇠ iidN
�
0, �2

e

�
(1)

with normalized discrete time t, output vibration signal y[t], AR polynomial order n,
AR model parameters ai, stochastic model residual e[t], which is white, Gaussian, iden-
tically independently distributed with zero mean and variance �2

e . The identification
process estimates successive AR models of increasing order to identify the best fit for
the signal data (MATLAB function arx.m). The model order is selected using several
validation methods including the Bayesian Information Criterion (BIC), residual sum of
squares normalized by signal sum of squares (RSS/SSS), frequency stabilization plots
and residual autocorrelation functions [17, 18].



The model order determined from examining individual flight state cases enables
development of the global VFP-AR model. This model uses functional data pooling
techniques to combine data from all the flight states for model estimation. The VFP-AR
model has the form [11, 12, 18]:

yk[t] +
nX

i=1

ai(k) · yk[t� i] = ek[t] (2)

ek[t] ⇠ iidN
�
0, �2

e(k)
�

k 2 R2, E{eki,j [t] ·ekm,n [t�⌧ ]} = �e[ki,j, km,n] ·�[⌧ ] (3)

with normalized discrete time t, output vibration signal yk[t], designated AR polynomial
order n, AR model parameters ai(k), stochastic model residual ek[t], which is white,
Gaussian, identically independently distributed with zero mean and variance �2

e(k). k
indicates the flight state vector which specifies k1 and k2, the specific airspeed and dam-
age states respectively, for each simulated experiment. E represents the statistical expec-
tation, �[⌧ ] the Kronecker delta, and �e[ki,j, km,n], the covariance of the residual series.

The VFP model parameters ai(k) are modeled as explicit functions of the flight
vector k (which contains the airspeed and damage size components):

ai(k) =
pX

j=1

ai,j ·Gj(k) (4)

with Gi(k) representing the mutually independent basis functions (polynomials of two
variables) that span the p-dimensional functional subspace determining the AR parame-
ters [18].

The VFP-AR model of equations (2)–(4) is parameterized in terms of the estimated
parameter vector ✓ = [ a1,1 a1,2 . . . ai,j ]T 8 k to be estimated from the available sig-
nals. Using the formulated linear regression framework the unknown parameter vector
✓ can be estimated based on minimization of the Ordinary and Weighted Least Squares
(OLS/WLS) criteria [18].

System Modeling for a Single State

The AR model identification process shown here is for a single airspeed (60 ft/s) and
the largest damage size case (24% stiffness reduction). Initial AR model order selection
for a single flight state utilizes the Bayesian Information Criterion (BIC) and Residual
Sum of Squares (RSS) over Signal Sum of Squares (SS) criteria, leading to an AR(30)
model. The frequency response function (FRF) of the selected parametric model is pro-
vided in Figure 4. Similar to the non-parametric PSD, this figure exhibits the FRF for
four different damage cases comparing a lower (60 ft/s) and near-flutter (150 ft/s) air-
speed. From Figure 4 it can be readily observed that the effect of damage is quite small
in terms of the FRF magnitude for both airspeeds.

System Modeling under Multiple Flight and Structural States

Global model identification uses the VFP-based parametric stochastic identification
method. The modelling is based on 84 (12 airspeeds ⇥ 7 structural states) operating



Figure 4. Parametric AR-based frequency response comparison for different damage cases and
airspeeds of 60 ft/s (left) and 150 ft/s (right).

Figure 5. Indicative VFP-AR(30)10 model parameter evolution versus airspeed (left subplots)
and damage size (right subplots). The mean value of the parameters is depicted in blue, while

the 99% confidence intervals are shown in red.

states simulated for sensor number 18. Airspeed and damage size increments used are
�k1 = 10 ft/s and �k2 = 4%, respectively. The VFP modelling process uses the conven-
tional AR model order selected from the single flight state modelling. The functional
subspace is selected based on the BIC and RSS/SSS criteria for increasing functional
basis dimensionality. The minimum value of the basis dimensionality is chosen based
on the frequency response that agrees with the non-parametric analysis. With these con-
siderations, the selected functional subspace dimensionality is 10, with RSS/SSS value
of less than 0.1%. The VFP model identification results in a VFP-AR(30)10. The final
VFP model selected represents the system response over the entire range of flight states.

The general variation of the estimated parameters is provided in Figure 5, which
includes indicative 2-dimensional VFP-AR model parameters versus with airspeed and



Figure 6. Indicative parametric FRF magnitude results based on the VFP-AR(30)10 global
model versus increasing damage size for set airspeed of 60 ft/s (left) and 150 ft/s (right).

Figure 7. Indicative parametric FRF magnitude results based on the VFP-AR(30)10 global
model versus airspeed for the healthy (left) and maximum damage (right) structural states.

damage size. The 99% confidence intervals for the model parameters are also indi-
cated as they reflect the modeling uncertainty. Figure 6 presents the frequency response
magnitude varying with damage size for two indicative airspeeds. The left subplot cor-
responds to a set airspeed of 60 ft/s and the right to 150 ft/s. The lower airspeed shows
strong aeroelastic modes around 4 Hz, 8 Hz, and in the 10� 12 Hz range. For 60 ft/s the
effect of damage seems limited to the mode separation at 9 Hz for 4% damage size. In
the case of the higher airspeed (150 ft/s) we observe significant changes in the aeroelastic
frequencies compared to 60 ft/s. The effect of damage is evident in the mode separation
at 17.5 Hz for 8% damage size. In addition, for the case of the 4% damage size the
mode separation around 20 Hz can be observed. The increased damage sensitivity in the
higher frequencies is expected near the flutter speed.

Utilizing the identified VFP-AR model, FRF magnitudes as a function of airspeed are
provided in Figure 7 for the healthy (left subplot) and maximum damage (right subplot)
structural states. The frequency resolution is 0.01 Hz and the airspeed resolution is
0.1 ft/s. This parametric response also clearly indicates the approach of flutter. As the



airspeed increases, the convergence of modes in the lower frequency range < 10 Hz is
observed. The modes around 4 Hz and 8 Hz begin to converge with increasing airspeed
towards 6 Hz, which is the expected flutter frequency based on the ASWING model. The
magnitude of the response also increases in intensity towards the flutter speed as seen
in both subplots. Comparing these figures to the corresponding from the non-parametric
analysis, it is evident that the accuracy of the VFP parametric model outperforms the
non-parametric counterparts.

CONCLUDING REMARKS

This work aims to explore a recently-introduced stochastic identification framework
for data-driven awareness under varying operating states defined by multiple airspeeds
and structural health states. Using a low-fidelity aeroelastic software, ASWING, a sim-
plified model of a UAV was established and dynamic simulation data were collected
under 84 flight states. Parametric and non-parametric system identification techniques
were applied to the collected data resulting in development of a final global VFP model
that can accurately represent the aeroelastic response and system dynamics under the ad-
missible states. The identified VFP model is characterized by functional dependencies
between the flight state and model parameters, i.e. the model parameters are functions
of the airspeed and the damage size. By using the entire data set, the process captures
cross-correlations between different flight states, estimating parameters as a function of
the flight state and reducing the number of overall estimated parameters. The single
model developed accurately captures the system state for the entire range of airspeed
and damage size explored, eliminating the need for data representing each individual
state. Comparisons of the parametric and non-parametric analysis prove the accuracy
of the identified stochastic global VFP model. In addition, we have determined that
ASWING is a useful tool for fast and efficient analysis of a system model using the
global modelling technique.

This work only uses data from one sensor location and type to identify a model. Fu-
ture development could incorporate different sensor types and locations in this process.
ASWING, being a low-fidelity platform only provides an approximation of the UAV
behavior, thus higher fidelity models may be also employed for further investigation.
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