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their operation in dynamic environments and multiple operating conditions under uncer-
tainty [1–3]. In addition, even in the case of constant or controlled environments and
“hotspot” monitoring, such methods face difficulties in quantifying damage due to the
uncertainty in the damage propagation patterns and the variation in the locations of the
sensors within nominally identical structural components [1]. When it comes to dam-
age quantification, the currently-employed approaches are of deterministic nature, i.e.
they do not allow for the extraction of appropriate confidence intervals for damage size
estimation, and require the collection and analysis of an immense amount of baseline
data from a population of identical structures to account for changing conditions. Thus,
active-sensing SHM damage detection and quantification methods are still lacking the
required confidence for large-scale applicability and approaches that are both accurate
and robust need to be developed, all without increasing data footprint.

Statistical time series methods have been widely used for vibration-based damage
detection, localization, and quantification within a probabilistic framework [4–6]. How-
ever, their use in active-sensing guided-wave SHM has been limited. In a recent study
[2], the authors have proposed the use of non-parametric time series models and cor-
responding statistical hypotheses tests for probabilistic damage detection via the use of
Power Spectral Density (PSD) estimators of wave propagation signals. Although such
non-parametric models have the advantage of simplicity, their potential to effectively
tackle the more elaborate task of damage quantification is limited. Therefore, advanced
statistical learning and inference methods are necessary to address the probabilistic quan-
tification of damage in the face of uncertainty. In this context, stochastic modeling via
Gaussian Process Regression Models (GPRMs) has been used for regression and clas-
sification applications within the machine learning community [7, 8], as well as for the
identification of structural dynamics under varying operating conditions [9] and surro-
gate modeling of computationally-expensive high-fidelity models [10, 11].

In this study, a novel active-sensing probabilistic damage detection and quantifica-
tion method is proposed based on the integration of non-parametric time series models
with stochastic GPRMs. The fundamental premise of the method is that the incorpo-
ration of optimized actuator-sensor path information, in the form of properly-selected
damage indices (DIs), in the GPRM-based statistical learning for damage quantifica-
tion can provide accurate and robust damage size estimation with confidence intervals.
First, non-parametric Short-Time Fourier Transform (STFT) models are applied in order
to identify the actuator-sensor wave propagation paths that intersect damage, thus lead-
ing to the selection of the most damage-sensitive signal paths in order to optimize the
amount of information being fed into the GPRM-based statistical learning phase. Next,
after the GPRM training phase has been completed via the use of DIs obtained from
the paths selected in the first step under different damage sizes, GPRMs are used with
fresh DI values in order to estimate their corresponding damage size along with statisti-
cal confidence intervals, thus fulfilling the damage quantification part of this study. The
use of GPRMs allows for the accurate prediction of damage size even when a single

sensor-actuator path is used for training. Furthermore, multivariate GPRMs, that utilize
the appropriate number of paths as determined in the first step, are shown to exhibit nar-
rower damage confidence intervals when compared to their univariate and multivariate
with randomly selected paths, counterparts. To the authors best of knowledge, this is the
first time GPRMs are utilized for the quantification of damage in active-sensing SHM.



GAUSSIAN PROCESS REGRESSION MODELS

The problem of data-based statistical learning for inference and prediction can be
tackled via stochastic GPRMs that can be used for both regression and classification and
take the form of a full predictive distribution [7, 9]. In the present work, GPRMs are
employed to “learn” the relationship between damage indices and damage size within
a Bayesian probabilistic framework. In particular, the model output g(x), i.e. damage
size, is represented via a functional relationship of latent variables f(x) from a Gaussian
process of the input(s) (scalar or vector; also referred to as covariates or predictors) x,
i.e. the DI values of actuator-sensor signal propagation paths, based on a Bayesian linear
regression model [7]:

g(x) = f(x) + h(x)T�, where f(x) ⇠ GP(0, k(x,x0)). (1)

In these equations, k(x,x0) designates the covariance function (kernel) of the zero-mean
Gaussian process f(x). The D-dimensional input vector x is transformed into a p-
dimensional feature space using the set of basis functions h(x), that along with the
coefficients (parameters) vector �, to be inferred from the data, represent the mean of
the model. Incorporating explicit basis functions in the GPRM allows for the complete
specification of the Gaussian process mean, thus enabling interpretability of the model
and convenience of expressing prior information.

Fitting such a GPRM includes the joint optimization over the parameters � with the
kernel hyperparameters, which are free parameters that the covariance function depends
upon, and are specific to the type of function being used [7]. Thus, given a training data
set {(xi, yi), i = 1, 2, . . . , n}, the output (herein the damage size) can be modeled via
the vector form of the probabilistic GPRM:

P (y|f ,X) ⇠ N(y|f +H�, �2
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Here, it is assumed that the observed values y differ from the function values g(x)
by additive zero-mean Gaussian noise with variance �2. Essentially, the use of GPRMs
instead of regular linear models, entails a joint Gaussian distribution upon the regres-
sion parameters, thus providing confidence bounds for the prediction/estimation pro-
cess [7, 9]. GPRMs also involve the transformation of a nonlinear problem in the orig-
inal input space into a linear one in a high-dimensional feature space using the “kernel
trick” [7,12]. This allows for capturing uncertainties that may stem from operational and
environmental variability [9].

In this study, the input (predictor) matrix (X) comprises of DI values obtained from
both single and multiple actuator-sensor wave propagation paths (n is the total number
of observations and D is the number of actuator-sensor paths included in the model)
and is used to train univariate and multivariate, respectively, GPRMs for an aluminum
notched plate, which are then utilized to estimate the notch size y.



Figure 1. The notched Al plate experimental coupon used in this study.

THE EXPERIMENTAL SETUP

A 152.4⇥254 mm (6⇥10 in) 6061 Aluminum coupon (2.36 mm/0.093 in thick) with
a 12.7 mm (0.5 in)-diameter hole in the middle was used in this study. Using Hysol EA
9394 adhesive, 6 lead zirconate titanate (PZT) piezoelectric sensors (type PZT-5A from
Acellent Technologies, Inc), having a diameter of 3.175 mm (1/8 in) and a thickness
of 0.2 mm (0.0079 in), were attached to the Al plate as shown in Figure 1. A 2 mm
(0.079 in) notch was cut extending from the hole of the Al plate using an end mill, then
elongated in 2-mm increments up to 20 mm (0.79 in), for a total of 10 damage cases,
using a 0.81 mm (0.032 in) handsaw.

A series of 5-peak tone-burst actuation signals with 90 V amplitude peak-to-peak
and various center frequencies were generated in a pitch-catch configuration. A total of
20 data sets per structural case (11 cases in total; one healthy and 10 damage cases) were
collected at a sampling rate of 24 MHz using a ScanGenie III data acquisition system
(Acellent Technologies, Inc). The data were then exported to MATLAB for analysis1.

RESULTS AND DISCUSSION

In the context of active-sensing using guided waves, there are often multiple sensors
installed at the area being monitored, and every actuator-sensor path in the network has
to be examined in order to assess the integrity of the component, which may compromise
the accuracy and robustness of the analysis process. Figure 2 panels a and b show the
signal received at sensor 6 when sensor 2 was actuated (see Figure 1). As shown, because
this is a damage-intersecting path, a significant change can be observed in the signals as
notch size increases. Exploring actuator-sensor paths that do not intersect damage, such
as path 1-5 (Figure 2 panels c and d) one can observe that the received signals at sensor
5 exhibit a significantly smaller change in amplitude with notch size. Thus, information
from damage-non-intersecting actuator-sensor paths, such as path 1-5, naturally carry

1Matlab version R2018a.



Figure 2. Indicative signals for the notched Al plate. (a) Full signal received at sensor 6 when
sensor 2 is actuated, and (b) its first-arrival wave packet. (c) Full signal received at sensor 5

when sensor 1 is actuated, and (d) its first-arrival wave packet.

less information when it comes to damage quantification compared to paths that intersect
damage. In order to further support this point, one state-of-the-art DI from the literature
[1], was explored to see how damage intersection affects damage quantification using
the DI approach. Figure 3 panels a and b show the evolution of the selected DI with
notch size for indicative damage-intersecting (path 2-6) and damage-non-intersecting
(path 1-5) paths (see Figure 2), respectively. From Figure 3, it becomes apparent that the
performance of damage quantification models may be significantly affected by the type
of information and corresponding data employed to train them.

In this sense, a statistical method was recently developed to assess which actuator-
sensor paths intersect damage and which do not, as a preliminary filter for damage
quantification models, where only data sets carrying the most important information
are processed [2]. In this method, an STFT-based non-parametric model is used and
damage-intersecting paths are selected according to the PSD change of the path due to
damage. Briefly, damaged areas that provide a reduction in guided-wave impedance
(reduce wave energy attenuation that would otherwise occur in a healthy component)
would allow more signal energy to pass, while less energy would pass if the damaged
area causes the increase in wave impedance. Based on these observations, the developed



Figure 3. The evolution of the damage index [1] as applied to indicative actuator-sensor paths:
(a) damage-intersecting path 2-6 and (b) damage-non-intersecting path 1-5.

method can also identify damage-non-intersecting paths. Figure 4 shows indicative re-
sults of applying such a model2 onto the first arrival wave packets of the signals shown in
Figure 2. As can be seen in Figure 4a, because the notch is a damage of the second type
mentioned above, a decrease in the median/mean STFT-based PSD value with increas-
ing notch size can be observed for path 2-6. On the other hand, the increase in the PSD
with notch size for the damage-non-intersecting path (see Figure 4b) can be explained
in terms of the energy being scattered off the notch in damage-intersecting paths when
sensor 1 is actuated; those scattered waves of energy go to sensors that are not directly
on the path of the notch. Thus, using this approach, it is possible to identify damage-
intersecting actuator-sensor signal propagation paths that are expected to contain the
most valuable information in terms of damage sensitivity. This feature can be utilized
directly in increasing the accuracy and robustness of damage localization and quantifi-
cation algorithms. In this study, it is applied to improve the performance of GPRMs for
damage quantification.

Damage Quantification via Univariate GPRMs

For the probabilistic damage quantification task, GPRMs3 for indicative damage-
intersecting and non-intersecting paths were trained using 15 DI values for every struc-
tural case (healthy case and notch sizes from 0 mm to 20 mm), thus 165 observations
were used to train the model (11 structural cases ⇥ 15 data sets). Next, 5 DI values
per case were used to estimate the notch size (55 observations) and assess the method.
All models presented in this study utilized linear basis functions and exponential kernel
functions in the estimation process. GPRMs were first implemented for one actuator-
sensor path at a time, i.e. GPRMs based on a single input variable which is the DI
set of that specific path, in order to assess their ability to quantify damage using a sin-
gle path. Figure 5 shows the results of applying univariate GPRMs onto the indicative

2Matlab function spectrogram.m (window size: 400-900; nfft: 960; noverlap: 95%)
3Matlab functions fitrgp.m (n: 11 ⇥ 15 data sets for training; basis function: linear; kernel function:

exponential) and predict.m (n: 11 ⇥ 5 data sets for validation/estimation)



Figure 4. Indicative results of applying the non-parametric model onto actuator-sensor paths.
Short Time Fourier Transform (STFT) plots for the signals of (a) damage-intersecting path 2-6

and (b) damage-non-intersecting path 1-5.

damage-intersecting (panel a) and non-intersecting (panel b) paths shown in Figure 2.
The estimated damage sizes, using 5 calculated DI sets that were not used in model
training, are presented as red stars; the actual damage sizes are depicted in blue circles.
An important conclusion from this figure is that the use of a damage-intersecting path in
GPRM significantly improves the damage size estimation accuracy compared to using
signals from actuator-sensor paths that do not directly intersect damage. Thus, using
the non-parametric model described in the previous section, damage-intersecting paths
can be selected and fed into both univariate and multivariate GPRMs in order to get an
accurate estimation of damage size.

Damage Quantification via Multivariate GPRMs

In this section we investigate the performance of multivariate GPRMs, i.e. using DIs
obtained from several wave propagation paths as GPRM inputs, in terms of probabilistic
damage quantification. Indicative GPRMs were trained using 15 data sets, but this time
incorporating DIs from multiple paths, hence multivariate models, where each DI repre-
sents an input variable. The aforementioned non-parametric model used for identifying
damage-intersecting paths was coupled with multivariate GPRMs in order to assess the
performance of quantification when using paths that contain the most accurate infor-
mation about damage size. Figure 6 panels a and b show indicative damage estimation
results based on GPRMs trained via two sets of three randomly-selected paths, where the
real notch size, all 5 estimated notch sizes (from 5 DI sets per case), and 95% confidence
intervals for each individual structural case are shown. Figure 6c shows the same plot for
three paths that were marked as damage-intersecting by the STFT model. An apparent
difference between the latter panel and former two is the significantly improved accuracy
of the notch size estimation. Hence, prior selection of damage-intersecting paths allows
for both improved accuracy and narrower confidence intervals.

In order to explore the quantification process using multiple paths, selected both
blindly and based on the STFT model, the standard deviation of the estimated notch



Figure 5. Indicative univariate GPRM estimation plots trained using 5 DI sets of (a)
damage-intersecting path 2-6, and (b) damage-non-intersecting path 1-5.

and the mean estimation errors were used as metrics for assessing the performance of
multivariate GPRMs. Figure 7a presents the mean of the standard deviation of the es-
timated damage sizes as more paths are included in the training phase. The blue bars
are for wave paths chosen blindly, i.e. with no regard to the nature of the path in terms
of damage intersection. Although there are 30 paths available, the standard deviation
mean levels off after 14 paths are used to train the model, so up to 16 paths are shown.
Red bars indicate paths marked as damage-intersecting by the non-parametric model,
which were 12 in this case. As shown, using as few as 2 selected paths for training the
model, the standard deviation mean decreases by more than 35% compared to the blind
(random) path selection. As the number of training signal paths (DI data sets) increases,
the models trained via paths selected by the non-parametric method converge to a lower
mean standard deviation, even at 12 paths. Using more than 12 paths, the mean standard
deviation decreases until it levels off at 14 paths. Thus, it can be concluded that the
damage size estimation confidence levels become narrower when only selected paths are
utilized in training the GPRM, thus leading to more accurate damage quantification.

Figure 7b shows the mean estimation error for all notch sizes versus the number
of incorporated paths when paths, and therefore DI data sets, are chosen blindly or via
the non-parametric model. Again, the estimation error when the model is trained based
on selected paths is significantly smaller compared to the blind selection of paths with
no regard to their nature. As expected, the blue and red estimation error percentages
converge to similar values as the number of training paths increases.

CONCLUDING REMARKS

In this work, an active-sensing probabilistic damage quantification method based
on the integration of non-parametric time-series and GPRMs was introduced. Non-
parametric STFT models were used in a notched Al plate to pinpoint damage-intersecting
paths that carry damage-size information. Both uni- and multivariate GPRMs were
trained using single/multiple actuator-sensor paths from 15 data sets, and then used to es-
timate damage size for 5 data sets. It was shown that the use of damage-intersecting paths



Figure 6. Indicative damage size estimation boxplots based on multivariate GPRMs: (a and b) 5
DIs used for two sets of three randomly selected paths; (c) 5 DIs used from three paths indicated

by the non-parametric model.

for univariate GPRM training results in increased damage estimation accuracy. Further-
more, using paths marked by the non-parametric model as damage-intersecting to train
multivariate GPRMs, it was observed that damage size estimation confidence intervals
become significantly narrower compared to using paths blindly- (randomly-) selected.
The reliability of the proposed damage detection and quantification method was assessed
using the mean of the estimation standard deviation, as well as the mean estimation er-
ror. It was shown that using as few as two properly-selected actuator-sensor paths for
training multivariate GPRMs, the estimation standard deviation mean was much lower
than that for multivariate GPRMs trained using randomly-selected paths. The results
of this study indicate the potential of coupling non-parametric time-series models with
stochastic GPRMs for improved learning towards probabilistic damage quantification.
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Figure 7. Reliability quantification for the multivariate GPRMs trained using selected and blind
(random) paths. (a) Mean of estimation standard deviations for 2-16 paths. (b) Estimation error

percentage for 2-12 paths.
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