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waves [3,7]. It has been reported that changes in response signals induced by the chang-
ing EOC can be of the same order of magnitude as the ones caused by damage itself,
and therefore, may mask the presence of damage or hinder the damage diagnosis pro-
cess [3,8,9]. This has been recognized as a major challenge within the SHM community
and has been subject of significant research efforts in the recent years [1, 3, 5, 8, 10, 11].

When it comes to active-sensing SHM approaches, piezoelectric transducers are ex-
tremely versatile in the sense that they can be used both as actuators, i.e., generate strain
from applied voltage, and sensors, i.e., generate voltage from sensed strain. In addi-
tion, piezoelectric sensors can be used to gather structural information originating from
both broadband structural vibrations and narrowband acousto-ultrasonic guided waves.
In the state-of-the-art SHM literature, the vast majority of guided-wave-based methods
employ piezoelectric transducers to generate deterministic narrowband ultrasonic tone-
burst waves that propagate long distances on structural components and are used for local
damage detection, localization and quantification [3, 8]. Such methods are sensitive to
local damage as well as EOC. On the other hand, random (stochastic) broadband actu-
ation is used mainly in lower frequency ranges to enable corresponding SHM methods;
the premise of such vibration-based approaches is that damage can be detected when it
affects the global dynamic response of the structure [2, 5, 12]. This family of methods is
less sensitive to local damage, but at the same time more robust to EOC.

The main objective of this work is the investigation and numerical assessment of
random broadband high-frequency actuation for active-sensing SHM via stochastic time-
series AutoRegressive (AR) and Functionally Pooled (FP) models [12,13], and the com-
parison with traditional deterministic tone-burst actuation under varying temperature.
The main hypothesis examined in this work is that random broadband actuation, within
the range of 100 KHz to 1MHz, may provide additional structural information due to
the excitation of additional vibration modes compared to deterministic waves with the
potential cost of requiring more elaborate signal processing, modeling, and diagnostic
methods. An additional advantage of the broadband actuation is its potential for simulta-
neous, rather than serial, data acquisition that may enable real-time diagnostics for SHM.
According to the authors’ best of knowledge, this is the first study that explores the use
of random high-frequency broadband actuation for active-sensing SHM.

THE NUMERICAL MODEL, SIMULATIONS AND SIGNALS

In order to investigate and compare the high-frequency deterministic and stochastic
actuation approaches, a high-fidelity Finite Element Model (FEM; ABAQUS 2018) of
a thin aluminum plate was used under varying temperature (Figure 1). Three separate
structural parts were created, namely the aluminum plate, adhesive, and two piezoelec-
tric Lead Zirconate Titanate (PZT) disk transducers. For the deterministic simulations,
a total time period of 0.0001 s and a time step or increment of 1e � 7 s were used. For
defining the actuation, a 5-peak-tone burst signal with a center frequency of 250 KHz
was used. For the stochastic actuation, a time period of 0.0002 s and a time step of
1e � 7 s were used with a broadband white-noise actuation frequency of 2 MHz (fre-
quency bandwidth of 1 MHz). A detailed description of the FEM can be found in [3].

Figure 2 shows the deterministic input signal (left subplot) and the corresponding
response signals (right subplot) within the 50 � 100 oC range with 5 oC increments.



Figure 1: The FEM model used for deterministic and stochastic actuation in the temper-
ature range (50� 100 oC).

Figure 2: (left) Deterministic input, i.e. 5-peak-tone-burst, used in the FEM simulations
and (right) deterministic output, i.e., guided waves, obtained from the PZT sensor for
different temperatures (50� 100 oC).

The first wave packet in the output signal ranging from 0.3 to 0.5 seconds represents
the symmetric S0 mode and the second wave packet ranging from 0.5 to 0.7 seconds
represents the antisymmetric A0 mode.

Figure 3 (left panel) shows the magnified view of the S0 mode. It is observed that
from 50�75 oC, the amplitude of the S0 mode gradually increases and reaches a peak at
75 oC. After that, from 80�100 oC, the amplitude starts to gradually decrease. However,
in Figure 3 (right panel) which shows the magnified view of the anti-symmetric mode
or A0 mode, the amplitude of the A0 mode gradually decreases from 50 � 100 oC. This
gradual decrease may be due to the softening of the adhesive connecting the PZT to
the aluminum plate. It could be further implied that the S0 mode is less affected by this
softening as the amplitude increases up to 75 oC and then decreases when the temperature
is sufficiently high. However, the amplitude of the A0 mode only decreases with the
increase in temperature. In both cases, the signal shifts to the right, i.e. there is a change
in time of flight of the signal due to the temperature change.

In order to gain a better understanding of the different structural states under the
influence of temperature, and to properly model them, it is necessary to excite as many
vibrational modes as possible. One way to perform this task is to use a broadband



Figure 3: Close-up views of the first wave packet (S0 mode, left panel) and second wave
packet (A0 mode, right panel) indicate the variation of the signal amplitude and phase
with increasing temperature.

Figure 4: Representative stochastic zero-mean white noise actuation signal used in the
FEM simulations (left) and corresponding PZT response signal for 25 oC (right).

random excitation signal in order to excite the vibrational modes within the bandwidth
of interest. A high-frequency white-noise zero-mean signal (N ⇠ (0, �2), with �2 = 10)
a bandwidth of 1 MHz was applied to the piezoelectric actuator and the response signal
was collected from the piezoelectric sensor for different temperatures (Figure 1). The left
panel in Figure 4 depicts a representative white-noise input signal while the right panel
shows the corresponding output signal. A total of 16 simulations were performed from
25 oC to 100 oC with a 5 oC increment. In each case, a different white noise realization
was used and the corresponding output signal was recorded in the time domain. In the
next section, the modeling task under various temperatures is presented.

STOCHASTIC IDENTIFICATION UNDER VARYING TEMPERATURE

The identification of appropriate stochastic models using the available response sig-
nals under varying temperatures is considered via (i) a multi-model approached based on
time-series AutoRegressive (AR) models where each model represents the dynamic re-



sponse under a single temperature, thus one distinct model is identified for the obtained
signal under each temperature, and (ii) a “global” modeling approach that leads to single
Functionally Pooled (FP) model for all considered temperatures. The advantage of this
approach is that it allows for model parameters to be represented as explicit functions of
the temperature.

An AR(n) model is of the following form [14]:

y[t] +
nX

i=1

ai · y[t� i] = e[t] e[t] ⇠ iidN
�
0, �2

e

�
(1)

with t designating the normalized discrete time (t = 1, 2, 3, . . . with absolute time being
(t�1)Ts, where Ts stands for the sampling period), y[t] the measured vibration response
signals as generated by the piezoelectric sensors of the structure, n the AR polynomial
order, and e[t] the stochastic model residual (one-step-ahead prediction error) sequence,
that is a white (serially uncorrelated), Gaussian, zero mean with variance �2

e sequence.
The symbol N (·, ·) designates Gaussian distribution with the indicated mean and vari-
ance, and iid stands for identically independently distributed.

The global FP-AR modeling involves consideration of all admissible structural states,
in this case different temperatures. A total of M1 experiments are performed (in this
case via the FEM model), with M1 designating the number of simulations under various
temperatures. Each simulation is characterized by a specific temperature k1, with the
complete series covering the required range of the variable, say [k1

min, k
1
max], via the

discretizations {k1
1, k

1
2, . . . , k

1
M1

}. A proper mathematical description of the global dy-
namics under varying structural states may then be obtained via the FP-AR(n)p model
of the following form [13, 15]:

yk[t] +
nX

i=1

ai(k) · yk[t� i] = ek[t] (2)

ek[t] ⇠ iidN
�
0, �2

e(k)
�
, k 2 R, E{eki [t] · ekj [t� ⌧ ]} = �e(ki, kj) · �[⌧ ] (3)

with n designating the AR order, yk[t] the piezoelectric sensor’s response signal, and
ek[t] the model’s residual (one-step-ahead prediction error) sequence, that is a white
(serially uncorrelated) zero mean sequence with variance �2

e(k). This may potentially be
cross-correlated with its counterparts corresponding to different simulations (different
k’s). The symbol E{·} designates statistical expectation, �[⌧ ] the Kronecker delta (equal
to unity for ⌧ = 0 and equal to zero for ⌧ 6= 0), N (·, ·) Gaussian distribution with the
indicated mean and variance, and iid stands for identically independently distributed.
The covariance of the residual series is designated as �e(ki, kj), with �e(k, k) = �2

e(k).
The FP model parameters ai(k) are modeled as explicit functions of temperature k:

ai(k) =
pX

j=1

ai,j ·Gj(k) (4)

with Gi(k) representing the mutually independent basis functions that span the p-dimensional
functional subspace determining the AR parameters [13, 16]. The FP-AR model of
equations (2)–(4) is parameterized in terms of the estimated parameter vector ✓ =



Figure 5: Functional basis selection via the BIC (left) and RSS (right) criteria.

[ a1,1 a1,2 . . . ai,j ]T 8 k to be estimated from the available signals. The unknown
parameter vector ✓ can be estimated via minimization of the Ordinary and Weighted
Least Squares (OLS/WLS) criteria.

PARAMETRIC IDENTIFICATION RESULTS

The identification of the dynamics of the aluminum plate is based upon M = 16
sets of response data records that were collected from the PZT sensor under varying
temperature. In this case, simulation datasets were collected within [25, 100] oC with an
increment of 5 oC. The model order selection process led to an order n = 22 for the
AR and FP-AR models based on the Bayesian Information Criterion (BIC) and Residual
Sum of Squares (RSS) over the Signal Sum of Squares (SS) criteria. Model validation
took place via examination of the whiteness, or uncorrelatedness, and normality hypoth-
esis of the model residuals. The functional subspace selection is based on the BIC and
RSS/SSS criteria for increasing functional basis dimensionality. From Figure 5 it is ob-
served that the BIC criterion yields a minimum for four basis functions. As a result, the
first four Chebychev type II polynomials would be sufficient to represent the temperature
dependence of the FP model parameters. From the right subplot of Figure 5, the corre-
sponding RSS/SSS percentage is 0.062% which indicates a very accurate representation
of the high-frequency plate dynamics under varying temperature by the FP model. Thus,
the model identification process resulted in a FP-AR(22)4 model.

Figure 6 depicts indicative FP model parameters. Unlike the AR parameters, FP
model parameters are explicit functions of temperature. The solid blue line represents
the mean parameter values and the red lines represent the ±3 standard deviation confi-
dence intervals. Figure 7 shows the 3D Frequency Response Function (FRF) plot based
on the identified FP-AR(22)4 model. In this case, it may be observed that the different
frequencies vary smoothly with temperature. Different prominent vibrational modes for
the coupled plate-adhesive-PZTs dynamic system are clearly visible and the transition
of different frequencies with temperature is easily discernible. For example, it may be
readily observed that the major mode is located at 520 KHz and increases with tempera-
ture. In addition, the mode at 720 KHz shows again a very clear decrease with increasing
temperature.

Figure 8 presents the FRF magnitude plot for representative temperatures and their



Figure 6: Indicative FP model parameter variation versus temperature. The parameter
mean is shown as blue line and the associated ±3 standard deviation as red lines.

Figure 7: FRF magnitude versus temperature based on the identified FP-AR(22)4 model.

magnified view around 0.7 MHz based on the FP-AR(22)4 model. It may be observed
that as the temperature increases within the 60�78 oC range, an abrupt change in magni-
tude occurs at 68 oC while the peak gradually shifts to lower frequencies. From 60� 62
oC, the magnitude of the FRF gradually increases and then abruptly decreases at 68 oC.
After 68 oC, the magnitude gradually decreases with increasing temperature, however
there is a significant shift in frequency from 72 oC to 78 oC. In summary, the FP model
can provide essential insight in the way that the system dynamics vary with temperature.

DISCUSSION AND COMPARISON

Figure 9 shows the comparison of natural frequencies for different modes versus
varying temperature as identified by sixteen AR(22) (one model for each temperature)



Figure 8: FRF magnitude plot based on the identified FP-AR(22)4 model around 70 oC.

and a single FP(22)4 model. It is observed that the natural frequencies from the multi-
model AR approach oscillates with increasing temperature and they are not smooth
functions of temperature. In contrast, the natural frequencies from the FP model vary
smoothly, as expected, with increasing temperature. The overall trend for the FP and
AR natural frequencies follow the same trend apart from the sudden fluctuations of the
AR-based natural frequencies.

By comparing the deterministic trend of the 5-peak-tone-burst signals of Figure 3
with the corresponding FP-based FRF Figure 8, it may be observed that a certain simi-
larity exists between the time-domain deterministic signal and the temperature evolution
of the FP FRF magnitude based on the stochastic actuation signal. In both cases, with
the increase of temperature and as the temperature reaches a certain value, an abrupt
amplitude change occurs in the amplitude of the S0 signal, with a center actuation fre-
quency of 250 KHz, as well as in the magnitude of the FP-based FRF. As for example,
the amplitude of the S0 mode for time domain deterministic signal reaches a peak at 75
oC and then gradually decreases. Further analysis is the topic of ongoing work.

CONCLUDING REMARKS

The objective of this work was the investigation and numerical assessment of random
broadband high-frequency actuation for active-sensing SHM via stochastic time-series
models, and the comparison with traditional deterministic tone-burst actuation under
varying temperature. The main hypothesis examined in this work is that random broad-
band actuation, within the range of 100 KHz to 1MHz, may provide additional structural
information due to the excitation of additional vibration modes compared to determinis-
tic waves with the potential cost of requiring more elaborate signal processing, modeling,
and diagnostic methods. Deterministic 5-peak-tone burst and stochastic Gaussian white-
noise actuation signals were used in an FEM of an aluminum plate outfitted with two
PZT transducers under varying temperature. The random response signals were mod-
eled based on the class of stochastic global Functionally Pooled models for representing
the system dynamics under varying temperature, i.e., the model parameters are explicit
functions of temperature. The FP modeling approach was compared with a multi-model



Figure 9: Comparison of natural frequencies versus temperature as identified by a single
FP-AR(22)4 (red line) and sixteen AR(22) (black line) models.

approach that is based on a parametric AR representation for each temperature. The
global model offers certain advantages over the multi-model counterparts such as the
simultaneous use of all available data records in a single step, and the consideration of
potential cross-correlation among the data sets. In this way, the global model provides
improved accuracy and more compact representations of the system dynamics under
varying temperature. Finally, the trend in the amplitude and phase of the time-domain
deterministic (5-peak tone burst with center actuation frequency of 250 KHz) response
signals were compared with the FP parametric FRF.

Thus, it can be concluded that stochastic broadband high-frequency white-noise ac-
tuation signals and corresponding time-series modeling techniques can be employed for
inferring the structural dynamic response and modal characteristics. As these models are
statistical in nature, they inherently incorporate uncertainty in their prediction and may
eliminate the need of computationally expensive finite element modeling.
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