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ABSTRACT

The main objective of this work is the investigation and numerical assessment of
random (stochastic) broadband high-frequency actuation for active-sensing structural
health monitoring (SHM) via stochastic time-series models, and the comparison with
traditional deterministic tone-burst actuation under varying temperature. The main hy-
pothesis examined in this work is that random broadband actuation, within the range of
100 KHz to IMHz, may provide additional structural information due to the excitation
of additional vibration modes compared to deterministic waves with the potential cost of
requiring more elaborate signal processing, modeling, and diagnostic methods. Initially,
a deterministic 5-peak tone burst signal is used to excite guided-wave propagation under
varying temperature in an aluminum plate outfitted with piezoelectric disk transducers.
Next, the same setup is used to induce broadband high-frequency random actuation in
order to enable the stochastic modeling of the structure via AutoRegressive (AR) and
Functionally Pooled (FP) models. The results of the study indicate the potential of using
broadband high-frequency stochastic actuation for active-sensing SHM.

INTRODUCTION

The emphasis on increased safety, enhanced reliability, and improved performance
as well as to impart intelligence, such as self-sensing and self-diagnostic capabilities,
in future aircraft have made it indispensable to incorporate structural health monitor-
ing (SHM) systems into aircraft structures [1]. SHM refers to the process of damage
detection, localization, and quantification which may be collectively referred to as dam-
age diagnosis [2]. Several approaches have been proposed, such as vibration based and
guided-wave based methods, with the common challenge of properly addressing varying
environmental and operating conditions (EOC) [3-5].

Varying EOC, such as temperature, humidity, boundary/loading conditions and so
on, may affect the structural dynamics of a system, such as the natural frequencies and
damping ratios (modal parameters) [4—6] as well as the propagation of elastic/stress
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waves [3,7]. It has been reported that changes in response signals induced by the chang-
ing EOC can be of the same order of magnitude as the ones caused by damage itself,
and therefore, may mask the presence of damage or hinder the damage diagnosis pro-
cess [3,8,9]. This has been recognized as a major challenge within the SHM community
and has been subject of significant research efforts in the recent years [1,3,5,8,10, 11].

When it comes to active-sensing SHM approaches, piezoelectric transducers are ex-
tremely versatile in the sense that they can be used both as actuators, i.e., generate strain
from applied voltage, and sensors, i.e., generate voltage from sensed strain. In addi-
tion, piezoelectric sensors can be used to gather structural information originating from
both broadband structural vibrations and narrowband acousto-ultrasonic guided waves.
In the state-of-the-art SHM literature, the vast majority of guided-wave-based methods
employ piezoelectric transducers to generate deterministic narrowband ultrasonic tone-
burst waves that propagate long distances on structural components and are used for local
damage detection, localization and quantification [3, 8]. Such methods are sensitive to
local damage as well as EOC. On the other hand, random (stochastic) broadband actu-
ation is used mainly in lower frequency ranges to enable corresponding SHM methods;
the premise of such vibration-based approaches is that damage can be detected when it
affects the global dynamic response of the structure [2,5,12]. This family of methods is
less sensitive to local damage, but at the same time more robust to EOC.

The main objective of this work is the investigation and numerical assessment of
random broadband high-frequency actuation for active-sensing SHM via stochastic time-
series AutoRegressive (AR) and Functionally Pooled (FP) models [12,13], and the com-
parison with traditional deterministic tone-burst actuation under varying temperature.
The main hypothesis examined in this work is that random broadband actuation, within
the range of 100 KHz to 1MHz, may provide additional structural information due to
the excitation of additional vibration modes compared to deterministic waves with the
potential cost of requiring more elaborate signal processing, modeling, and diagnostic
methods. An additional advantage of the broadband actuation is its potential for simulta-
neous, rather than serial, data acquisition that may enable real-time diagnostics for SHM.
According to the authors’ best of knowledge, this is the first study that explores the use
of random high-frequency broadband actuation for active-sensing SHM.

THE NUMERICAL MODEL, SIMULATIONS AND SIGNALS

In order to investigate and compare the high-frequency deterministic and stochastic
actuation approaches, a high-fidelity Finite Element Model (FEM; ABAQUS 2018) of
a thin aluminum plate was used under varying temperature (Figure 1). Three separate
structural parts were created, namely the aluminum plate, adhesive, and two piezoelec-
tric Lead Zirconate Titanate (PZT) disk transducers. For the deterministic simulations,
a total time period of 0.0001 s and a time step or increment of 1le — 7 s were used. For
defining the actuation, a 5-peak-tone burst signal with a center frequency of 250 KHz
was used. For the stochastic actuation, a time period of 0.0002 s and a time step of
le — 7 s were used with a broadband white-noise actuation frequency of 2 MHz (fre-
quency bandwidth of 1 MHz). A detailed description of the FEM can be found in [3].

Figure 2 shows the deterministic input signal (left subplot) and the corresponding
response signals (right subplot) within the 50 — 100 °C range with 5 °C increments.
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Figure 1: The FEM model used for deterministic and stochastic actuation in the temper-
ature range (50 — 100 °C).
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Figure 2: (left) Deterministic input, i.e. 5-peak-tone-burst, used in the FEM simulations
and (right) deterministic output, i.e., guided waves, obtained from the PZT sensor for
different temperatures (50 — 100 °C).

The first wave packet in the output signal ranging from 0.3 to 0.5 seconds represents
the symmetric Sy mode and the second wave packet ranging from 0.5 to 0.7 seconds
represents the antisymmetric Ay mode.

Figure 3 (left panel) shows the magnified view of the Sy mode. It is observed that
from 50 — 75 °C, the amplitude of the Sy mode gradually increases and reaches a peak at
75 °C. After that, from 80 — 100 °C, the amplitude starts to gradually decrease. However,
in Figure 3 (right panel) which shows the magnified view of the anti-symmetric mode
or Ay mode, the amplitude of the Ay mode gradually decreases from 50 — 100 °C. This
gradual decrease may be due to the softening of the adhesive connecting the PZT to
the aluminum plate. It could be further implied that the Sy, mode is less affected by this
softening as the amplitude increases up to 75 °C and then decreases when the temperature
is sufficiently high. However, the amplitude of the A, mode only decreases with the
increase in temperature. In both cases, the signal shifts to the right, i.e. there is a change
in time of flight of the signal due to the temperature change.

In order to gain a better understanding of the different structural states under the
influence of temperature, and to properly model them, it is necessary to excite as many
vibrational modes as possible. One way to perform this task is to use a broadband
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Figure 3: Close-up views of the first wave packet (S, mode, left panel) and second wave
packet (A, mode, right panel) indicate the variation of the signal amplitude and phase

with increasing temperature.
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Figure 4: Representative stochastic zero-mean white noise actuation signal used in the

FEM simulations (left) and corresponding PZT response signal for 25 °C (right).

random excitation signal in order to excite the vibrational modes within the bandwidth
of interest. A high-frequency white-noise zero-mean signal (A ~ (0, 0?), with 0 = 10)
a bandwidth of 1 MHz was applied to the piezoelectric actuator and the response signal
was collected from the piezoelectric sensor for different temperatures (Figure 1). The left
panel in Figure 4 depicts a representative white-noise input signal while the right panel
shows the corresponding output signal. A total of 16 simulations were performed from
25 °C to 100 °C with a 5 °C increment. In each case, a different white noise realization
was used and the corresponding output signal was recorded in the time domain. In the

next section, the modeling task under various temperatures is presented.

STOCHASTIC IDENTIFICATION UNDER VARYING TEMPERATURE

The identification of appropriate stochastic models using the available response sig-
nals under varying temperatures is considered via (i) a multi-model approached based on
time-series AutoRegressive (AR) models where each model represents the dynamic re-



sponse under a single temperature, thus one distinct model is identified for the obtained
signal under each temperature, and (i) a “global”” modeling approach that leads to single
Functionally Pooled (FP) model for all considered temperatures. The advantage of this
approach is that it allows for model parameters to be represented as explicit functions of
the temperature.

An AR(n) model is of the following form [14]:

n

ylt]+ > ai-ylt —i] =eft]  e[t] ~ iidN(0,07) (1)

i=1

with ¢ designating the normalized discrete time (t = 1,2, 3, . .. with absolute time being
(t—1)T}, where T stands for the sampling period), y[t] the measured vibration response
signals as generated by the piezoelectric sensors of the structure, n the AR polynomial
order, and elt] the stochastic model residual (one-step-ahead prediction error) sequence,
that is a white (serially uncorrelated), Gaussian, zero mean with variance az sequence.
The symbol N (-, -) designates Gaussian distribution with the indicated mean and vari-
ance, and iid stands for identically independently distributed.

The global FP-AR modeling involves consideration of all admissible structural states,
in this case different temperatures. A total of M; experiments are performed (in this
case via the FEM model), with M, designating the number of simulations under various
temperatures. Each simulation is characterized by a specific temperature k', with the

complete series covering the required range of the variable, say [k}, . kL .1, via the
discretizations {kj, k3, ..., kj; }. A proper mathematical description of the global dy-

namics under varying structural states may then be obtained via the FP-AR(n), model
of the following form [13, 15]:

Yk[t] + Z ai(k) - yrlt — 1] = ex[t] (2)

exlt] ~ AN (0,02(k)), k € R, E{ey[t] - e[t — 7]} = ve(ki, kj) - 6[7]  (3)

with n designating the AR order, y;[t] the piezoelectric sensor’s response signal, and
ex[t] the model’s residual (one-step-ahead prediction error) sequence, that is a white
(serially uncorrelated) zero mean sequence with variance o2 (k). This may potentially be
cross-correlated with its counterparts corresponding to different simulations (different
k’s). The symbol E{-} designates statistical expectation, ¢[7] the Kronecker delta (equal
to unity for 7 = 0 and equal to zero for 7 # 0), N (-,-) Gaussian distribution with the
indicated mean and variance, and iid stands for identically independently distributed.
The covariance of the residual series is designated as 7. (k;, k;), with 7. (k, k) = o2(k).
The FP model parameters a;(k) are modeled as explicit functions of temperature k:

p
az(k) = Zai’j : GJ<]€) 4)
j=1

with G; (k) representing the mutually independent basis functions that span the p-dimensional
functional subspace determining the AR parameters [13, 16]. The FP-AR model of
equations (2)—(4) is parameterized in terms of the estimated parameter vector 8 =
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Figure 5: Functional basis selection via the BIC (left) and RSS (right) criteria.
[ a1 a1n ... a;j |7 V k to be estimated from the available signals. The unknown

parameter vector 6 can be estimated via minimization of the Ordinary and Weighted
Least Squares (OLS/WLS) criteria.

PARAMETRIC IDENTIFICATION RESULTS

The identification of the dynamics of the aluminum plate is based upon M = 16
sets of response data records that were collected from the PZT sensor under varying
temperature. In this case, simulation datasets were collected within [25, 100] °C with an
increment of 5 °C. The model order selection process led to an order n = 22 for the
AR and FP-AR models based on the Bayesian Information Criterion (BIC) and Residual
Sum of Squares (RSS) over the Signal Sum of Squares (SS) criteria. Model validation
took place via examination of the whiteness, or uncorrelatedness, and normality hypoth-
esis of the model residuals. The functional subspace selection is based on the BIC and
RSS/SSS criteria for increasing functional basis dimensionality. From Figure 5 it is ob-
served that the BIC criterion yields a minimum for four basis functions. As a result, the
first four Chebychev type Il polynomials would be sufficient to represent the temperature
dependence of the FP model parameters. From the right subplot of Figure 5, the corre-
sponding RSS/SSS percentage is 0.062% which indicates a very accurate representation
of the high-frequency plate dynamics under varying temperature by the FP model. Thus,
the model identification process resulted in a FP-AR(22), model.

Figure 6 depicts indicative FP model parameters. Unlike the AR parameters, FP
model parameters are explicit functions of temperature. The solid blue line represents
the mean parameter values and the red lines represent the 3 standard deviation confi-
dence intervals. Figure 7 shows the 3D Frequency Response Function (FRF) plot based
on the identified FP-AR(22), model. In this case, it may be observed that the different
frequencies vary smoothly with temperature. Different prominent vibrational modes for
the coupled plate-adhesive-PZTs dynamic system are clearly visible and the transition
of different frequencies with temperature is easily discernible. For example, it may be
readily observed that the major mode is located at 520 KHz and increases with tempera-
ture. In addition, the mode at 720 KHz shows again a very clear decrease with increasing
temperature.

Figure 8 presents the FRF magnitude plot for representative temperatures and their
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Figure 6: Indicative FP model parameter variation versus temperature. The parameter

mean is shown as blue line and the associated +3 standard deviation as red lines.

NS
[olelele]

-
o

%10° 5

Frequency (Hz) 0

Temperature (°C’

x10°

10

Frequency (Hz)

30

Temperature (°C)

Figure 7: FRF magnitude versus temperature based on the identified FP-AR(22), model.

magnified view around 0.7 MHz based on the FP-AR(22), model. It may be observed
that as the temperature increases within the 60 — 78 °C range, an abrupt change in magni-
tude occurs at 68 °C while the peak gradually shifts to lower frequencies. From 60 — 62
°C, the magnitude of the FRF gradually increases and then abruptly decreases at 68 °C.
After 68 °C, the magnitude gradually decreases with increasing temperature, however
there is a significant shift in frequency from 72 °C to 78 °C. In summary, the FP model
can provide essential insight in the way that the system dynamics vary with temperature.

DISCUSSION AND COMPARISON

Figure 9 shows the comparison of natural frequencies for different modes versus
varying temperature as identified by sixteen AR(22) (one model for each temperature)
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Figure 8: FRF magnitude plot based on the identified FP-AR(22), model around 70 °C.

and a single FP(22), model. It is observed that the natural frequencies from the multi-
model AR approach oscillates with increasing temperature and they are not smooth
functions of temperature. In contrast, the natural frequencies from the FP model vary
smoothly, as expected, with increasing temperature. The overall trend for the FP and
AR natural frequencies follow the same trend apart from the sudden fluctuations of the
AR-based natural frequencies.

By comparing the deterministic trend of the 5-peak-tone-burst signals of Figure 3
with the corresponding FP-based FRF Figure 8, it may be observed that a certain simi-
larity exists between the time-domain deterministic signal and the temperature evolution
of the FP FRF magnitude based on the stochastic actuation signal. In both cases, with
the increase of temperature and as the temperature reaches a certain value, an abrupt
amplitude change occurs in the amplitude of the S signal, with a center actuation fre-
quency of 250 KHz, as well as in the magnitude of the FP-based FRF. As for example,
the amplitude of the Sy mode for time domain deterministic signal reaches a peak at 75
°C and then gradually decreases. Further analysis is the topic of ongoing work.

CONCLUDING REMARKS

The objective of this work was the investigation and numerical assessment of random
broadband high-frequency actuation for active-sensing SHM via stochastic time-series
models, and the comparison with traditional deterministic tone-burst actuation under
varying temperature. The main hypothesis examined in this work is that random broad-
band actuation, within the range of 100 KHz to IMHz, may provide additional structural
information due to the excitation of additional vibration modes compared to determinis-
tic waves with the potential cost of requiring more elaborate signal processing, modeling,
and diagnostic methods. Deterministic 5-peak-tone burst and stochastic Gaussian white-
noise actuation signals were used in an FEM of an aluminum plate outfitted with two
PZT transducers under varying temperature. The random response signals were mod-
eled based on the class of stochastic global Functionally Pooled models for representing
the system dynamics under varying temperature, i.e., the model parameters are explicit
functions of temperature. The FP modeling approach was compared with a multi-model
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Figure 9: Comparison of natural frequencies versus temperature as identified by a single
FP-AR(22), (red line) and sixteen AR(22) (black line) models.

approach that is based on a parametric AR representation for each temperature. The
global model offers certain advantages over the multi-model counterparts such as the
simultaneous use of all available data records in a single step, and the consideration of
potential cross-correlation among the data sets. In this way, the global model provides
improved accuracy and more compact representations of the system dynamics under
varying temperature. Finally, the trend in the amplitude and phase of the time-domain
deterministic (5-peak tone burst with center actuation frequency of 250 KHz) response
signals were compared with the FP parametric FRF.

Thus, it can be concluded that stochastic broadband high-frequency white-noise ac-
tuation signals and corresponding time-series modeling techniques can be employed for
inferring the structural dynamic response and modal characteristics. As these models are
statistical in nature, they inherently incorporate uncertainty in their prediction and may
eliminate the need of computationally expensive finite element modeling.
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