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ABSTRACT

Motivated by the supreme flight skills of birds, a new concept called “fly-by-feel”
(FBF) has been proposed to develop the next generation of intelligent aircrafts. To
achieve this goal, Stanford Structures and Composites Lab (SACL) has developed a
smart wing which embeds a multifunctional sensor network on the surface layup of the
wing [1]. By leveraging structural vibration signals recorded from multiple piezoelectric
sensors in the sensor network under a series of wind tunnel tests, data-driven approaches
are developed to identify the flight state of this smart wing, i.e. angle of attack (AoA)
and airflow velocity. Different preprocessing techniques are used including extracting
38 features in both time and frequency domains and standardizing the raw signals. Var-
ious supervised learning algorithms were applied to effectively establish the mapping
from the feature space to the practical state space. In addition, it is found that 1D Con-
volutional Neural Network (CNN) can directly learn features from standardized signals
and achieve similar performance to other algorithms using manually designed features.
Compared with previous study [2], we have successfully achieved 96.55% test identifi-
cation accuracy with the airflow velocity resolution improved from originally 3 m/s to
0.5 m/s under the same AoA.

INTRODUCTION

Currently, flight state sensing for aerial vehicles relies heavily on traditional sensing
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devices such as the Pitot tube for measuring airflow velocity and the null-seeking pres-
sure tube for detecting angle of attack (AoA). However, those devices have to be installed
at certain locations of the aerial vehicle and it leads to increased structural complexity.
To reduce the complexity as well as to enable autonomous flight control by self-sensing
and decision-making, Stanford Structures and Composites Lab (SACL) has developed a
smart wing that has a multifunctional sensor network installed on the surface layup [1].
This concept is called “fly-by-feel” (FBF), which is motivated by birds’ excellent flight
skills and aims to develop the next generation of intelligent aircrafts. The smart wing is
intended to provide structural vibration signals from piezoelectric (PZT) sensors in the
sensor network for identifying the flight states, i.e. AoA and airflow velocity condition
of the aerial vehicle.

Researchers have attempted to attack the flight state identification problem from two
perspectives. Kopsaftopoulos [3] [4] [S] has developed stochastic time-series models
to characterize the structural dynamics and aeroelastic response under multiple flight
states. Their physics-based model can achieve high accuracy in flight state identification
of the current smart wing configuration. However, the physics becomes highly complex
to establish a solvable model when the wing structure becomes complicated. Chen and
his colleagues [2] have developed a data-driven approach for identifying the flight state
of this smart wing. Their emphasis is on the study of feature selection techniques from
the signal of a single PZT sensor on the wing. They applied supervised learning models
using the selected features to identify the flight state with an airflow velocity resolution
of 3 m/s.

This paper applies machine learning methods based on Chen’s previous work [2]
with the following improvements. The data from all 6 functional PZT sensors in the
sensor network on the wing is used as input, which greatly augments the training data
compared with the data from only one sensor used in the original work. Supervised
learning algorithms like Decision Tree, Random Forests and Support Vector Machines
(SVM) yield great classification performance being fed with a large feature pool ex-
tracted from the signals. Moreover, it is shown that 1D Convolutional Neural Network
(CNN) offers comparable high accuracy by using directly standardized signals.

Smart Wing Sensing Flight State Identification Diagnostics

Figure 1. A smart wing which embeds a multifunctional sensor network on the surface
layup.
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Figure 2. A segment of typical dataset from a piezoelectric sensor at AoA of 5° and
airflow velocity of 25 m/s.

PROBLEM STATEMENT

Collected from a series of wind tunnel tests with different flight states, the dataset
includes conditions of AoA from 0° to 15° (incremental step of 5°) and airflow velocity
from 0 to 25 m/s (minimum incremental step of 0.5 m/s). 60,000 data points are collected
from every PZT sensor for each flight state.

The flight state identification problem is defined as a classification task [2]. One
flight state, which includes a fixed AoA and fixed airflow velocity, is considered as one
class. Given the signals with a period of 1,000 continuous time stamps, the classification
task asks to which class, i.e. to which flight state the signal belongs. Two datasets are
explored in this paper. One includes the signals under the same 15° AoA and different
airflow velocities ranging from 20 to 28 m/s, with an interval of 1 m/s. The other includes
the signals under the same 15° AoA and different airflow velocities ranging from 24 to
28 m/s, with an interval of 0.5 m/s. Since the second dataset has a higher airflow velocity
resolution, the difficulty of the classification task is also increased. For each flight state,
60,000 data points are collected from every PZT sensor. Figure 2 shows a segment of
typical raw data from the piezoelectric sensor under the flight state as AoA of 5° and
airflow velocity of 25 m/s.

METHOD OF APPROACH

This paper is mainly focused on data-driven approaches to address the flight state
identification problem. The machine learning methods applied to this problem are di-
vided into two groups based on whether input is extracted features or the original time
series data. One group requires manually designed features and the other is fed di-
rectly with the standardized signals. The first group contains Decision Tree [6], Random
Forests [7], Support Vector Machines (SVM) [8] and Fully Connected Neural Network
models [9]. The second group includes 1D CNN [10] and Long Short Term Memory
(LSTM) Network [11]. Following is a brief review of all the methods applied in this

paper.
Decision Tree and Random Forests

Decision Tree is a non-linear method. It is a decision support tool that uses a tree-
like model of decisions to come up with an algorithm that only contains conditional



control statements to split samples into regions. Formally, given node P (parent node)
and covering region I, a split s, on the jth feature with a threshold ¢ is defined as

sp(4,t) = (z|z; < t,x € Ry, x|lx; > t,x € R)) (1)

The way to choose splits is to minimize the preset loss function. For each node,
a conditional control statement is selected which decreases the loss function the most.
Gini loss is a common loss function for Decision Tree. Given C' as total classes and P,
as proportion of examples in R that are of class ¢, Gini loss is ) P.(1 — P.).

Random Forests algorithm is applied in order to avoid the overfitting of Decision
Tree and increase the test accuracy. Instead of finding the best way to split according
to all features, Random Forests only allows subset of features to be used at each split,
which significantly decreases variance with sacrifice of a little increase in bias.

Support Vector Machines (SVM)

SVM is among the best “off-the-shelf” supervised learning algorithms. SVM uses
hinge loss as the objective function. The intuition of SVM is finding a separating hy-
perplane to divide samples into correct spaces with maximum margin, which amounts to
maximizing the minimum distance between samples and the hyperplane.

Neural Network

Different Neural Network models which have different input are built in this work.
In this subsection it is referred to as the one fed with manually designed features, whose
basic layer is the fully-connected layer. Rectified linear unit is used as the activation
function which adds non-linear factors to the Fully Connected Neural Network. Softmax
function is used as the last activation function to compute the probability of each class.
Classification cross-entropy is used as the cost function. Moreover, L2 Regularization is
used to mitigate overfitting. Gradient descent is used to upload weights and it is achieved
by backpropagation. Specifically, Adaptive Moment Estimation (Adam) is used as the
optimizer, which adjusts the learning rate during training process by taking into account
the momentum in gradient descent. For all neural networks including CNN and LSTM,
the default learning rate of Adam is used and the mini batch size is 128.

Convolutional Neural Networks (CNN)

A CNN model is built based on one-dimensional convolutional layers. The model
is trained using standardized signals based on its ability of learning potentially useful
features during training. Max-pooling layer is added in the model to make the model
perform better. Figure 3 shows the 1D CNN architecture designed for the classification
task.

Long Short Term Memory Network (LSTM)

LSTM is a type of recurrent neural network. LSTM model is trained by feeding in
standardized signals instead of manually designed features. It is because the original data
is in time sequence and LSTM is good at dealing with data in time or spatial sequence.
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Figure 3. 1D CNN architecture that uses the standardized signal as input.

EXPERIMENTS

The dataset used to train machine learning models includes signals from 6 PZT sen-
sors. 60,000 data points of each flight state class are split into segments of 1,000 data
points as samples: 80% as training data, 10% as validation data and 10% else as test-
ing data. Different preprocessing steps are performed for different groups of methods.
For the group which requires feature input, the time-domain and frequency domain fea-
tures proposed in the paper [2] are used. A large feature pool from both the time and
frequency domains is created to extract enough useful information from the raw signal
data. However, signals from all 6 sensors are processed rather than from a single sensor.
The features include 25 in time domain and 13 in frequency domain, which are all ex-
plained in great details in Chen’s paper [2]. For the group which is fed with time series
data, the preprocessing is simply standardization, which is scaling the raw data so that
it has zero mean and unit variance. The processed data will be fed into the correspond-
ing machine learning algorithms discussed in previous sections to train the models. The
Decision Tree and Random Forests algorithms are implemented by using Statistics and
Machine Learning Toolbox provided by Matlab. The SVM is run by scikit-learn package
from Python. Fully Connected Neural Network, CNN and LSTM Network are trained by
using Keras library. All experiments are conducted on a MacBook Pro running macOS
Mojave 10.14.5 with a 2.7 GHz Intel Core 17 Quad-Core CPU. All training processes are
completed by using CPU solely.

RESULTS AND DISCUSSION

By using data from a single sensor, previous study [2] reached 98% classification
accuracy on flight states that have 1° AoA and 3 m/s airflow velocity interval. In contrast,
our study is focused on flight states with the same AoA. From Table I and Table II, we
can see that by leveraging the data from all 6 sensors, almost all supervised learning
models trained from manually designed features and the CNN which uses standardized
signals as input achieve 100% test accuracy on flight states with 1 m/s interval. This task
has a higher-resolution dataset and thus increased classification difficulty compared to
the task performed by the previous study.

Figure 4 demonstrates the results from the Decision Tree algorithm, which reveal



TABLE I. PERFORMANCE OF SUPERVISED LEARNING ALGORITHMS WHICH
USE MANUALLY DESIGNED FEATURES AS INPUT.

Supervised Learning 1 m/s velocity interval 0.5 m/s velocity interval
Models training accuracy test accuracy training accuracy test accuracy
SVM 100% 100% 99.98% 96.55%
Fully Connected 99.66% 99.62% 99.03% 95.79%
Neural Network
Random Forests 100% 100% 100% 92.91%
Decision Tree 100% 100% 99.66% 78.93%

TABLE II. PERFORMANCE OF SUPERVISED LEARNING ALGORITHMS WHICH
USE STANDARDIZED SIGNALS AS INPUT.

Supervised Learning 1 m/s velocity interval 0.5 m/s velocity interval
Models training accuracy test accuracy training accuracy test accuracy
Convolutional 100% 100% 99.68% 94.83%
Neural Network
Long Short Term

Memory Network 90.19% 95.79% 40.97% 39.08%

features which play more important roles than others. For example, feature z; and fea-
ture x153 appear several times in the tree. The feature x; represents the average of the 1st
sensors signal magnitude and the feature x53 represents the counterpart of the Sth sensor.
It indicates that average of signal magnitudes from different sensors make meaningful
contributions to the classification. x4 and x35 , which corresponds to f; and fig [2] of
the 1st sensor, are also presented in the Decision Tree. They reflect vibration energy and
power distribution in the frequency domain. Both time-domain and frequency-domain
features are critical to the classification performance.

Table I shows that when the velocity resolution becomes 0.5 m/s, the Decision Tree

X153 < oy\iz 022 x; <0.5 X1 > 0.54 Xp6 < —1-7/\5 >-136
® ® o ® O

Figure 4. The Decision Tree trained from the dataset which has 1 m/s velocity interval
between flight states.
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Figure 5. Confusion matrix by using (a) linear SVM using feature data and (b) 1D CNN
using standardized signals

tends to overfit, while other models maintain decent classification performance. Both
SVM and Fully Connected Neural Network work well and have leading test accuracy,
but it is now hard to achieve 100%. One thing to note is that SVM with the linear kernel
actually outperforms the other types, which means that the extracted features improve
the linear separability of the data.

1D CNN reaches similar accuracy in the higher resolution classification task com-
pared with the best models which use manually designed features as the input. It suggests
that 1D CNN is able to capture potential features of the original data during the training
process, and thus can skip the feature selection process. Figure 5 illustrates the confu-
sion matrices from the results of performing linear SVM and 1D CNN. It is expected that
misclassification happens between adjacent flight states. Since misclassification only
happens between flight states with 24.5 m/s and 25 m/s for both methods, there is some
extent of ambiguity between signals under the condition of these two airflow velocities
and 15° AoA, which do not exist under other velocities and the same AoA. It would be
interesting to dig in this phenomenon to find a reasonable physical interpretation. As
for LSTM network, it has a reasonable test accuracy on 1 m/s resolution task, while the
test accuracy drops significantly on the higher-resolution one. One possible cause is that
the 1,000 data points from one sample might be too long for LSTM. LSTM might work
better for samples with shorter data length, just like 1D CNN which can learn features
from subsets of data points.

CONCLUSIONS

In this work, several data-driven approaches with different data preprocessing steps
are proposed for the flight state identification problem. By taking advantage of vibration
signals measured from multiple PZT sensors on the sensor network of the smart wing
developed in SACL, the algorithms are able to improve flight state classification resolu-
tion from 3 m/s airflow velocity interval and 1° AoA interval to 0.5 m/s interval with the
same AoA. The trained supervised learning models achieve 100% test accuracy in the 1
m/s resolution classification task and 96.55% test accuracy in the 0.5 m/s case. More-



over, it is discovered that 1D CNN being fed only with the standardized signal reaches
94.83% test accuracy in the 0.5 m/s case, which is comparable to the decent performance
of models which requires manually designed features as input. It indicates that 1D CNN
is able to acquire the effective features from the original time series data directly. In
future work, the machine learning models developed in this paper will be deployed onto
the smart wing during runtime. We will also redefine the flight state identification prob-
lem as a regression task and attempt to train regression models to provide an accurate
estimate of the flight state.
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