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Abstract: In this work, a data-driven approach for identifying the flight state of a self-sensing
wing structure with an embedded multi-functional sensing network is proposed. The flight state is
characterized by the structural vibration signals recorded from a series of wind tunnel experiments
under varying angles of attack and airspeeds. A large feature pool is created by extracting potential
features from the signals covering the time domain, the frequency domain as well as the information
domain. Special emphasis is given to feature selection in which a novel filter method is developed
based on the combination of a modified distance evaluation algorithm and a variance inflation
factor. Machine learning algorithms are then employed to establish the mapping relationship from
the feature space to the practical state space. Results from two case studies demonstrate the high
identification accuracy and the effectiveness of the model complexity reduction via the proposed
method, thus providing new perspectives of self-awareness towards the next generation of intelligent
air vehicles.

Keywords: self-sensing wing; feature extraction; feature selection; flight state identification;
machine learning

1. Introduction

The current state sensing and awareness of flight vehicles relies on traditional sensors and
detection devices mounted on different locations of the vehicle, e.g., Pitot tubes installed in front of the
nose for airspeed measurement, transducers located on each side of the fuselage for angle of attack
detection. Inspired by the unsurpassed flight capabilities of birds, a novel “fly-by-feel” (FBF) concept
has been recently proposed for the development of the next generation of intelligent air vehicles that
can “feel”, “think”, and “react” [1,2]. Such bio-inspired systems will not only be able to sense the
environment (temperature, pressure, aerodynamic forces, etc.), but also be able to think in real-time and
be aware of their current flight state and structural health condition. Further, such systems will react
intelligently under various situations and achieve superior performance and agility. Compared with
the traditional approaches, this FBF concept has the following advantages: (1) structural complexity
reduction by integrated structures with self-sensing ability, (2) structural health on-line monitoring
through embedded multi-functional materials, (3) autonomous flight control and decision-making
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based on self-awareness [2]. Towards this end, great challenges have been posed to the current
structural design and data processing methods with a departure from the existing technologies.

Recent years have seen the development of different sensing network architectures and
simulations [3–6], among which, an expandable network made of polymer-based substrates was
designed by the Structure and Composites Lab (SACL) at Stanford University. This network contains
many micro-nodes which have the potential to integrate micro-sensors, actuators and electronics for
different applications [7]. Based on the development of integration and fabrication techniques [8–10],
a smart structure with the sensor network monolithically embedded in the layup of a composite UAV
wing was successfully fabricated [11]. This smart wing consists of four sensor networks and each
network is integrated with strain gauges, resistive temperature detectors (RTD) and piezoelectric lead
zirconate titanate (PZT) transducers. Specifically, the strain gauge is used to measure the wing strain
distribution and identify any potentially dangerous areas. RTD detects the temperature distribution
in order to provide the temperature compensation [12]. PZT transducers can be used for both active
and passive measurements. In the active mode, they can be used for damage detection and structural
health monitoring while in passive mode, the wing structural vibration during flying can be captured
to reflect the air dynamic characteristics [11]. The wing configuration is shown in Figure 1.
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Figure 1. The self-sensing composite wing design [2].

After realizing sensing ability through multi-functional structures development, the next step is to
equip the smart wing with thinking and judging capability, i.e., the structure is expected to be aware of
surroundings and identify its current flying state. There have been studies devoted to addressing the
related identification problem based on either strain or vibration signals obtained from experiments.
Huang et al. studied the active flutter control and closed-loop flutter identification and a fast-recursive
subspace method was applied in high-dimensional aero-servo-elastic system. The wind tunnel test
showed that the natural frequency and modal damping ratios of the flutter modes can be precisely
tracked [13]. Pang and Cesnik employed non-linear least squares fit and Kalman filtering to obtain
wing shape information and rigid body attitude. Results revealed that the Kalman filter has good
performance in the presence of sensor noise [14]. For elastic deformation, Sodja et al. conducted
a dynamic aeroelastic wind tunnel experiment under harmonic pitching excitations, experimental
data including the bending and torsion deformation were consistent with the elastic analysis model
developed by the Delft University of Technology [15]. For more general flight states, Kopsaftopoulos
and Chang established a stochastic global identification method using PZT signals from both time and
frequency domain based on developed Vector-dependent Functionally Pooled (VFP) model [2,16,17].
A large range of airspeeds and angles of attack were considered in the VFP-based identification
framework and the structural dynamics of the composite wing could be captured and predicted.

Overall, the above data processing approaches mainly belong to state space methods and
improved time series analysis. Based on the previous study yet from another perspective, if we can



Sensors 2018, 18, 1379 3 of 21

extract distinguished features from the continuous coupled structural aerodynamic behavior, it is
possible to identify the flight state directly using the limited features instead of detailed characterization
of the structural responses. Machine learning techniques can be employed to establish the mapping
relationship from the feature space to the practical state space.

Facing a series of signals generated from the embedded sensor network, one of the main challenges
is what kind of features should be extracted and whether these features are useful for classification.
A set of features without careful selection and evaluation may lead to poor results whatever superior
machine learning models are applied. Feature engineering is such a research field including feature
extraction and selection. For a period of time series signals with noise, various statistical features
can be calculated such as the mean value, standard deviation, peak value, kurtosis, etc. from both
time domain and frequency domain [18], a feature pool is then created with different number of
features depending on the characteristics of the signals [19–21]. More features are encouraged to
avoid missing important candidates with superior classification performance. The next step is feature
selection in which a limited subset is obtained by eliminating less effective features. It reduces
model dimension and computational time [22]. Generally, feature selection can be divided into three
categories as filter, wrapper and embedded. Filter methods rank the variables completely separate
to the model used for classification. The assignment of feature importance is based on information
generated by some statistical algorithms. Filter methods are computationally simple and fast without
the interaction with the classifier and feature dependencies [23]. Embedded solutions select salient
features as part of the learning process of the model, which can be linear regression, support vector
machine, decision tree, random forest, etc. These methods integrate the subset selection into the model
construction but are difficult to adjust for the optimal search [24]. The third category is wrapper,
in which features are selected based on the performance of a given model by searching the possible
subsets space and assessing the performance of the given model on each subset, models can be various
learning machines [25]. Although wrapper methods often achieve sound classification performance by
considering the feature dependencies, the frequent interactions between feature subset search and the
classifier cause high computational costs [26].

We have demonstrated the effectiveness of establishing the mapping relationship from the feature
space to the flight state space through neural networks modelling [27]. This paper significantly
improves the previous work by creating a much larger feature pool and considering the co-linearity
among various features. To sum up, the objective of this paper is the introduction and evaluation
of a novel feature selection method for accurate flight state identification of a self-sensing wing
structure based on experimental vibration data recorded by piezoelectric sensors under multiple flight
states. The developed method belongs to the filter family and is capable of obtaining a group of
most important features for classification with low mutual dependency. The framework of the data
acquisition, methodology development, evaluation and application is shown in Figure 2.

The rest of the paper is organized as follows: Section 2 presents the problem statement. Section 3
focuses on the feature extraction and feature selection in which the novel filter algorithm is introduced.
Two case studies including the general flight state identification and the stall detection and alerting are
conducted in Section 4 followed by their results and discussions in Section 5. Concluding marks are
made in the last section.
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2. Problem Statement

The problem statement of this work is as follows: based on signals collected from the PZT
sensors embedded in the self-sensing wing through a series of experiments under varying flight
states, develop a feature selection method that is capable of obtaining limited useful features for
flight state identification with high accuracy and low model complexity. Specifically, the coupled
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aerodynamic-mechanical responses represent different flight states, with each state characterized by
a specific angle of attack (AoA) and airspeed and kept constant during the data collection. The first
problem is that whether a few salient features can be extracted from a period of vibrational time series
(e.g., thousands of data points) as a representation of the corresponding flight state. In this way, we can
skip the investigation into the detailed aeroelastic behavior and use the limited features to identify
the specific flight state directly instead of using the entire lengthy signal. This would significantly
reduce the complexity of the flight state characterization. The second problem is how to guarantee the
effectiveness of selected features. If the selected strong features are highly correlated with each other,
they will exhibit similar identification ability which are still away from the optimal subset.

The above two problems constitute the motivation of this study and are addressed in the following
approaches: firstly, a large number of features is extracted to cover a wide range of descriptions of
the flight state. Then, a modified distance evaluation algorithm is conducted to obtain a subset of
individually powerful features followed by the combination of a variance inflation factor algorithm
to reduce high dependency among features in the subset. Machine learning models are employed to
evaluate the above method for multiple flight states identification as well as a specific case of stall
detection and alerting.

The main novel aspects of this study include:

(1) A large feature pool is created covering up to 47 different features from the time, frequency and
information domains.

(2) A novel filter feature selection method is developed by combining a modified distance evaluation
algorithm and a variance inflation factor.

(3) The flight state identification is treated as a classification problem by establishing the mapping
relationship from the feature space to the physical space characterized by varying angle of attack
and airspeed of the self-sensing wing structure in wind tunnel experiments.

(4) The application on stall detection and alerting with high identification accuracy provides new
perspectives for autonomous flight control with real-time flight state monitoring.

3. Methodology Development

In this section, a novel filter feature selection method is proposed via the combination of
a modified distance evaluation algorithm and a variance inflation factor. In order to obtain sufficient
feature candidates, a large feature pool is firstly created by extracting features covering a wide range.
The output of this method is a feature subset consisting of most salient features with low correlation,
which is able to represent a lengthy time-series signal of the wing structural response under certain
flight state.

3.1. Feature Extraction

Feature extraction relies heavily on experts’ knowledge, it is encouraged to extract different kinds
of features, as many as possible in case of missing useful ones. In this study, we intend to create a large
feature pool from three main sources, namely the time, frequency and information domains.

In time domain, 25 statistical features are calculated including 12 commonly used features such
as mean, standard deviation, variance, peak, mean absolute deviation, etc. and 13 un-dimensional
features such as crest factor, shape factor and a series of normalized central moments. The expressions
of all time domain features are listed in Table 1. In terms of their physical insights, t1–t12 may reflect
the vibration amplitude and energy while t13–t25 may represent the series distribution of the signal in
time domain.

Previous studies employed Fast Fourier Transform (FFT) to convert the time series into frequency
spectrum [19,20]. However, the signal instances from the wind tunnel experiments are samples of
a stochastic process with considerable noise. Welch’s method improves FFT by shortening the signals
and averaging, and thus the peaks are smoothed for noise reduction [28]. Herein, a sample-long
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Hamming data window with 90% overlap is used for the Welch-based spectral estimation. A series of
power spectrum y(k) without log transformation is then used for frequency domain feature extraction.
Thirteen statistical features such as mean spectrum, spectrum center, root mean square spectrum, etc.
and their mathematical expressions are shown in Table 2. f 1 may indicate the vibration energy in the
frequency domain. f 2–4, f 6, f 10–13 may describe the convergence of the spectrum power. f 5, f 7–9 may
show the position change of the main frequency.

Table 1. Features in time domain.

Time Domain Feature Parameters Un-Dimensional

t1 = ∑N
n=1 x(n)

N t7 =

(
∑N

n=1

√
|x(n)|

N

)2
t13 = t9

t6 t19 = ∑N
n=1 (x(n)−t1)

3

N·t2
3

t2 =

√
∑N

n=1(x(n)−t1)
2

N t8 = ∑N
n=1|x(n)|

N
t14 = t6

t8 t20 = ∑N
n=1 (x(n)−t1)

4

N·t2
4

t3 = ∑N
n=1 (x(n)−t1)

3

N
t9 = max(x(n)) t15 = t9

t8

. . .t4 = ∑N
n=1 (x(n)−t1)

4

N
t10 = min(x(n)) t16 = t9

t7

t5 = ∑N
n=1(x(n)−t1)

2

N
t11 = t9 − t10 t17 = t3

t6
3

t6 =

√
∑N

n=1 (x(n))2

N t12 = ∑N
n=1|x(n)−t1|

N
t18 = t4

t6
4 t25 = ∑N

n=1 (x(n)−t1)
9

N·t2
9

Note: x(n) is a signal series for n = 1, 2, . . . , N, N is the number of data points.

Table 2. Features in the frequency domain.

Frequency Domain Feature Parameters

f1 = ∑K
k=1 y(k)

N f6 =

√
∑K

k=1 ( f rk− f5)
2y(k)

K
f10 =

f6
f5

f2 = ∑K
k=1 (y(k)− f1)

2

K
f7 =

√
∑K

k=1 f rk
2y(k)

∑K
k=1 y(k)

f11 = ∑K
k=1 ( f rk− f5)

3y(k)
K· f6

3

f3 = ∑K
k=1 (y(k)− f1)

3

K(
√

f2)
3 f8 =

√
∑K

k=1 f rk
4y(k)

∑K
k=1 f rk

2y(k)
f12 = ∑K

k=1 ( f rk− f5)
4y(k)

K· f6
4

f4 = ∑K
k=1 (y(k)− f1)

4

K· f2
2

f9 = ∑K
k=1 f rk

2y(k)√
∑K

k=1 y(k)∑K
k=1 f rk

4y(k)
f13 =

∑K
k=1

√
| f rk− f5|y(k)

K
√

f6

f5 = ∑K
k=1 ( f rk ·y(k))
∑K

k=1 y(k)

Note: y(k) is a spectrum for k = 1, 2, . . . , K, K is the number of spectrum components; f rk is the frequency value of
the kth spectrum line.

In electroencephalograph (EEG) analysis for neural diseases diagnosis and vibration analysis for
mechanical defects, fractal dimensions from computational geometry and entropies from information
theory have demonstrated effectiveness in early diseases/fault diagnosis [29,30]. Inspired by that,
a group of complex features are employed and their terminologies are Multi-Scale Entropy, Partial Mean
of Multi-Scale Entropy, Petrosian Fractal Dimension, Higuchi Fractal Dimension, Fisher Information,
Approximate Entropy, and Hurst Exponent, respectively.

Multi-Scale Entropy (MSE) introduces the scale factor based on the sample entropy to measure
the complexity of signal under different scale factors [31]. It is calculated as:

MSE = {τ
∣∣∣SampEn(τ, m, r) = − ln[Cr,m+1(r)/Cr,m(r) ]} (1)

where τ is the scale factor, m is the embedding dimension and r is the threshold. Here m = 2,
r = 0.2 * standard deviation, τ = 12.
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The first three values are selected due to the relatively high distinction among different classes.
Also, an integrated non-linear index called Partial Mean of Multi-Scale Entropy (PMMSE) is used to
simultaneously reflect the mean value and variation trend of MSE [32], which is expressed as:

PMMSE = (1+|Ske|/3) ·MSEa (2)

where Ske = 3(MSEa − MSEb)/MSEc, MSEa, MSEb, MSEc represent mean, median and standard
deviation of MSE(τ) = [MSE(1), MSE(2), . . . , MSE(12)].

Fractal dimension characterizes the space filling capacity of a pattern that changes with the scale
at which it is measured [33]. Herein, two approaches are used as Petrosian Fractal Dimension (PFD)
and Higuchi Fractal Dimension (HFD). PFD is calculated as:

PFD =
log10 N

log10 N + log10(N/(N + 0.4Nδ))
(3)

where N is the length of the signal and Nδ is the number of sign changes in the signal derivative [30].
In terms of HFD, firstly k new series are constructed from the original signal [x1, x2, . . . , xN ] by

[xm, xm+k, xm+2k, . . . , xm+b(N−m)/kck], where m = 1, 2, . . . , k. Secondly the length L(m, k) for each new
series is calculated as:

L(m, k) =
∑
b(N−m)/kc
i=2

∣∣∣xm+ik − xm+(i−1)k

∣∣∣(N − 1)

b(N −m)/kck (4)

and the average length L(k) =
⌊

∑k
i=1 L(i, k)

⌋
/k. After kmax repetitions, a least-squares method is used

to obtain the best slope that fits the curve of ln(L(k)) versus ln(1/k), which is defined as the Higuchi
Fractal Dimension. For details, please refer to [34].

Fisher Information (FI) measures the expected value of the observed information [35]. Its
mathematical expression using normalized singular spectrum is:

FI = ∑M−1
i=1

(σi+1 − σi)
2

σi
(5)

where σi is the normalized value through σi = σi/∑M
j=1 σj, and M is the number of singular value.

Approximate Entropy (ApEn) quantifies the amount of regularity and the unpredictability of
fluctuations of a signal [36], which is computed in the following procedures:

(1) Set the input as [x1, x2, . . . , xN ].
(2) Construct the subsequence x(i, m) = [xi, xi+1, . . . , xi+m−1] for 1 ≤ i ≤ N − m, where m is the

subsequence length.
(3) Construct a set of subsequences {x(j, m)} = {x(j, m)|j ∈ [1, . . . N −m]}, where x(j, m) is defined

in Step (2).

(4) For each x(i, m) ∈ {x(j, m)}, C(i, m) =
∑N−m

j=1 kj

N−m , where k j =

{
1 if |x(i, m)− x(j, m)|< r

0 otherwise
.

(5) ApEn is calculated as:

ApEn(m, r, N) =
1

N −M

[
N−m

∑
i=1

ln
C(i, m)

C(i, m + 1)

]
(6)

Hurst Exponent (HST) measures the long-term memory of a signal. It is used to quantify the relative
tendency of the signal either to regress to the mean or to cluster in a direction [37]. For time series
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X = [x1, x2, . . . , xN], its accumulated deviation within range T is calculated as X(t, T) = ∑t
i=1 (xi − x),

where x = 1
T ∑T

i=1 xi, t ∈ [1, 2, . . . , N]. Then:

R(T)
S(T)

=
max(X(t, T))−min(X(t, T))√

(1/T)∑T
t=1 [x(t)− x]2

(7)

The slope of ln(R(n)/S(n)) versus ln(n) for n ∈ [2, 3, . . . , N] is defined as the Hurst Exponent.
In summary, abbreviations of the complex features extracted from information domain are listed

in Table 3.

Table 3. Features in information domain.

Information Domain Feature Parameters

I1 = MSE [1] I4 = PMMSE I7 = FI
I2 = MSE [2] I5 = PFD I8 = ApEn
I3 = MSE [3] I6 = HFD I9 = HST

3.2. Feature Selection

Feature extraction guarantees a wide coverage of the object descriptions from various aspects
while feature selection ensures that a set of most salient descriptions can be utilized. For large-scale
models, feature selection is of utter importance in computation reduction and efficiency improvement.

The distance evaluation technique ranks the feature importance independent of the model used
for classification, which belongs to the filter category as mentioned in the Introduction. Salient
features result in minimum inner-class distances of the same class while have maximum margins for
different classes. It has been widely used in fault diagnosis of rotating machinery [20,21,38]. Suppose
a feature set has K conditions,

{
qi,k,j, i = 1, 2, . . . , Ik; k = 1, 2, . . . , K; j = 1, 2, . . . , J

}
, where qi,k,j is the

jth eigenvalue of the ith sample under the kth condition, Ik is the sample number of the kth condition,
and J is the feature number of each sample. Totally Ik × K× J features are obtained in the feature set{

qi,k,j
}

. Herein, a modified distance evaluation algorithm is presented as follows:

(1) Calculate the average distance of the same condition samples:

dk,j =
1

Ik × (Ik − 1)∑
Ik
l,i=1

∣∣∣qi,k,j − ql,k,j

∣∣∣, l, i = 1, 2, . . . , Ik, l 6= i (8)

then obtain the average distance of K conditions:

d(w)
j =

1
K ∑K

k=1 dk,j (9)

(2) Calculate the average eigenvalue of all samples under the same condition:

uk,j =
1
Ik

∑Ik
i=1 qi,k,j (10)

then obtain the average distance between condition samples:

d(b)j =
1

K(K− 1)∑
K
k,e=1

∣∣∣ue,j − uk,j

∣∣∣, k, e = 1, 2, . . . , K, k 6= e (11)
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(3) Calculate the variance factor of d(b)j as:

v(b)j =
sum(

∣∣∣ue,j − uk,j

∣∣∣)
min(

∣∣∣ue,j − uk,j

∣∣∣) (12)

(4) Calculate the compensation factor as:

δj =
sum(vb

j )

v(b)j

(13)

(5) Calculate the ratio d(b)j and d(w)
j considering the compensation factor:

αj = δj
d(b)j

d(w)
j

(14)

then normalize αj and obtaining the feature importance criteria:

αj =
αj

sum(αj)
(15)

A higher αj indicates that the corresponding feature j has greater importance. Features can be
ranked in terms of the αj values in Equation (15) in descending order. This algorithm is referred
to as Modified Distance Evaluation algorithm (MDE). Although the top ranked features have
superior discriminative capability, they may suffer from high multi-collinearity, which refers to the
non-independence among features [39]. Herein, the variance inflation factor (VIF) is used to avoid
high collinearity. Assuming a training sample set X with J features X1, X2, . . . , XJ and class Y, the VIF
of feature j is calculated as:

VIFj =
1

1− R2
j

(16)

where R2
j is the R-squared value of the regression equation Xj = β0 + βX′, in which X′ contains all

features except Xj. An improved algorithm combining MDE and VIF is presented in Algorithm 1 and
is abbreviated as MDV (Modified Distance evaluation and variance inflation Factor).

Algorithm 1: MDV Algorithm.

(1) Set the selected future subset Fsub = ∅, j = 1;
(2) Rank the J features in terms of the αj defined in Equation (15) in descending order. Set Fr to represent the

index list of the ranked features. Add the first feature in Fr to Fsub, j = j + 1;
(3) while j < J :

calculate the VIFj of the jth feature in Fr with the features in Fsub;
if VIFj < 10:

add the jth feature in Fr to Fsub;
end
j = j + 1;
end

The MDV algorithm describes the feature-subset selection for multi-class classification based on
the filter method with the MDE and VIF. The threshold of 10 in MDV is an empirical value. A larger
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threshold will result in a higher correlation of the selected feature in Fr with the existing features in
Fsub [23].

4. Case Study

4.1. Data Prepraration

A series of wind tunnel experiments of the self-sensing composite wing were conducted under
various angles of attack (AoAs) and freestream velocities at Stanford University. The open-loop wind
tunnel with a square test section of 0.76 m by 76 m was used and a basis was designed to supported
the composite wing allowing adjustments in the angle of attack (AoA). The composite wing dimension
is outlined in Table 4.

Table 4. Wing Dimension.

Wing Geometry

Chord 0.235 m
Span 0.86 m
Area 0.2 m2

Aspect ratio 3.66

Compared with the size of the wind tunnel test section, the additional 0.1 m extension of the
wing span was attached to the wing fixture. The AoAs range from 0 degree up to 18 degrees with an
incremental step of 1 degree. At each degree, data were collected for all velocities ranging from 9 to
22 m/s (incremental step of 1 m/s). For experimental details, please refer to [2].

PZT signals reflect the coupled airflow-structural dynamics through the wing structural vibration
and each time series contains coupled behavior with repeated patterns of a certain flight state. This
study focuses on the usage of PZT sensor signals for flight state identification. In each experiment,
the structural vibration responses (60,000 data points) were recorded from the PZT located near the
wing root at 1000 Hz sampling frequency. For each flight state, data are prepared in two steps: (1) the
entire signal of 60,000 data points is divided into 60 segments (1000 data points for each segment) to
ensure enough samples for training while each segment has sufficient data points for feature extraction;
(2) the first order difference and zero-mean are conducted for each sample sequence in order to
eliminate the influence of zero drift. To evaluate the effectiveness of the proposed method and apply it
for dangerous state pre-warning, two sets of data are collected for general flight state identification
and stall detection and alerting.

4.2. General Flight State Identification

The first data set includes PZT signals with a coarse resolution covering the range of 16 flight
states corresponding to combinations of four AoAs (1, 5, 9, 13 degrees) and four airspeeds (10, 13, 16,
19 m/s). Four signal segments are shown in Figure 3 under a series of AoAs and a fixed airspeed of
10 m/s as an example.

It is noticed that the flight state with AoA of 13 degrees and velocity of 10 m/s can be obviously
identified since the amplitude of the voltage distinguishes it from other signals (it is because this
flight state is close to the stall condition which will be discussed later). The second largest amplitude
comes with 9 degrees which can be separated to a certain extent but already has overlaps with the
rest two. In the study, the identification of the different flight states relies on the features selected by
the developed method in Section 3. To compare the feature selection effectiveness, four other feature
selection methods are employed including Univariate Feature Selection based on mutual information
(UFS_m), Support Vector Machine with L1 regularization (SVM_L1), Gradient Boosted Decision Tree
(GBDT) and Stability selection (STAB). These methods cover three main feature selection categories.
A brief introduction is presented as follows:
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(1) UFS_m is a commonly used filter method. It performs test on each feature by evaluating the
relationship between the feature and the response variable based on mutual information [40],
which is defined as

I(X, Y) = ∑y∈Y ∑x∈X p(x, y) log(
p(x, y)

p(x)p(y)
) (17)

It measures the mutual dependence between variable X and Y. Features with low rankings
are removed.

(2) SVM_L1 is one of the embedded methods, which selects salient features as part of the learning
system [18]. Support Vector Machine (SVM) is a popular machine learning method based on
structural risk minimization principle. It constructs a hyperplane that has the largest distance to
the nearest training data points, which are so called support vectors. An appropriate separation
can reduce the generalization error of the classifier [41]. L1 is a regularization item added to the
loss function as |W|, where W standards for the parameter matrix of the learning model [42].
This is a penalty item to make the model sparse with fewer useful input dimensions.

(3) GBDT is a tree-based model belonging to the embedded category. It combines weak decision
trees in an iterative manner based on gradient descent through additive training. Trees are added
at each iteration with modified parameters learned in the direction of residual loss reduction [43].

(4) Stability selection is a kind of wrapper method, in which features are selected based on the
established models using different subsets, model could be of various types and structures such
as logistic regression, SVM, etc. By calculating the frequency of a feature ended up being selected
as important from a feature subset being tested, powerful features are expected to have high
scores close to 100%, weaker features will have lower score and the least useful ones will close to
zero [44]. Herein, a randomized logistic regression is used as the selection model.
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Figure 3. Indicative signals under a set of AoAs and a constant velocity of 10 m/s.

4.3. Application to Stall Detection and Identification

The second data set covers a higher resolution of flight states (AoAs: 11, 12, 13 degrees, airspeeds:
10, 13, 16, 19 m/s) for critical states alerting. In aerodynamics, stall phenomenon is one of the dangerous
conditions wherein a sudden reduction of the lift coefficient occurs as the angle of attack increases
beyond a critical point. According to previous analysis [2], the signal energy can be used as an indicator
of the lift loss of the self-sensing wing. From the wind tunnel experiments, the mean values of the
signal energy for a series of AoAs (from 0 to 17 degrees) under four airspeeds (10, 13, 16, 19 m/s) are
obtained and shown in Figure 4.

The signal energy variation with respect to the angle of attack is similar under four different
airspeeds. It is noticed that for relatively low velocities (10 m/s, 13 m/s & 16 m/s), the significant
increase occurs approximately after 14 degrees while for the relatively high speed (19 m/s), stall
happens much early at 13 degrees. It should be noted that the data were stopped recording after
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13 degrees with the high speed of 19 m/s, which is reflected in the red line with zero energy starting
from 14 degrees. Therefore, we define the orange shaded area starting from 13 degrees as the stall
region which should be avoided. Moreover, it is observed that at 12 degrees, the signal energy for
some flight states has certain increase compared with the rest small angles. This degree is defined as
the alert region as the transition between the safe region marked in light green and the critical stall
region. When the self-sensing wing comes to this region, warnings should be provided to the flight
control for angle reduction.
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5. Results and Discussion

5.1. General Flight State Identification

The first data set with a relatively low resolution of 16 flight states is used to evaluate the
performance of six feature selection methods, which include Univariate Feature Selection based on
mutual information (UFS_m), Support Vector Machine with L1 regularization (SVM_L1), Gradient
Boosted Decision Tree (GBDT) and Stability selection (STAB), Modified Distance Evaluation (MDE),
and our proposed filter method Modified Distance Evaluation with Variance Inflation Factor (MDV).
Feature rankings are obtained and the top 10 features for different methods are listed in Table 5 and
their detailed expressions are listed in Appendix A.

Table 5. Top 10 ranking matrix.

Ranking UFS_m SVM_L1 GBDT STAB MDE MDV

1 F25 F41 F47 F47 F35 F35
2 F34 F43 F40 F12 F26 F30
3 F6 F39 F46 F21 F2 F5
4 F2 F25 F14 F20 F6 F28
5 F5 F46 F39 F19 F31 F42
6 F4 F19 F44 F18 F30 F45
7 F40 F33 F41 F17 F12 F41
8 F23 F13 F1 F16 F8 F46
9 F42 F44 F21 F15 F36 F14

10 F17 F10 F45 F14 F10 F23
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It is observed from the table that the ranking results vary with the different methods. An intuitive
evaluation is to simply visualize the features distribution under various flight states. For example, four
features are plotted in Figure 5 including: F1 (mean value in time domain), F29 (spectrum kurtosis in
frequency domain), F35 (spectrum power convergence in frequency domain), and F47 (Hurst Exponent
in information domain). The x axis denotes the 16 flight states while the y axis is the feature value before
normalization. The shaded area along each vertical line segment represents the feature distribution
in a single flight state and each subplot of Figure 5 describes a feature distribution on 16 flight
states. As mentioned in Section 3, F1 (mean value) has no effects in classification. Correspondingly,
F1 has the highest overlap among flight states. Similarly, F47 has large overlaps which exhibits pool
classification capability. Theoretically, the ranking of F1 and F47 should be low but they are ranked
high in GBDT and STAB. In comparison, F30 and F35 show smaller overlap and thus have better
classification performance. This may provide some physical insights of the effectiveness of different
feature selection methods.Sensors 2018, 18, x  13 of 21 
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The last column MDV in Table 4 is an improvement of MDE for preventing high collinearity.
To examine the effects of the proposed algorithm, Correlation analysis is conducted for MDV and MDE
as shown in Figure 6.

It is obvious that the top 10 features selected by MDE are highly correlated with each other.
In comparison, the overall collinearity of the features in MDV is much lower except for the small
region of the top three.

To visualize the feature selection performance by MDV, t-Distributed Stochastic Neighbor
Embedding (t-SNE) is employed which is a relatively new method of dimension reduction particularly
suitable for non-linear and high-dimensional datasets. It is a kind of manifold learning technique by
mapping to probability distributions through affine transformation. For detailed algorithm, please
refer to [45]. The 3D visualization by t-SNE is shown in Figure 7. The left figure is the visualization
using the entire feature pool while the right figure uses only top six features obtained by MDV. It can
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be seen that the feature subset through MDV selection exhibits better classification effects compared to
the entire feature pool.
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Further, machine learning techniques are used to quantify the flight state identification process.
For each feature selection method, the most salient 6 features are obtained as model inputs and the
16 flight states are set as model outputs. Five supervised learning models are employed including
Logistic Regression (LR), Support Vector Machine (SVM), Naïve Bayes (NB), Random Forest (RF), and
Neural Network (NN). Cross-validation is used in each model and the average accuracy value of five
tests is computed to reduce the unbalance influence between training and testing samples. It should
be noted that since the objective of the case study is to compare the effects of different feature selection
methods instead of obtaining the optimized parameter setting for each machine learning model to
achieve the highest accuracy level, default parameter settings in Python scikit-learn package for LR,
SVM, NB and RF are used and remain the same for all feature selection methods while for NN, the
parameter setting is as follows: {hidden layer size = 20, solver = ‘lbfgs’, activation function = ’relu’,
learning rate = 0.001, maximum iteration = 100}. The identification results are shown in Figure 8.
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It can be observed that our proposed method MDV achieves the highest identification accuracy
in all five machine learning models and particularly, there is a significant improvement in Logistic
Regression. This demonstrates the superior effectiveness of MDV. The comparison between MDV
and MDE shows that a group of individually powerful features with low collinearity can lead to
better results.

5.2. Stall Detection and Alerting

So far, the developed MDV algorithm has achieved the best performance in feature selection and
the final flight state identification accuracy is up to 100%. Herein, the second dataset with higher
resolution is used for the application of stall detection and alerting. Similarly, totally 47 features as
discussed in Section 3 are extracted and the most salient 6 features are selected by MDV as model
inputs. A neural network is employed with the same parameter settings as the first case. The split rule
is 80% samples for training and 20% samples for testing.

The classification report is shown in Table 6 including three criteria: Precision, Recall and
F1-score. Precision is the ratio of correctly predicted positive observations to the total predicted
positive observations while Recall is the ratio of correctly predicted positive observations to the all
observations in the actual class. F1-Score is the weighted average of Precision and Recall: F1-Score =
2 * (Recall * Precision)/(Recall + Precision) [46]. Safe, Alert, and Stall regions are divided with
corresponding flight states. The overall identification accuracy is 98%.

Table 6. Classification report.

States ID AoA (deg) Speed (m/s) Precision Recall F1-Score

Safe

1 11 10 0.92 1.00 0.96
2 11 13 0.92 1.00 0.96
3 11 16 1.00 0.92 0.96
4 11 19 1.00 0.92 0.96

Alert

5 12 10 1.00 1.00 1.00
6 12 13 1.00 0.92 0.96
7 12 16 0.92 1.00 0.96
8 12 19 1.00 1.00 1.00

Stall

9 13 10 1.00 1.00 1.00
10 13 13 1.00 1.00 1.00
11 13 16 1.00 1.00 1.00
12 13 19 1.00 1.00 1.00
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To facilitate detailed analysis, a normalized confusion matrix is presented in Figure 9. Each row
of the matrix represents the test samples in a true class label while each column indicates the samples
in a predicted class label [47]. As can be observed from Table 6, for stall states (ID: 9, 10, 11, 12), Recall
values all equal to 100%, meaning that all the critical states can be successfully identified and there is
no safety risk.

In terms of alert states (ID: 5, 6, 7, 8), Recall value of State 6 is 0.92, which means 92% samples in
State 6 are correctly predicted. By examining the 6th row in the confusion matrix, the rest 8% samples
are misclassified as State 1, which is in the safe region. This situation may lead to dangerous results
since the wing is already in the alert states yet there is no warning. From the other perspective, the
precision value of State 7 is 0.92, which indicates that among all samples predicted as State 7, there are
8% samples actually belonging to State 4 as shown in the 7th column of the confusion matrix. This
value can be interpreted as the false-alarm ratio that the wing flying in the safe region yet receives
a false alert.

For safe states (ID: 1, 2, 3, 4), the misclassified samples are for State 3 and State 4, in which 8%
samples of State 3 are predicted as State 2 while 8% samples of State 4 are identified as State 7, which
is the false alarm.Sensors 2018, 18, x  16 of 21 
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Further, we select the different number of features from the modified distance evaluation (MDE)
method and use the same neural network structure for training and testing. The comparison on the
overall identification accuracy between MDV and various MDE is shown in Figure 10. The x axis
denotes number of top ranked features selected.

It can be seen that if we use the same number of input as MDV, features selected by MDE lead to
a pool result of 0.33. The identification accuracy reaches the same level as MDV until the number of
top ranked features selected from MDE increases to 20. This shows that our proposed method MDV is
able to address the collinearity problem and uses fewer features to achieve superior performance with
a considerable model complexity reduction.



Sensors 2018, 18, 1379 17 of 21

Sensors 2018, 18, x  16 of 21 

 

 

Figure 9. Confusion matrix of flight state identification. 

Further, we select the different number of features from the modified distance evaluation (MDE) 

method and use the same neural network structure for training and testing. The comparison on the 

overall identification accuracy between MDV and various MDE is shown in Figure 10. The x axis 

denotes number of top ranked features selected. 

 

Figure 10. Identification accuracy between MDV and various MDE. 

It can be seen that if we use the same number of input as MDV, features selected by MDE lead 

to a pool result of 0.33. The identification accuracy reaches the same level as MDV until the number 

of top ranked features selected from MDE increases to 20. This shows that our proposed method 

MDV is able to address the collinearity problem and uses fewer features to achieve superior 

performance with a considerable model complexity reduction. 

Figure 10. Identification accuracy between MDV and various MDE.

6. Conclusions

This paper focuses on the feature engineering in structural vibration signals obtained from
a self-sensing composite wing through wind tunnel experiments. In addition to common statistical
features from the time domain and frequency domain, complex features from the information domain
inspired by electroencephalograph analysis and mechanical fault diagnosis are also extracted, some of
which exhibit good classification ability. A novel filter feature selection method (MDV) is proposed by
combining the modified distance evaluation (MDE) algorithm and the variance inflation factor (VIF).
MDE is able to select individually powerful features but cannot address high collinearity. VIF is then
applied for each top ranked feature to remove highly correlated elements. Results from both general
flight state identification and stall detection & alerting demonstrate that this method can reduce the
model complexity with fewer features while maintain a high identification accuracy. Knowledge can
be gained by calculating the limited important features obtained by MDV efficiently for flight state
identification using light-weight machine learning models. This would save considerable efforts in
feature extraction and feature selection by manpower and has the potential to provide autonomous
control with real-time flight state monitoring. For multi-sensor utilizations, this method can be
applied to each sensor and ensemble methods can be developed to fuse multi-source results for more
robust identification.
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Appendix A

The expressions of selected features by different feature selection methods are shown in Table A1.
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Table A1. Top 10 ranking feature expressions.

R UFS_m SVM_L1 GBDT STAB MDE MDV

1 t25 = ∑N
n=1 (x(n)−t1)

9

N·t2
9 I3 = MSE[3] I9 = HST I9 = HST f10 =

f6
f5

f10 =
f6
f5

2 f9 = ∑K
k=1 f rk

2y(k)√
∑K

k=1 y(k)∑K
k=1 f rk

4y(k)
I5 = PFD I2 = MSE[2] t12 = ∑N

n=1|x(n)−t1|
N f1 = ∑K

k=1 y(k)
N

f5 = ∑K
k=1 ( f rk ·y(k))
∑K

k=1 y(k)

3 t6 =

√
∑N

n=1 (x(n))2

N
I1 = MSE[1] I8 = ApEn t21 = ∑N

n=1 (x(n)−t1)
5

N·t2
5 t2 =

√
∑N

n=1(x(n)−t1)
2

N t5 = ∑N
n=1(x(n)−t1)

2

N

4 t2 =

√
∑N

n=1(x(n)−t1)
2

N
t25 = ∑N

n=1 (x(n)−t1)
9

N·t2
9 t14 = t6

t8 t20 = ∑N
n=1 (x(n)−t1)

4

N·t2
4 t6 =

√
∑N

n=1 (x(n))2

N
f3 = ∑K

k=1 (y(k)− f1)
3

K(
√

f2)
3

5 t5 = ∑N
n=1(x(n)−t1)

2

N
I8 = ApEn I1 = MSE[1] t19 = ∑N

n=1 (x(n)−t1)
3

N·t2
3 f6 =

√
∑K

k=1 ( f rk− f5)
2y(k)

K
I4 = PMMSE

6 t4 = ∑N
n=1 (x(n)−t1)

4

N t19 = ∑N
n=1 (x(n)−t1)

3

N·t2
3 I6 = HFD t18 = t4

t6
4 f3 = ∑K

k=1 (y(k)− f1)
3

K(
√

f2)
3 I7 = FI

7 I2 = MSE[2] f8 =

√
∑K

k=1 f rk
4y(k)

∑K
k=1 f rk

2y(k)
I3 = MSE[3] t17 = t3

t6
3 t12 = ∑N

n=1|x(n)−t1|
N

I3 = MSE[3]

8 t23 = ∑N
n=1 (x(n)−t1)

7

N·t2
7 t13 = t9

t6 t1 = ∑N
n=1 x(n)

N
t16 = t9

t7 t8 = ∑N
n=1|x(n)|

N
I8 = ApEn

9 I4 = PMMSE I6 = HFD t21 = ∑N
n=1 (x(n)−t1)

5

N·t2
5 t15 = t9

t8
f11 = ∑K

k=1 ( f rk− f5)
3y(k)

K· f6
3 t14 = t6

t8

10 t17 = t3
t6

3 t10 = min(x(n)) I7 = FI t14 = t6
t8

t10 = min(x(n)) t23 = ∑N
n=1 (x(n)−t1)

7

N·t2
7
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