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Abstract— This paper presents a novel guided-wave-based 
framework for estimating state of charge (SoC) and state of 
health (SoH) of lithium-ion (Li-ion) batteries. The guided waves 
are propagated and sensed using low-profile, surface-mounted 
piezoelectric transducers on off-the-shelf Li-ion pouch cells. 
Special emphasis is given to the development of an efficient 
feature extraction strategy based on the Matching Pursuit (MP) 
technique. The proposed method decomposes complex 
waveforms into constituent ‘atoms’, allowing the time-frequency 
information of the signals to be mined. The descriptive 
parameters of the decomposed atoms can be extracted to show 
strong and meaningful correlations with SoC and SoH. 
Statistical prediction models for estimating SoC/SoH are built 
using the atom parameters as predictive features in conjunction 
with the traditional voltage data. It is shown that the atom 
parameters can augment the voltage data and statistically 
improve the prediction of SoC by two-fold and, in particular, of 
SoH by twenty-fold. The results signify the importance of 
encapsulating proper signal processing and feature extraction 
into future guided-wave-based SoC/SoH prediction frameworks. 
 
Keywords— state of charge, state of health, ultrasonic guided 
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I.  INTRODUCTION 
Electric vehicle (EV) energy storage, particularly lithium-

ion (Li-ion) batteries, are extremely complex systems with a 
very narrow operating range and are prone to premature, 
unexpected failure. Optimizing battery performance, lifespan, 
and most importantly, safety requires continuous, accurate 
monitoring of the battery state of charge (SoC) and state of 
health (SoH) [1]. However, relying only on the terminal 
voltage measurement, on-board battery management systems 
(BMSs) still critically lack a breakthrough technique for 
directly probing the physical properties of the batteries to help 
accurately estimate SoC and SoH [1]. BMS research seems to 
forgo the fact that as Li-ion batteries cycle and age, their 
electrochemical processes are closely intertwined with 
mechanical evolution of the electrodes – particularly the 
distribution and redistribution of their mass densities and 
moduli [2]. Even though characterization tools for measuring 
these mechanical quantities are widely utilized in a laboratory 
setting, most of such techniques cannot be performed on 
vehicle-scale batteries and cannot be readily implemented in 

on-board BMSs due to the equipment’s complexity and size 
[2].  

Recently, acousto-ultrasonic wave propagation has started 
to gain interest in the research community potentially as an 
auxiliary, or even as an alternate, on-board method to probe a 
battery’s mechanical behavior and ultimately improve the 
estimation of SoC and SoH [3-7]. Most of earlier research 
efforts focus on applying through-thickness compression 
waves by using laboratory ultrasonic probes or large 
piezoelectric transducers [3-5, 7]. The energy of the waves is 
concentrated to allow them to transmit across interfaces 
between electrode layers and propagate in the direction 
perpendicular to the laminate, enabling the localized region 
immediately underneath the probe to be examined. In contrast, 
we recently proposed a guided-wave-based technique wherein 
the stress waves take advantage of the geometric boundaries 
of the batteries to ‘guide’ wave propagation [6]. Using low-
profile, surface-mounted piezoelectric transducers, this 
technique is not only more robust to variations in boundary 
conditions and operator errors, but also allows the waves to 
cover larger propagation distances and areas with minimal 
loss in energy. 

Although promising results are demonstrated from both 
research thrusts, a handful of work has been done on 
expanding the concept towards practical, field-deployable 
SoC/SoH prediction. Davies et al. demonstrate that a library 
of time-domain parameters of the compression waves 
(namely, time of flight and signal amplitude) may be created 
from similar batteries, and then a regression model can be 
built to predict SoC of an independent cell [3]. However, to 
obtain a satisfactory accuracy level with SoH, they show that 
the complete waveform (data at all sampled times during a 
~10μs window, or as many as ~500 predictors) is needed. The 
large dimensionality of predictors may require prediction 
models with model structures that are too computationally 
expensive for on-board BMSs. Our previous companion work 
similarly shows that time of flight and signal amplitude of 
guided waves may serve as accurate predictors for SoC, as 
well as SoH, owing to guided waves’ good signal integrity 
against noise and boundary condition variations [6]. 
Furthermore, we also use multiple transducers in a network 
configuration and pool data from multiple propagation paths 
to greatly reduce the SoC/SoH prediction error. 978-1-5386-5782-9/18/$31.00 ©2018 IEEE
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Nevertheless, neither effort has yet taken advantage of the 
rich information contained in the dynamic, non-stationary 
nature of pulse ultrasonic waveforms [3, 6]. Therefore, 
building upon our previous work, this study aims to develop a 
signal processing and feature extraction framework to exploit 
the feature-rich nature of guided waves in the context of 
practical SoC/SoH prediction. Signal processing and feature 
extraction of guided wave signals have long been a topic of 
research in the non-destructive testing (NDT) and structural 
health monitoring (SHM) community [8]. For NDT/SHM, 
time-frequency representation (TFR) techniques are often 
used to project non-stationary guided wave signals onto a 
time-frequency plane, from which individual, localized wave 
components may be extracted to be used as predictors for 
structural damage. Herein, with reference to SoC/SoH 
prediction, we develop the proposed framework based on a 
class of TFR, the Matching Pursuit (MP) decomposition, 
which allows complex guided wave signals to be efficiently 
decomposed into a combination of simpler, localized atoms 
[9]. We then show via statistical analysis that the coefficients 
describing these atoms are strongly correlated with battery 
cycling and aging behavior and can be used as effective 
predictors for SoC and SoH. The obtained results from this 
study form the basis for systematically and practically 
applying the acousto-ultrasonic technique towards the 
SoC/SoH prediction in on-board EV BMSs. 

II. PROBLEM STATEMENT AND METHOD OF APPROACH 
Within the context of this paper, we consider pitch-catch 

guided wave data from indicative commercial Li-ion pouch 
cells with pre-determined transducer configurations (Fig. 1). 
This serves as our problem setup to develop an efficient 
strategy to process the complex guided wave signals and 
extract predictive features that can lend themselves to 
enhancing SoC/SoH prediction. The obtained results can then 
be generalized and scaled into a unified framework towards 
other battery/transducer configurations, operating conditions, 
and prediction methodologies. 

We first experimentally gather ultrasonic guided wave 
data at various SoC and SoH from the indicative pouch cells 
with surface-mounted piezoelectric transducers (Section III). 
The waveform structure and its progression due to changing 
SoC/SoH are studied in order postulate an appropriate MP-
based TFR technique to process and project the signals onto 
basis functions (Section IV). Then, functional relationships 
between the parameters of the basis functions and the changes 
in SoC/SoH are established (Section V). A comparative 
statistical analysis is conducted to evaluate the efficacy of the 
proposed time-frequency feature extraction, in comparison 
and in conjunction with the conventional voltage 
measurement and time-domain features (Section VI). 

III. PRELIMINARY EXPERIMENTS & INDICATIVE RESULTS 
The experimental results, which the MP feature extraction 

and statistical analysis are based on, have been discussed in 
our previous companion work [6]. Pitch-catch guided wave 
propagation experiments were performed on 3,650mAh off-
the-shelf Li-ion pouch batteries (graphite/NCM chemistry) 

(AA Portable Power Corp.) (Fig. 1). Guided wave signals 
were gathered at various battery SoC and SoH from surface-
mounted, small-footprint piezoelectric disc transducers 
(6.35mm-diameter PZT-5A in the SMART Layer format; 
Acellent Technologies, Inc.) at the locations shown in Fig. 1. 
One of the piezoelectric discs can be chosen as an actuator to 
generate acousto-ultrasonic guided waves. The other 
piezoelectric disc then serves as a receiver to record the 
transmitted guided wave signals. The so-called “pitch-catch” 
experiments used five-peak Gaussian-windowed tone bursts 
with center frequencies between 100 to 200 kHz. The 
piezoelectric transducers were actuated and sensed using 
anultrasonic data acquisition system (ScanGenie II; Acellent 
Technologies, Inc.). Ultrasonic measurements were taken 
every 1 minute during electrical cycling. 

The ultrasonic data acquisition was synchronized with a 
battery analyzer (BST8-3; MTI Corporation), which 
performed battery cycling and aging. The cells were 
electrically discharged at an elevated temperature of 45°C 
with a constant current rate of 3,000 mA from 4.2V (100% 
SoC) to 3.0V (0% SoC). A total of 200 discharge cycles were 
performed. The remaining capacity for each cycle, which is 
our definition of SoH, was calculated by evaluating the cycle 
discharge capacity normalized with respect to the value from 
the first cycle. The cycle-to-cycle terminal voltage of a 
representative cell and its capacity fading (SoH degradation) 
characteristics are shown in Fig. 2. 

The guided wave responses could be seen to exhibit 
repeatable time-domain variations with changing SoC and 
SoH. Representative actuator-sensor waveforms from the 
pouch cell experiment are shown in Fig. 3. Fig. 3A shows the 
distinct evolution of the guided wave structure with respect to 
SoC within one discharge cycle. Fig. 3B, on the other hand, 
demonstrates the changes in the time-domain waveforms due 
to capacity fading (SoH degradation). These interplays 
between guided wave propagation and electrochemical 
processes were shown to be the results of the distribution and 
redistribution of electrodes’ mechanical properties – namely, 
moduli and densities – during cycling and aging [6]. 

 

 

Fig. 1. A) Schematics of pitch-catch guided wave propagation. B) 
experimental pouch cell with built-in piezos. 



 
Fig. 2. A) Cycle-to-cycle terminal voltage measurement from a 
representative cell. B) Remaining capacity (SoH) -vs- cycle number showing 
the indicative capacity fading characteristics of the batteries under testing. 

IV. FEATURE EXTRACTION USING MATCHING PURSUIT  
In our previous work, we showed the feasibility of the 

guided wave method in estimating SoC/SoH by performing 
state prediction using only two time-domain features – i.e., 
time of flight and signal amplitude (ToF and SA, respectively) 
[6]. These limited features only represent the aggregate 
behavior of the time-domain waveforms. However, pitch-
catch tone-burst guided wave signals are dynamic, non-
stationary, and multi-dimensional (in time and frequency). 
This can be intuitively seen from Fig. 3 that different time-
axis portions of the waveforms (wave packets) show distinct 
characteristics with respect to the changes in SoC and SoH. 
Instead, using an appropriate time-frequency representation 
method, numerous predictive features can be extracted from 
the information-rich guided wave signals. The multi-
dimensional time-frequency features may be pooled with the 
one-dimensional voltage measurement to construct a new 
class of SoC/SoH prediction models. This potentially allows 
prediction accuracy to be significantly improved and/or 
greatly simplifies the structure and complexity of the 
prediction model.  

In this current work, we propose an efficient feature-
extraction algorithm based on the MP decomposition 
technique [9]. MP is a time-frequency representation method, 
which is widely used in the field of guided-wave SHM for 
analyzing guided wave signals with respect to the evolution of 
structural damage. MP finds the best matching projections of 
the guided wave signals onto the span of a redundant 
dictionary of waveforms or atoms. In essence, MP 
decomposes the signals into a linear combination of 
constituent waveforms that was found to best match the 
original signal structure. 

 
Fig. 3. Time-domain evolution of guided wave signals with respect to 
changes in SoC and SoH. A) Changes in the time-domain signals with respect 
to SoC. B) Changes in the time-domain signals with respect to SoH. 
Ultrasonic data from the diagonal path at 125 kHz center frequency. 

We employ MP using the Gabor dictionary (a collection 
of scaled, translated, and modulated versions of Gaussian-
windowed tone bursts) to decompose the guided wave 
responses into a linear expansion of constituent tone-burst 
atoms (Fig. 4). The Gabor functions can be represented by the 
following equation: 

 
݃ሺݐሻ ൌ 	 ݁ିగ௧మ, 

 

݃ఊୀሺ௦,௨,௩,௪ሻሺݐሻ ൌ ݃ ൬
ݐ െ ݑ
ݏ

൰ cosሺݐݒ ൅  ሻݓ
 

where the Gabor dictionary D is a collection of gγ. γ is a set of 
possible Gabor parameters s, u, v, and w, which are 
coefficients of scaling, translation, modulation, and phase 
change, respectively. The dictionary thus contains all possible 
expected waveforms or atoms. 

The Gabor dictionary is a natural choice for our 
application as the actuation signal used in this study is also 
designed to be a modulated Gaussian-windowed tone burst. 

(1) 



Given that the incident pulse is a Gabor function, the sensing 
signals can also be represented by one or a sum of Gabor 
functions. This adaptively accelerates the MP algorithm and 
allows meaningful pulses to be efficiently extracted out of 
noisy signals.  
 

 
Fig. 4. Functionality of Gabor-based MP decomposition. A) Original 
waveform at 100% SoC and 100% SoH in comparison with the reconstructed 
waveform using a linear combination of the first 10 constituent Gabor atoms. 
B) The waveform structure of the first 5 decomposed atoms. 

The MP algorithms iteratively decomposes the original 
waveform into K constituent atoms in the following way: 

 
1. Free Baseline Decomposition 
 

1.1) First-Pass Sub-Optimal Search. Let f be the original 
signal at baseline SoC and SoH (e.g. SoC = 100%, SoH = 
100%). First, we pre-define a subspace Γ(s, u, v), where the 
parameter s is selected among a uniformly distributed set of 
expected receiving pulse widths by considering the incident 
pulse width (as determined by the actuation center frequency 
and number of cycles); v is naturally selected to be 
concentrated around the center frequency of the actuation; and 
u is selected among the discrete sampled time. Within the pre-
defined subspace Γ, the sub-optimal set γ’ which represents 
the best atom in D can be chosen to maximize: 

 

|〈݂, 	݃ఊᇱ〉| 
 

The operator <., .> represents a standard vector inner 
product. The residual signal Rf after subtracting the 
component along the best atom chosen per above can be 
computed as: 

 
ܴ݂ ൌ ݂ െ	〈݂, 	݃ఊᇱ〉	݃ఊᇱ 

 
The process is then repeated on the residual Rf and is 

terminated after the Kth iteration (after K atoms have been 
extracted). In this study, the first ten constituent atoms were 
extracted from the guided wave signals at a given SoC/SoH 
state (K = 10), which allows more than 95% of the original 
signal energy content to be captured in every case. We also 
employ the following transformation to encode the phase and 
amplitude of the Gabor atoms into two dependent variables, 
ak and bk, following the equation below [10]: 

 
ܽ௞ ൌ 	 〈ܴ௞݂, ఊܲᇱೖ〉,			ܾ௞ ൌ 	 〈ܴ

௞݂, ܳఊᇱೖ〉 
 

ఊܲᇱሺݐሻ ൌ ݃ ൬
ݐ െ ݑ
ݏ

൰ cosሺݐݒሻ	,			ܳఊᇱሺݐሻ ൌ ݃ ൬
ݐ െ ݑ
ݏ

൰ sinሺݐݒሻ 
 

where Rkf is the residual signal after kth atom-decomposition 
iteration. 

 
1.2) Optimal Search Based on Sub-Optimal Parameters. 

Note that the pre-defined sub-space in the earlier stage is a set 
of discrete Gabor basis functions for the sake of efficient 
computation. Therefore, only sub-optimal atoms are 
determined. Using the sub-optimal parameters γ’k obtained 
earlier as the initial guess, non-linear least squares can be 
employed to perform a local search and determine the optimal 
Gabor functions [11]. The standard Gauss-Newton method is 
implemented to numerically search for the optimal parameters 
γk = (sk, uk, vk) in the neighborhood of the sub-optimal sets so 
as to minimize the energy of the residual at kth iteration. (ak, 
bk) are then re-calculated using the same equation above. This 
double-search strategy is performed at every atom-
decomposition iteration. Consequently, this allows us to 
obtain an optimal set of parameters for the constituent atoms 
by performing decomposition on signals at a reference state 
(i.e., SoC = 100%, SoH = 100%).  

 
2. Constrained Decomposition of Signals at Subsequent States 
 
 To address the computational expense requirements for 
on-board BMS applications, an efficient decomposition 
method is required for the conceivably large stream of data. 
Therefore, a constrained MP decomposition is applied 
wherein signals at subsequent SoC/SoH states are 
decomposed via MP by imposing constraints using the 
parameters of the preceding state (according to the time 
sequence of the data acquired during experiment). The shape 
of each atom of the subsequently analyzed signals is 
constrained to be similar to that of the preceding one –i.e., 
fixed scale and frequency (sk, vk) k = [1, 2,… K] – while the 

(2) 

(3) 

(4) 



amplitude and translation parameters (ak, bk, uk) are allowed 
to change. This also ensures that the decomposition is robust 
against external factors such as noise and data corruption, 
which would have otherwise caused invalid atoms to be 
extracted. Only a Gauss-Newton numerical search is required 
to seek the optimal (a’k, b’k, u’k) parameters of the subsequent 
signals in the vicinity of the immediately preceding sets (ak, 
bk, uk). It is important to note that the double-search algorithm 
needs to be performed once for the initial state (SoC = 100%, 
SoH = 100%). The subsequent data points only require the 
computationally lighter constrained decomposition. We then 
monitor the evolution of (ak, bk, uk) with reference to changing 
SoC and SoH.  

V. EVOLUTION OF GABOR PARAMETERS WITH SOC/SOH 
 The changes in the guided wave signals with respect to 
SoC become more apparent when their constituent atoms are 
individually observed. Fig. 5A shows the changes in the 
original guided wave signals and their first three constituent 
Gabor atoms at two SoC (100% and 0%) from the first 
discharge cycle (SoH = 100%). It is worth noting that MP is 
able to decompose the entire complicated original waveform 
into localized and more defined tone bursts, which are 
centered at different points along the time axis. Each portion 
of the original waveform can now be analyzed separately by 
considering the evolution of the constituent Gabor atoms with 
respect to varying SoC. 
 The first atom, which represents the direct-path waveform 
and thus containing the majority of the energy content, shows 
the expected behavior of decreasing SA and increasing ToF at 
lower SoC. The behavior is reminiscent of the decrease in the 
aggregate modulus to mass density ratio with decreasing SoC, 
which results in decreasing propagation speeds and higher 
attenuation. The following atoms are known to originate from 
secondary wave modes that travel at different speeds, 
boundary reflections, and scattered signals from interlaminar 
surfaces. While there are meaningful and strong correlations 

between these secondary atoms and SoC, their physical 
interpretation is subject of ongoing work. The analysis of 
these complex waveforms requires high-fidelity 
computational modelling of wave propagation. Nevertheless, 
the essence of this work is captured: MP with the Gabor 
dictionary is capable of extracting waveform compositions 
that are strongly correlated with battery SoC. 
 The correlations between the Gabor atoms and SoC can be 
phrased in a way that is useful for SoC prediction by 
considering the functional relationships between the Gabor 
parameters (ak, bk, uk) and SoC. These functional relationships 
for the first three atoms are plotted in Fig. 5B showing (ak, bk, 
uk) as a function of SoC. The overall trends of (ak, bk, uk) agree 
with the time-domain observations at varying SoC as 
presented above. Additionally, the (ak, bk, uk) trends also 
capture the non-linearity driven by intercalations and phase 
transitions at various stages along the discharge process. The 
correlations between (ak, bk, uk) and SoC established through 
these functional relationships suggest that the Gabor 
parameters may be utilized in a collective fashion to aid the 
prediction of SoC. 
 Independently of SoC, strong correlations between guided 
wave signals and SoH can also be seen in the extracted Gabor 
atoms as shown in Fig. 6A. The first three atoms are plotted 
to show the time-domain shifts in the waveform after 200 
discharge cycles (SoH degraded to 96.5%) despite the same 
SoC of 100%. Similarly, functional relationships between the 
Gabor parameters (ak, bk, uk) and SoH can be established at 
any given SoC as illustrated in  Fig. 6B. Comparing to the 
terminal cell voltage, which is minimally perturbed by aging 
(Fig. 2A), the Gabor parameters show a significantly larger 
net change with respect to the change in SoH. Therefore, 
besides presenting more features to the SoH prediction, the 
greater magnitude of the effects from the Gabor parameters 
(relative to the variance of the variables themselves) may 
effectively contribute to improving prediction accuracy.

 
Fig. 5. Behavior of Gabor atoms due to the changes in SoC. A) Time-domain behavior of the first three constituent atoms with respect to SoC during Cycle 1 
(SoH = 100%). B) The extracted (ak, bk, uk) from the first three atoms and their functional relationships with respect to SoC. 



 
Fig. 6. Behavior of Gabor atoms due to the changes in SoH. A) Time-domain behavior of the first three constituent atoms with respect to SoH while holding 
SoC constant at 100%. B) The extracted (ak, bk, uk) from the first three atoms and their functional relationships with respect to SoH. 

 
 The effects on the Gabor parameters due to changes in SoC 
and SoH as observed independently can be combined to form 
a basis for the multivariate SoC/SoH prediction. The Gabor 
parameters that encompass the entire range of SoC and SoH 
within this experiment are analyzed collectively, and these 
results are shown in Fig. 7. The surface plots are the loci of 
extracted Gabor parameters at a given pair of state variables: 
SoC and SoH. In other words, the Gabor parameters can be 
expressed explicitly as functions of both SoC and SoH. This 
illustrates the possibility of creating a framework to use the 
Gabor parameters as predictive features in an inverse setting 
to simultaneously estimate battery SoC and SoH. 
 

 

 
Fig. 7. Gabor parameters of the first three atoms as a function of SoC & 
SoH. uk is the translation parameter. ak and bk are coefficient of the sine and 
cosine terms in the Gabor function. 

VI. SOC/SOH PREDICTION MODELS 
In this section, we perform a statistical analysis to 

comparatively evaluate the efficacy of Gabor parameters as 
predictors for SoC/SoH with reference to traditional voltage 
measurements and time-domain features. This first-pass 
statistical analysis attempts to create models that explicitly 
describe SoC and SoH as a function of the predictive features 
and evaluate the model performance by batch regression. It is 
important to note that this comparative evaluation is model 
agnostic. For practical implementation, the most appropriate 
model needs to be identified from a plethora of machine 
learning tools and state estimation techniques, with additional 
work in optimizing the model structure. 

The prediction methods are based on Generalized Additive 
Models (GAMs) [12]. GAMs with regression splines, unlike 
other statistical learning methods, are chosen because they are 
easy to interpret and allow model structures of different 
complexity levels to be systematically compared. GAMs are a 
non-parametric regression technique, which allows dependent 
variables to be described by smooth non-linear functions of 
covariates. Thin-plate regression splines were employed as 
smoothed non-linear fits of covariates using maximum 
penalized likelihood to prevent overfitting. The GAM analysis 
uses the ‘mgcv’ package (version 1.8-18) in R. A family of 
multivariate GAMs, a multivariate normal model (multinom), 
is used to fit the bivariate (SoC and SoH) response to multiple 
predictors. Herein, only the smooth main effects were 
included without interaction among predictors. 

 
ܥ݋ܵ ൌ ଵߙ	 ൅ ଵ݂,ଵሺ ଵܺሻ ൅ ଵ݂,ଶሺܺଶሻ ൅	…	൅	 ଵ݂,௉ሺܺ௉ሻ 
ܪ݋ܵ ൌ ଶߙ	 ൅ ଶ݂,ଵሺ ଵܺሻ ൅ ଶ݂,ଶሺܺଶሻ ൅	…	൅	 ଶ݂,௉ሺܺ௉ሻ 
 

where fi,j is the regression spline relating the response Yi (SoC 
and SoH) to the predictor Xj. αi is the zero-offset for each of 
the bivariate response.  

(5) 



 Each GAM involves P predictors Xj which are a subset of 
predictors selected from the set of all available features (V, ak, 
bk, uk); k = 1-10, where V is the cell terminal voltage. The 
different model structures analyzed in this section contain 
different subsets of predictors whose comparative statistical 
performance in predicting SoC and SoH is being evaluated. 
The residual maximum likelihood (REML) scores and Akaike 
Information Criterion (AIC) scores [85] are calculated and 
compared for each of the models. The fitted models are then 
applied to the validation dataset to compare the predicted and 
measured SoC and SoH. From which, the 10-fold cross 
validation (CV) error can be evaluated to reinforce the model 
comparison in addition to the use of classical statistical 
criteria. 

VII. COMPARATIVE STATISTICAL RESULTS 
The comparative performance of various GAM structures 

with different subsets of features can be seen from the CV 
errors of SoC and SoH prediction (root mean squared errors 
(RMSE)) as shown in Fig. 8. The detailed statistical results of 
the model structures considered in this study are summarized 
in TABLE I. By using Gabor parameters in conjunction with 
the conventional voltage measurement as predictors for SoC 
and SoH, the prediction accuracy is significantly improved. 
Using the entire set of the available features ((V, ak, bk, uk); k 
= 1-10), the SoC prediction accuracy can be increased by 
almost two-fold. Particularly remarkable is the SoH prediction 
whereby augmenting the voltage measurement with guided-
wave Gabor parameters improves prediction accuracy by as 
much as 20 times. It is well known that terminal voltage, while 
being able to serve as a strong indicator for SoC, is almost 
invariant with SoH. Given that this is a two-unknown problem 
(SoC and SoH), relying only on voltage measurement alone 
would intuitively result in an underdetermined system. Hence, 
it is imperative and demonstrated herein that additional 
parameters that are strongly correlated with SoH need to be 
taken into consideration. 

Our analysis also signifies the importance of signal 
processing and feature extraction in using guided wave for 
SoC/SoH prediction. Our previous work only considered time 
domain parameters (ToF and SA), which are indicative of the 
global behavior of the waveform, or more specifically, the 
behavior the wave packet with the highest energy content [6]. 
The model that only uses the Gabor parameters from the first 
constituent atom ((ak, bk, uk); k = 1) exhibits almost equivalent 
prediction performance to the time-domain-only model. This 
is because the first constituent Gabor atom is also by and large 
reminiscent of the highest energy wave packet. By using 
Gabor parameters from subsequently extracted atoms the 
SoC/SoH prediction accuracy can then be seen to 
precipitously improve. That is, a lot of meaningful 
correlations with SoC and SoH are encoded in other portions 
of the waveform beyond the primary wave packet, which can 
only be extracted via an appropriate time-frequency 
representation method. 

Moreover, it is noteworthy that this analysis treats SoC and 
SoH as a bivariate response. The prediction models 
simultaneously estimate both SoC and SoH using pooled 

predictors. This is in stark contrast to our previous work and 
recent efforts in the literature [3, 6], where SoC and SoH are 
estimated independently of each other – i.e., one state is held 
constant or not considered when estimating the other.  

Therefore, the bivariate prediction results confirm that the 
guided wave Gabor parameters, unlike cell voltage, have 
sufficiently meaningful correlations simultaneously to both 
SoC and SoH. Also considering that our statistical analysis 
was data-driven and was merely a comparative batch 
regression, there is room for improvement by, for instance, 
moving towards more efficient and robust model-based 
approaches. Investigation is underway to develop physics-
based models that functionally relate the Gabor parameters to 
the SoC/SoH space. The model fidelity will also be improved 
by experimentally exploring and taking into account other 
factors such as discharge profiles, temperature, cell-to-cell 
variability, etc. 

 
Fig. 8. Prediction performance of different GAM structure with various 
subsets of predictive features. A) Average SoC prediction error (RMSE). B) 
Average SoH prediction error (RMSE). 

VIII. CONCLUDING REMARKS 
This work established a framework for applying novel 

signal processing and feature extraction that enable the use of 
acousto-ultrasonic guided waves for battery SoC/SoH 
prediction. We experimentally demonstrated the SoC/SoH-
induced evolution in the guided wave signals propagated 
through commercial Li-ion pouch batteries using low-profile, 
surface-mounted piezoelectric transducers. It was found that 
the complex interplay between electrochemical processes and 
wave propagation physics resulted in meaningful SoC/SoH 
correlations to be encoded in these dynamic, non-stationary, 
multi-dimensional waveforms. In this work, special emphasis 
was therefore given to developing an efficient time-frequency 
representation method to process the waveforms and extract 
predictive features that significantly improve the SoC/SoH 
predictions. In essence, this study has contributed the 
following: 



• An efficient MP algorithm was proposed based on the 
Gabor dictionary to decompose complex guided wave signals 
into a linear combination of simpler, constituent tone-burst 
atoms. We also employed constrained MP decomposition that 
allowed guided signals at contiguous states to be efficiently 
and accurately decomposed by exploiting the atom 
information of the preceding states. 

• The parameters that describe the Gabor atoms’ 
waveform structure, or Gabor parameters, were extracted and 
collectively analyzed over the SoC/SoH space studied in this 
work. Functional relationships between the Gabor parameters 
and SoC/SoH showed strong and meaningful correlations 
which substantiated the use of the Gabor parameters as 
predictive features for SoC/SoH prediction. 

• GAMs were generated with different model structures 
utilizing different subsets of the pool of predictive features. 
We showed that the prediction accuracy of SoC and 
particularly SoH was significantly improved when 
augmenting the conventional voltage measurement with the 
guided-wave Gabor parameters. We also treated SoC and SoH 
as a bivariate response to demonstrate that the Gabor 
parameters are simultaneously and strongly correlated to both 
SoC and SoH. 

The current and future work addresses the improvement of 
the MP algorithm to include possible dispersion 
characteristics in an efficient manner by coupling data-driven 
decomposition with physical knowledge. Transitioning from 
a data-driven predictive approach to a model-based approach 
is also underway. This task requires a full understanding of the 
underlying physical phenomena that govern the SoC/SoH-
induced changes in the time-frequency space of guided waves. 
While further investigation is needed to understand the 
influence of factors, such as temperature and operating 
profiles, the heretofore obtained results clearly show the 
feasibility of using guided waves for SoC/SoH prediction and 
lay groundwork for future studies. 
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TABLE I 
COMPARATIVE STATISTICAL RESULTS OF DIFFERENT GAM STRUCTURES USING GABOR PARAMETERS TOGETHER WITH CELL VOLTAGE AS PREDICTORS 

Parameters

Predictors (ToF, SA)
(ak, bk, uk); 

k = 1
(ak, bk, uk); 

k = 1-3
(ak, bk, uk); 

k = 1-5
(ak, bk, uk); 
k = 1-10

(V) (V, ToF, SA)
(V, ak, bk, uk);

k = 1
(V, ak, bk, uk); 

k = 1-3
(V, ak, bk, uk); 

k = 1-5
(V, ak, bk, uk); 

k = 1-10

Number of predictors 2 3 9 15 30 1 3 4 10 16 31

SoC CV10 RMSE [%] 5.24 11.96 1.65 0.94 0.55 0.67 0.57 0.57 0.44 0.39 0.36

SoH CV10 RMSE [%] 0.56 0.7 0.08 0.06 0.05 1.04 0.19 0.19 0.07 0.06 0.05

REML 24426 31541 -15311 -26096 -39329 11272 -17596 -21105 -34968 -46282 -49316

AIC 48539 62685 -31443 -53347 -80615 22412 -35616 -42677 -70666 -93772 -100561

Guided wave information only Guided wave + cell voltage

Statistical Results

Model 4 Model 5Model 3Model 1 Model 2 Model 11Model 6 Model 7 Model 8 Model 9 Model 10
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