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ABSTRACT
The objective of this work is to outline a novel unified design, sensing, fabrication, and data-driven modeling and
analysis approach for future self-sensing self-diagnostic intelligent aerospace structures with state sensing and aware-
ness capabilities. The experimental assessment of is resented for an intelligent composite UAV wing with embedded
distributed micro-sensor networks. The sensor networks consist of piezoelectric, strain, and temperature sensors in
order to enable the data-driven modeling and interpretation and structural health monitoring of the wing under varying
flight states and uncertainty. Piezoelectric sensors are employed in two modes: (i) passive mode to sense the ambient
vibration of the wing in order to model and interpret the structural dynamic response and relate it to critical aerody-
namic/aeroelastic phenomena such as stall and flutter; (ii) active mode, as both actuators and sensors to implement
an active sensing acousto-ultrasound pitch-catch SHM approach. A novel modeling approach based on the recently
introduced Vector-dependent Functionally Pooled (VFP) model structure is employed for the stochastic data-driven
global modeling of the wing dynamics based on a series of wind tunnel experiments. In addition, the strain distri-
bution is established under the considered flight states and critical areas of the flight envelope are identified. The
obtained results demonstrate the successful integration of the micro-fabricated stretchable sensor networks with the
composite materials of the wing, as well as the effectiveness of the stochastic “global” modeling and active sensing
SHM approaches, proving their integration potential for the next generation of self-sensing self-diagnostic aerospace
structures.

INTRODUCTION

The next generation of intelligent aerospace structures and
aerial vehicles will be able to “feel,” “think,” and “react” in
real time based on high-resolution state-sensing, awareness,
and self-diagnostic capabilities. They will be able to sense and
observe phenomena at unprecedented length and time scales
allowing for improved performance, adaptability, autonomous
operation, increased safety, reduced mission costs, and com-
plete life-cycle monitoring and management. One of the main
challenges of the current state-of-the-art research is the devel-
opment of technologies that will lead to intelligent aerial ve-
hicles able to (i) sense the external environment (temperature,
air pressure, humidity, etc.) (Ref. 1), (ii) sense their flight and
aeroelastic state (airspeed, angle of attack, aerodynamic loads,
blade configuration and morphing, etc.) and internal structural
condition (stresses, strains, damage) (Refs. 2–4), and (iii) ef-
fectively interpret the sensing data to achieve real-time state
awareness, usage and health monitoring (Refs. 5–8).
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Knowing the aerodynamic and structural loads, and health
state of critical structural components, such as aircraft wings
and rotorcraft blades, can be critical in the design of the
next generation of self-sensing self-diagnostic structures. The
integration of appropriate multifunctional composite materi-
als with effective and robust monitoring and diagnostic ap-
proaches will enable high-resolution state sensing and aware-
ness capabilities. Such self-sensing multifunctional materials
have the potential to enable “intelligent” structural systems
via the integration of HUMS and SHM systems in which a
network of sensors is attached or embedded inside the com-
posite structure. (Refs. 1, 6, 7, 9). The actual deployment of
such approaches will lead to the improved performance, ex-
tended flight envelope, increased safety, and complete moni-
toring and life-cycle management of future aerial vehicles.

Existing usage and health monitoring approaches are based
on the use of information obtained via various sensor tech-
nologies installed on critical structural and mechanical com-
ponents along with corresponding diagnostic algorithms and
data analytics. Using this information and corresponding pro-
cessing methods, such systems can issue alerts and identify
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potentially dangerous states that can potentially lead to safety-
critical events. The pilot or controller/flight management sys-
tem may enable appropriate control actions in order to en-
sure system safety within the specified flight envelope that
has been predetermined during the design phase. Within this
context, the performance capabilities remain strictly confined
within the flight envelope due to limited structural awareness,
and oftentimes are rather conservative in order to ensure the
safety of the system. On the other hand, the “self-sensing self-
diagnostic” concept aims at the development of methods that
leverage high levels of structural and aeroelastic awareness
via the use of appropriate sensing, modeling and data-driven
analysis techniques in order to exploit the full range of perfor-
mance capabilities while ensuring the structural safety based
on the “global” real-time monitoring of the vehicle.

The most critical challenge for the postulation of a complete
and applicable self-diagnostic state-awareness framework for
future aircraft and vertical flight systems is the effective mod-
eling and interpretation of sensory data obtained under con-
stantly changing dynamic environments, multiple flight states
and varying structural health conditions. Evidently, all these
different operating conditions have a significant impact on the
structural dynamics and aeroelastic response. When it comes
to the aeroelastic behavior, dynamic aeroelastic effects result-
ing from the interaction of the aerodynamic, elastic, and iner-
tial forces require careful consideration throughout the design
phase of the aircraft and pose a major safety-critical factor
in the qualification of aircraft into service (Refs. 10–14). It
is therefore evident that the flight states and operating condi-
tions –characterized by several heterogeneous variables, such
as airspeed, angle of attack (AoA), blade pitch, altitude, tem-
perature, humidity, icing, and so on– may vary over time, and
consequently affect the system dynamics and aeroelastic re-
sponse. In such cases, the issue of the accurate data analy-
sis, modeling, and interpretation under varying flight states
remains a critical one that needs to be properly addressed.

In this work, the complete design, integration, and wind
tunnel experimental assessment are presented for an intelli-
gent composite high-lift low-drag wing with state-sensing and
awareness capabilities. A composite UAV wing is outfitted
with four stretchable sensor networks that are embedded in-
side the carbon/glass fiber composite layup. Each of the four
sensor networks consists of 8 piezoelectric lead-zirconate ti-
tanate (PZT) sensors (disc PZTs 1/8 in diameter), 6 strain
gauges, and 23 resistive temperature detectors (RTDs). The
fabricated wing can sense its structural state and surrounding
environment during flight and interpret the sensing informa-
tion to determine its actual operating state and flight configu-
ration. Piezoelectric sensors are used to sense the vibration of
the wing and identify the coupled airflow-structural dynam-
ics. Strain gauges are used to determine the strain distribution
of the wing and identify potential critical areas for the consid-
ered experimental conditions. Wind tunnel experiments were
conducted for various angles of attacks and freesrteam air-
flow velocities for the investigation of a broad regime of flight
conditions and structural states. The method of approach is
divided into three tasks: (i) distributed multi-modal sensor

networks for state sensing; (ii) structural design and fabri-
cation via integrated sensor networks and composite materi-
als; (iii) state awareness via statistical signal processing and
stochastic identification techniques for data processing and in-
terpretation; (iv) structural health monitoring via an acousto-
ultrasound guided-wave-based active sensing SHM in order
to detect and localize damage on the wing during its actual
operation.

In this study, special emphasis is given to the data model-
ing and system identification via wind tunnel experiments
under various flight (operating) conditions defined by multi-
ple airspeeds and angles of attack (AoA). A novel modeling
approach based on the recently introduced Vector-dependent
Functionally Pooled (VFP) model structure (Refs. 7, 15, 16)
is employed for the stochastic identification of the coupled
airflow-structural dynamics for the complete range of the ad-
missible flight states; that is all airspeeds and angles of at-
tack of the wing that are considered in the wind tunnel experi-
ments and may span the complete flight envelope. The unique
characteristic of the VFP-based modeling approach is that it
enables the analytical inclusion of the flight and/or structural
state (see (Ref. 17)) on the coupled airflow-structural dynam-
ics, as the model parameters depend functionally on the flight
state.

DISTRIBUTED SENSOR NETWORKS AND
WING INTEGRATION

Recently, micro-fabricated expandable sensor networks have
been developed and deployed micro-scale sensors over
macroscopic areas (Refs. 1, 9, 18–22). The component size
is on the same order as an individual fiber in typical compos-
ite materials or scrim in film adhesives and small enough to
be placed into a composite without structural modifications.
These networks can be used in-situ, from the material fab-
rication throughout its service life, to monitor the cure pro-
cess of composite materials, characterize material properties
post-cure, and monitor the structural dynamics along with the
health of the structure during its life cycle.

In this work four stretchable sensor networks with integrated
distributed PZT, strain, and RTD sensors have been designed
and fabricated (Refs. 1, 9, 18–21) so that they can be embed-
ded inside the layup of the composite wing. Extensible wires
connect the network nodes and serve as the signal communi-
cation channels. Before stretching, the network dimensions
are 52.8 mm by 39.6 mm that after the stretching process ex-
pand to 140 mm by 105 mm yielding a 700% total surface area
increase (Ref. 21). Each of the four sensor networks contains
8 piezoelectric sensors (round PZTs 3.175 mm in diameter),
6 strain gauges, and 24 RTDs. The total number of embedded
sensors in the composite wing is 148.

The prototype wing was designed, constructed and tested at
Stanford University. The designed wing is based on the cam-
bered SG6043 high lift-to-drag ratio airfoil with a 0.86 m
wing span, 0.235 m chord, and an aspect ratio of 7.32. In
order to achieve the successful integration and fabrication of
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Fig. 1. The intelligent composite wing design with a total of 148 (32 piezoelectric, 24 strain gauges, and 92 RTDs)
micro-sensors embedded in the composite layup.

the wing prototype, an appropriate network-material integra-
tion process had to be developed for embedding the micro-
fabricated sensor networks inside the composite materials.
The composite wing structure was manufactured based on
carbon and glass laminated composites. The layup consists
of carbon fiber (CF) plain weave fabric 1K T300 and glass
fiber (GF) plain wave fabric 18 gr/m2 infused with Araldite
LY/HY5052 epoxy. The stacking sequence of the layers was
[0o GF, 0o CF, 45o CF, 45o CF, 0o CF, 0o GF] (Figure 1). The
four networks were embedded between the two top layers at
0o of the layup (near the wing surface) during the lamination
process. The supporting wing structure consists of wooden
(basswood) ribs and spars.

THE EXPERIMENTS

The wing was tested in the open-loop wind tunnel (WT) facil-
ity at Stanford University. The WT has a square test section
of 0.84 m by 0.84 m (33 by 33 in) and can achieve continu-
ous flow speeds up to approximately 28 m/s. A custom ba-
sis was designed and fabricated to support the wing and per-
mit adjustments in the angle of attack (AoA). The wing was
mounted horizontally inside the test section. Eight commer-
cial strain gauges were attached on appropriate locations of
the basis to measure the aerodynamic forces. The axis of ro-
tation coincided approximately with the quarter of the wing
chord. Figure 2 presents the composite wing with the corre-
sponding locations of the PZTs and strain sensors. Table 1
presents the wing dimensions.

A series of wind tunnel experiments were conducted for var-
ious AoA and airspeeds. For each AoA, spanning the range
from 0 to 18 degrees with an incremental step of 1 degree,
data were sequentially collected for all velocities within the
range 9 m/s to 22 m/s (incremental step of 1 m/s). The above
procedure resulted to 266 different experiments covering the

Fig. 2. The intelligent composite wing with the embedded
sensor networks and the locations of the piezoelectric and
strain sensors.
complete range of the considered flight states. The experimen-
tal conditions along with the Reynolds numbers are outlined
in Table 2.

For each experiment the vibration and strain responses were
recorded at different locations on the wing via the embedded
piezoelectric sensors (initial sampling frequency fs = 1000
Hz, initial signal bandwidth 0.1− 500 Hz) and strain gauges
(sampling frequency fs = 100 Hz, signal bandwidth DC100
Hz), respectively. The signals were recorded via a National
Instruments X Series 6366 data acquisition module featuring
eight 16-bit simultaneously sampled analog-to-digital chan-
nels. The strain signals were driven through a custom de-
signed and built signal conditioning device into the data ac-
quisition system. The total number of the sensor signals that
were obtained was limited by the available number of chan-

Table 1. Wing dimensions.

Chord c 0.235 m

Span b 0.86 m

Area S 0.2 m2

Aspect Ratio AR 7.32
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Table 2. The conditions considered in the wind tunnel experiments.
Re (×103) 124 155 171 187 202 217 233 248 264 280 295 311 326 342

U∞ (m/s) 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Angle of attack: 0 – 18 degrees; Total number of experiments: 266

Table 3. Data acquisition and signal pre-processing.
Piezos Strain gauges

Number of sensors: 8 15
Sampling frequency: fs = 1000 Hz fs = 100 Hz
Bandwidth: [0.1−500] Hz [DC−50] Hz
Signal length: N = 90,000 (90 s) N = 9,000 (90 s)

nels of the data acquisition system. Table 3 presents the sen-
sors, data acquisition, signal details.

STOCHASTIC GLOBAL MODELING

In this section the modeling of the coupled airflow-structural
dynamics is addressed via the use of stochastic functionally
pooled models, or more precisely Vector-dependent Function-
ally Pooled AutoRegressive (VFP-AR) models. These mod-
els are capable of representing the system dynamics for the
complete range of flight and structural states based on data
records obtained under a sample of these states. The problem
is important in a number of practical applications and is tack-
led within a recently introduced Functional Pooling frame-
work (Refs. 7, 15, 16, 23). This study focuses on the case of
flight states characterized by two parameters, namely the air-
speed and the angle of attack of the wing. For the case where
the modeling of the structural state is modeled in terms of
damage location and damage magnitude, the interested reader
is referred to (Refs. 16, 17).

Classical system identification aims at deriving a model rep-
resenting a system under a specific operating condition. Yet,
in many cases, a system may operate under different condi-
tions at different occasions (time periods), with the dynamics
depending in a pseudo-static fashion on certain operating pa-
rameter(s) - also referred to as scheduling parameter(s). In
such cases, given a number of data records from the system
operating under a sample of different conditions, it is highly
desirable to establish a single and global model, that, while
compact (parsimonious), will be capable of accurately repre-
senting the dynamics under any considered condition.

Baseline Modeling under a Single Flight State

The modeling of the wing’s dynamic response under a sin-
gle flight state is an initial step performed in order to facili-
tate (in the sense of providing approximate model orders) the
subsequent step of the global modeling under all the admis-
sible flight states. A discrete-time model (or a vector model
or an array of models in the case of several vibration response
measurement locations) representing the system dynamics is
obtained via standard identification procedures (Refs. 24,25).

In this study a single response AutoRegressive (AR) model is
used. An AR(n) model is of the form1 (Ref. 24):

y[t]+
n

∑
i=1

ai · y[t− i] = e[t] e[t]∼ iidN
(
0,σ2

e
)

(1)

with t designating the normalized discrete time (t = 1,2,3, . . .
with absolute time being (t − 1)Ts, where Ts stands for the
sampling period), y[t] the measured vibration response sig-
nals as generated by the piezoelectric sensors of the wing, n
the AR order, and e[t] the stochastic model residual (one-step-
ahead prediction error) sequence, that is a white (serially un-
correlated), Gaussian, zero mean with variance σ2

e sequence.
The symbol N (·, ·) designates Gaussian distribution with the
indicated mean and variance, and iid stands for identically in-
dependently distributed.

The model is parameterized in terms of the parameter vec-

tor θ̄ = [a1 . . . an
... σ2

e ]
T to be estimated from the measured

signals (Ref. 24). Model estimation may be achieved based
on minimization of the Ordinary Least Squares (OLS) or the
Weighted Least Squares (WLS) criteria (Ref. 24). The mod-
eling procedure involves the successive fitting of AR(n) mod-
els for increasing order n until an adequate model is selected
(Ref. 26). Model order selection is based on the Bayesian
Information Criterion (BIC) and the residual sum of squares
normalized by the series sum of squares (RSS/SSS). Final
model validation is based on formal verification of the resid-
ual (one-step-ahead prediction error) sequence uncorrelated-
ness (whiteness) hypothesis (Ref. 24, pp. 512-513).

Global Modeling under Multiple Flight States

The VFP-AR representation allows for complete and precise
modeling of the global wing dynamics under multiple operat-
ing conditions defined by varying airspeed and angle of attack.
The VFP model parameters and residual series covariance de-
pend functionally on the airspeed and AoA, while the corre-
sponding interrelations and statistical dependencies between
the different flight states are taken into account.

The global modeling of the composite wing via a VFP-AR
model involves consideration of all the admissible airspeeds
and AoA that define the flight envelope of the wing. A total
of M1×M2 experiments is performed (in this case via wind
tunnel experiments; alternatively, analytical models and sim-
ulations can be used), with M1 and M2 designating the num-
ber of experiments under the various airspeeds and AoA, re-
spectively. Each experiment is characterized by a specific

1Lower case/capital bold face symbols designate vector/matrix quanti-
ties, respectively.
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airspeed k1 and a specific AoA k2, with the complete series
covering the required range of each variable, say [k1

min, k1
max]

and [k2
min, k2

max], via the discretizations {k1
1,k

1
2, . . . ,k

1
M1
} and

{k2
1,k

2
2, . . . ,k

2
M2
}. For the identification of a global VFP model

the flight state vector k containing the airspeed and AoA
scalar components, is defined as:

k = [k1
i k2

j ]
T ⇐⇒ ki, j, i = 1, . . . ,M1, j = 1, . . . ,M2 (2)

with ki, j designating the flight state of the wing corresponding
to the i-th airspeed and the j-th angle of attack. This procedure
yields a pool of response signals (each of length N):

xk[t],yk[t] with t = 1, . . . ,N, k1 ∈ {k1
1, . . . ,k

1
M1
},

and k2 ∈ {k2
1, . . . ,k

2
M2
}. (3)

The VFP-AR model is of the following form (Refs. 7, 15):

yk[t]+
n

∑
i=1

ai(k) · yk[t− i] = ek[t] (4)

ek[t]∼ iidN
(
0,σ2

e (k)
)

k ∈ R2 (5)

ai(k) =
p

∑
j=1

ai, j ·G j(k) (6)

E{eki, j [t] · ekm,n [t− τ]}= γe[ki, j,km,n] ·δ [τ] (7)

with n designating the AR order, yk[t] the sensor’s response
signal, and ek[t] the model’s residual (one-step-ahead predic-
tion error) sequence, that is a white (serially uncorrelated)
zero mean sequence with variance σ2

e (k). This may poten-
tially be cross-correlated with its counterparts corresponding
to different experiments (different k’s). The symbol E{·} des-
ignates statistical expectation, δ [τ] the Kronecker delta (equal
to unity for τ = 0 and equal to zero for τ 6= 0), N (·, ·) Gaus-
sian distribution with the indicated mean and variance, and iid
stands for identically independently distributed.

As (6) indicates, the AR parameters ai(k) are modeled as ex-
plicit functions of the flight vector k (which contains the air-
speed and AoA components) by belonging to p-dimensional
functional subspace spanned by the mutually independent ba-
sis functions G1(k),G2(k), . . . ,Gp(k) (functional basis). The
functional basis consists of polynomials of two variables (bi-
variate) obtained as tensor products from their correspond-
ing univariate polynomials (Chebyshev, Legendre, Jacobi, and
other families (Refs. 15,16)). The constants ai, j designate the
AR coefficients of projection.

The VFP-AR model of (4)–(7) is parameterized in terms of the
parameter vector to be estimated from the measured signals:

θ̄ = [ a1,1 a1,2 . . . ai, j
... σ

2
e (k) ]

T ∀ k (8)

and may be written in linear regression form as:

yk[t] =
[
ϕ

T
k [t]⊗gT (k)

]
·θ + ek[t] = φ

T
k [t] ·θ + ek[t] (9)

with:

ϕk[t] :=
[
−yk[t−1] . . . − yk[t−n]

]T

[n×1]
(10)

g(k) :=
[
G1(k) . . . Gp(k)

]T

[p×1]
(11)

θ :=
[
a1,1 a1,2 . . . an,p

]T

[(np×1]
(12)

and T designating transposition and ⊗ Kronecker product
(Ref. 27, Chap. 7).

Pooling together the expressions (9) of the VFP-AR model
corresponding to all flight vectors k (k1,1,k1,2, . . . ,kM1,M2)
considered in the experiments (cross-sectional pooling)
yields: yk1,1 [t]

...
ykM1 ,M2

[t]

=


φ

T
k1,1

[t]
...

φ
T
kM1 ,M2

[t]

 ·θ +

 ek1,1 [t]
...

ekM1 ,M2
[t]

 . (13)

Then, following substitution of the data for t = 1, . . . ,N the
following expression is obtained:

y = Φ ·θ + e (14)

with

y :=

 y[1]
...

y[N]

 , Φ :=

 Φ[1]
...

Φ[N]

 , e :=

 e[1]
...

e[N]

 . (15)

Using the above linear regression framework, the projection
coefficient vector θ can be efficiently estimated via minimiza-
tion of the Weighted Least Squares (WLS) criterion:

JWLS :=
1
N

N

∑
t=1

eT [t]Γ−1
e[t]e[t] =

1
N

eT
Γ
−1
e e (16)

which leads to the Weighted Least Squares (WLS) estimator:

θ̂
WLS

=
[
Φ

T
Γ
−1
e Φ

]−1[
Φ

T
Γ
−1
e y
]
. (17)

In these expressions Γe = E{eeT} (Γe = Γe[t]⊗ IN , with IN
designating the N ×N unity matrix) designates the residual
covariance matrix, which is practically unavailable. Neverthe-
less, it may be consistently estimated by applying (in an ini-
tial step) Ordinary Least Squares (details in (Ref. 15)). Once
θ̂

WLS
has been obtained, the final residual variance and resid-

ual covariance matrix estimates are obtained as:

σ̂
2
e (k, θ̂

WLS
) =

1
N

N

∑
t=1

e2
k[t, θ̂

WLS
],

Γ̂e[t] =
1
N

N

∑
t=1

e[t, θ̂
WLS

]eT [t, θ̂
WLS

]. (18)

5



The estimator θ̂
WLS

may, under mild conditions, be shown to
be asymptotically Gaussian distributed with mean coinciding
with the true parameter vector θ

o and covariance matrix Pθ :
√

N(θ̂ N−θ
o) ∼ N (0,Pθ ) (N −→ ∞) (19)

based on which interval estimates of the true parameter vector
may be constructed (Ref. 15).

The problem of VFP-AR model structure selection (structure
estimation) for a given basis function family (such as Cheby-
shev, Legendre, and so on), that is model order determination
for the AR polynomial and determination of their correspond-
ing functional subspaces, is referred to as the model identifi-
cation problem. Usually, the AR model order is initially se-
lected via customary model order selection techniques (BIC,
RSS, frequency stabilization diagrams) (Ref. 24), whereas the
functional subspace dimensionality is selected via a Genetic
Algorithm (GA) procedure (Ref. 15). Initially, the maximum
functional subspace dimensionality is selected, which defines
the search space of the functional subspace estimation sub-
problem. The determination of the exact subspace dimension-
ality is achieved via the use of GAs based on minimization of
the BIC with respect to the candidate basis functions. In the
current study, the estimation of the functional subspace di-
mensionality was achieved via the use of the BIC criterion for
increasing functional subspace dimensionality.

EXPERIMENTAL RESULTS

Non-parametric analysis

Figure 3 presents indicative wind tunnel signals obtained from
piezoelectric sensor 2 under various AoA and freestream ve-
locities of U∞ = 11 m/s (top subplot) and U∞ = 15 m/s (bottom
subplot). Observe the stochastic (random) nature of these sig-
nals, which is due to the wind tunnel airflow actuation and the
aeroelastic response of the wing. In addition, it is evident that
for higher AoA and as the wing approaches stall, the signal
amplitude (voltage) increases. In the case of U∞ = 11 m/s (top
subplot) in Figure 3, the maximum signal amplitude for AoA
of 13 and 15 degrees seems to be similar as there is no evi-
dent further increase. For this freestream velocity and based
on the airfoil properties and CFD analysis, stall occurs at an
AoA of approximately 13 degrees. In the case of U∞ = 15 m/s
(bottom subplot) in Figure 3, stall occurs at approximately 15
degrees, and it may be readily observed that there is an ob-
vious increase in the signal amplitude from 13 to 15 degrees
AoA.

Non-parametric identification is based on 90,000 (90 s)
sample-long response signals obtained from the embedded
piezoelectric sensors (see Table 3). A 5096 sample-long Ham-
ming data window (frequency resolution ∆ f = 0.24 Hz) with
90% overlap is used for the Welch-based spectral estimation
(MATLAB2 function pwelch.m).

2In this work Matlab version R2015b has been used.

Fig. 3. Indicative signals obtained from piezoelectric sen-
sor 1 under various angles of attack: (a) freestream veloc-
ity U∞ = 11 m/s (top subplot) and (b) freestream velocity
U∞ = 17 m/s (bottom subplot).
Figure 4 presents indicative non-parametric power spectral
density (PSD) Welch-based estimates obtained from piezo-
electric sensor 1 for increasing airspeed and a constant AoA
of 0 degrees within the [0.1− 25] Hz frequency range (left
subplot). Notice that as the airspeed increases, the PSD am-
plitude in the lower frequency range slightly increases as well.
In this case, it is expected that as the airspeed increases for a
constant AoA the wing will approach flutter which will be
triggered by the coupling of aeroelastic modes. In this case
the coupling occurs in the [0.5−15] Hz frequency range. By
carefully observing Figure 4 it may be seen that the frequency
at approximately 5 Hz increases with increasing airspeed and
approaches the frequency at approximately 9 Hz, thus provid-
ing an indication of incipient flutter. This observation will be
clarified by the global parametric modeling results.

Similarly, Figure 5 presents indicative non-parametric power
spectral density (PSD) Welch-based estimates of the piezo-
electric response signals obtained from sensor 1 for increas-
ing AoA and freestream velocity U∞ = 15 m/s (right subplot).
Notice that as the AoA increases the PSD amplitude in the
lower frequency range of [0.1−12] Hz significantly increases
as well. More specifically, as the AoA approaches the critical
stall range of [13−15] degrees, the low frequency vibrations
become dominant and thus indicating the proximity to the stall
of the wing. From this Figure it is evident that by monitoring
the identified lower frequency bandwidths that are sensitive
to increasing AoA it is possible to obtain a strong indication
of stall. All the embedded piezoelectric sensors of the wing
exhibit a similar performance, but for the sake of brevity the
results are presently omitted

Strain Distribution

Indicative results obtained from strain gauges 5 and 14 are
presented in Figure 6 and Figure 7, respectively. The recorded
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Fig. 4. Indicative non-parametric Welch-based power
spectral density (PSD) estimates for piezoelectric sensor
1 versus varying airspeed with set AoA of 1 degree.
strain is plotted for increasing AoA and airspeed, hence the
strain mapping for the specific location on the wing may be
obtained for the considered experimental conditions. As the
AoA and airspeed increase the applied strain also increases,
with the maximum strain appearing, as expected, in the top
right corner of the figures (for the maximum airspeed and
AoA). The strain shown in these plots is estimated as the mean
value of the acquired signal (9000 samples; 90 s). The max-
imum strain is observed for angles higher than 8 degrees and
velocities higher than 16 m/s, resulting in a critical, with re-
spect to strain, flying area of the wing that for the considered
experimental conditions (or –in the more general concept–
flight envelope) is located in the top right corner of the fig-
ures. Finally, the recorded strain is higher for gauge 5 than
gauge 13. This is due to the fact that strain gauge 5 is closer
to the root of the wing and thus it is expected that the quasi-
static strain in that location should be higher than the strain
closer to the wing tip.

Parametric analysis via global models

For the parametric identification, conventional autoregressive
(AR) time-series models representing the wing]s structural
dynamics are obtained through standard identification pro-
cedures (Refs. 24, 25) based on the collected piezoelectric
response signals (MATLAB function arx.m). The response
signal bandwidth is selected as 0.1− 30 Hz after the initial
signals were low-pass filtered (Chebyshev Type II) and sub-
sampled to a resulting sampling frequency fs = 60 Hz (initial
sampling frequency was 1000 Hz). Each signal resulted in
a length of N = 4,000 samples (20 s) and was subsequently
sample mean corrected.

The modeling strategy consists of the successive fitting of
AR(n) models (with n designating the AR order) until a
suitable model is selected. Model parameter estimation is
achieved by minimizing a quadratic prediction error (PE) cri-
terion leading to a least squares (LS) estimator (Ref. 24, p.

Fig. 5. Indicative non-parametric Welch-based power
spectral density (PSD) estimates for piezoelectric sensor
1 versus varying AoA for set airspeed U∞ = 13 m/s.

206). Model order selection, which is crucial for successful
identification, may be based on a combination of tools, in-
cluding the Bayesian information criterion (BIC) , which is
a statistical criterion that penalizes model complexity (order)
as a counteraction to a decreasing quality criterion (Ref. 24,
pp. 505–507), monitoring of the RSS/SSS (residual sum
of squares/ signal sum of squares) criterion, monitoring of
the residual autocorrelation function (MATLAB function au-
tocorr.m) (Ref. 24, p. 512), and use of “stabilization dia-
grams” which depict the estimated modal parameters (usu-
ally frequencies) as a function of increasing model order
(Refs. 24, 25).

For piezoelectric sensor 1, this leads to an AR(18) model for
a collected data set corresponding to an airspeed of 11 m/s
and an angle of attack of 3 degrees. This model is used as
reference and for providing approximate orders for the identi-
fication of the global VFP-AR models of the next section. For
the sake of brevity, in the following sections indicative results
from sensor 1 only will be presented.

The global modeling of the composite wing is based on sig-
nals obtained from a total of M1 ×M2 = 144 experiments.
Airspeeds up to 17 m/s and AoA up to 15 degrees were con-
sidered for the Vector-dependent Functionally Pooled (VFP)
based modeling procedure. The airspeed and AoA increments
are ∆k1 = 1 m/s and ∆k2 = 1 degree, respectively, covering the
corresponding intervals of [9,17] m/s and [0,15] degrees.

Model order selection starts with the orders selected for the
conventional AR models representing the wing structure for
a constant indicative experimental condition. The final model
orders being presently selected are based on the BIC crite-
rion (Ref. 26) and model validation techniques, such as check-
ing the whiteness (uncorrelatedness) and the normality of the
model residuals (MATLAB functions acf.m and normplot.m,
respectively) (Refs. 24, 26). The functional subspaces are se-
lected via a similar BIC-based process. The functional sub-
space consists of 21 Chebyshev Type II bivariate polynomial
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Fig. 6. Indicative strain distribution obtained from strain
gauge 5 for the considered angles of attack and freestream
velocities.
basis functions (Refs. 15–17).

The final identified global model is a VFP-AR(72)24. The
functional subspace consists of the first p = 24 shifted Cheby-
shev Type II 2-dimensional polynomials.

In this study, the identified VFP model is of significantly
lower order than the corresponding results presented in
(Ref. 7). This was to investigate a model that focuses on the
lower frequencies (< 30 Hz) that are dominant in the struc-
tural response of the composite wing. This also reduces poten-
tial over-parametrization and significantly reduces the compu-
tational burden allowing for potential close to real-time model
estimation.

Indicative VFP-model-based frequency response function
(FRF) magnitude results obtained from the VFP-AR(18)21
global model are depicted as functions of frequency and air-
speed for set AoA 0 degrees in Figure 8. The frequency res-
olution is 0.01 Hz, while the airspeed resolution is 0.1 m/s.
Observe how the wing mode at 4.5 Hz for airspeed 9 m/s grad-
ually increases with the increasing airspeed until completely
coupled with the mode at 9 Hz at approximately 16 m/s. This
behavior of the aeroelastic modes of the wing, as identified
by the VFP-AR model, corresponds to the generation of dy-
namic flutter. It may be readily observed that the results of
Figure 8 are, as expected, extremely accurate when compared
to the corresponding non-parametric Welch-based analysis of
Figure 4. It is also worth mentioning that the non-parametric
results of Figure 4 have been obtained using a significantly
longer signal of 90 seconds, whereas the VFP-based paramet-
ric results are based on 20-second-long signals.

The VFP-model-based FRF magnitude curves obtained via
the VFP-AR(18)21 global model are depicted as functions of
frequency and AoA in the right plot in Figure 9. The fre-
quency resolution is 0.01 Hz, while the AoA resolution is 0.1
degrees. The airspeed of 15 m/s is very close to the occur-
rence of flutter and the wing exhibits two distinct aeroelastic
modes within the [5−10] Hz range. However, observe that for

Fig. 7. Indicative strain distribution obtained from
strain gauge 13 for the considered angles of attack and
freestream velocities.

an AoA of 0 degrees, the modes are very close and almost co-
incide, which is in agreement with Figure 8 that presents the
model-based FRF for set AoA of 0 degrees versus increas-
ing airspeed. By observing the frequency evolution versus
the AoA it may be assessed that the amplitude of the VFP-
based FRF magnitude increases for lower frequencies (< 15
HZ) with increasing AoA as the wing approaches stall. More
specifically, the FRF magnitude exhibits a sharp increase for
AoA higher than 13 degrees in which stall occurs.

By comparing the VFP-based parametric FRF magnitudes
with the corresponding non-parametric Welch-based spectral
estimates of Figure 5 it may be concluded that high accuracy
is achieved by the global modeling approach which also em-
ploys a significantly shorter signal length (see Table 3).

ACTIVE SENSING SHM

SHM technologies, oftentimes in combination with appropri-
ate NDE and/or HUMS, along with sophisticated data man-
agement systems and life-prediction models, address the for-
mulation of the required steps for the transition to condition-
based maintenance (CBM) and complete structural aware-
ness for safety assurance. In this section, the application of
an acousto-ultrasound active sensing SHM approach is pre-
sented for the intelligent composite wing. Apart from the pas-
sive sensing of the ambient vibration (aeroelastic) response
of the wing via the embedded pizeoelectric sensor network,
the same network can be used in an active sensing mode to
perform pulse-echo or pitch-catch guided-wave-based diag-
nostic SHM. Piezoelectric sensors-actuators can be used both
as transmitters and receivers for monitoring local defects by
injecting controlled diagnostic signals into structures and can
potentially interrogate large structural areas. In principle, an
active system allows damage to be interrogated by injecting
controlled diagnostic signals (i.e. guided Lamb waves) into
the structure. With the known inputs, the changes in local
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Fig. 8. Indicative parametric FRF magnitude results
based on the VFP-AR(18)21 global model as a function of
frequency and airspeed for set AoA of 0 degrees.

sensor measurements are associated with the introduction of
damage in the structure.

The use of distributed piezoelectric sensors embedded inside
the wing allows for the development of in-situ, on-demand,
diagnostic approaches that tackle damage detection, localiza-
tion, and quantification; the present study focuses on the de-
tection and localization tasks. The distributed network is ex-
pected to increase the damage localization and quantification
accuracy and robustness, that is the topic of on-going work by
the authors and co-workers (Refs. 28,29). Increasing the dam-
age quantification robustness of active sensing ultrasound ap-
proaches for hotspot monitoring can be achieved via the use of
multiple sensors, and thus wave propagation paths (Ref. 29).
As the number of sensors and propagation paths increases, the
uncertainty in the damage index (as defined in (Ref. 28)) will
decrease leading to robust damage quantification. Theoreti-
cally, it is assumed that the damage index value will converge
to its “real” value as the number of sensors/paths increases,
as the addition of new paths will not contribute to any useful
information (Ref. 29).

Figure 10 presents indicative structural health monitoring re-
sults based on a series of experiments performed on the com-
posite wing under controlled laboratory environment and dur-
ing the wind tunnel experiments. Ultrasound guided 5-peak
tone-burst waves were generated from the embedded piezo-
electric transducers acting as actuators for a number of cen-
ter frequencies, spanning the range of 100− 700 kHz. The
ultrasound waves were recorded by piezoelectric transducers
acting as sensors and mounted on three sensing topologies
on the wing. These topologies were defined in terms of a
hotspot monitoring scenario, such as that specific locations
on the wing are considered to be prone to the appearance of
damage. In this case, the three topologies cover the complete
area of the wing and employ 19 piezoelectric sensors embed-
ded in the composite layup. The location of the sensors and
the corresponding topologies are shown in Figure 10.

Fig. 9. Indicative parametric FRF magnitude results
based on the VFP-AR(18)21 global model as a function of
frequency and AoA for set airspeed of 15 m/s.

Fig. 10. Indicative structural health monitoring results
based on the active-sensing acousto-ultrasound approach
(Ref. 28) for a center frequency of 250 kHz.

Simulated damage was introduced in various locations on the
wing by attaching lightweight sticky tapes. The active sens-
ing approach employed in this study is based on the damage
index (DI) defined in the recent work of (Ref. 28). The in-
dicative results of Figure 10 for a center wave frequency of
250 kHz indicate that the method is able to detect and localize
the existence of artificial damage. The actual damage loca-
tion is indicated via the red rectangular areas, while the esti-
mated damage location is indicated by the diagnostic image
(for more details the interested reader is referred to (Ref. 5)).

In addition, the method was applied during the wind tunnel
experiments and is the topic of on-going work to be presented
in a subsequent article.
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CONCLUSIONS

The objective of this work was to outline the main design, fab-
rication, and data modeling and analysis challenges of a self-
sensing self-diagnostic intelligent composite UAV wing with
state sensing and awareness capabilities. The embedded bio-
inspired stretchable sensor networks consisting of piezoelec-
tric, strain gauges, and RTDs enabled the data-driven identi-
fication of the coupled structural and aerodynamic properties
under varying flight states and uncertainty. Piezoelectric sen-
sors were used in two modes: (i) passive mode to sense the
ambient vibration of the wing in order to identify the coupled
airflow-structural dynamics and related them to critical aero-
dynamic/aeroelastic phenomena such as stall and flutter; (ii)
active mode, as both actuators and sensors to implement an
active sensing acousto-ultrasound pitch-catch SHM approach.

Special emphasis was given to the wind tunnel experimen-
tal assessment under various flight states defined by multi-
ple airspeeds and angles of attack. A novel modeling ap-
proach based on the recently introduced Vector-dependent
Functionally Pooled (VFP) model structure was employed for
the stochastic data-driven modeling of the global aeroelastic
vibration response of the wing. In addition, the strain dis-
tribution was established under the considered flight states
and critical areas –as defined by increased strain signatures–
of the flight envelope were identified. The obtained re-
sults demonstrated the successful integration of the micro-
fabricated stretchable sensor networks with the composite ma-
terials of the wing, as well as the effectiveness of the stochas-
tic VFP-based “global” modeling and active sensing SHM
approaches, proving their integration potential for the next
generation of self-sensing self-diagnostic aerial vehicles and
aerospace structures.
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