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ABSTRACT

In this work, the system design, integration, and wind tunnel experimental evaluation are presented for a bio-
inspired self-sensing intelligent composite unmanned aerial vehicle (UAV) wing. A total of 148 micro-sensors,
including piezoelectric, strain, and temperature sensors, in the form of stretchable sensor networks are embed-
ded in the layup of a composite wing in order to enable its self-sensing capabilities. Novel stochastic system
identification techniques based on time series models and statistical parameter estimation are employed in or-
der to accurately interpret the sensing data and extract real-time information on the coupled airflow-structural
dynamics. Special emphasis is given to the wind tunnel experimental assessment under various flight conditions
defined by multiple airspeeds and angles of attack. A novel modeling approach based on the recently introduced
Vector-dependent Functionally Pooled (VFP) model structure is employed for the stochastic identification of
the “global” coupled airflow-structural dynamics of the wing and their correlation with dynamic flutter and
stall. The obtained results demonstrate the successful system-level integration and e↵ectiveness of the stochastic
identification approach, thus opening new perspectives for the state sensing and awareness capabilities of the
next generation of “fly-by-feel” UAVs.

Keywords: bio-inspired systems, composite wing, system identification, sensor networks, stochastic systems,
structural health monitoring, piezoelectric sensors, autoregressive models, aerial vehicles, flight awareness

1. INTRODUCTION

The next generation of intelligent aerospace structures and air vehicles will be able to “feel”, “think”, and
“react” in real time based on high-resolution state-sensing capabilities allowing for superior performance in
complex dynamic environments, safer operation, reduced maintenance costs, and complete life-cycle monitoring.
One of the main challenges of the current state-of-the-art research is the development of technologies that will
lead to autonomous “fly-by-feel” unmanned aerial vehicles (UAVs) inspired by the unprecedented sensing and
actuation capabilities of biological systems. Such intelligent air vehicles will be able to (i) sense the environment
(temperature, ambient air pressure, etc.), (ii) sense their flight (vibration, flutter, stall, aerodynamic loads, etc.)
and structural health state (detect, localize and quantify damage), and (iii) e↵ectively interpret the sensing data
to achieve real-time state awareness and improve the vehicle performance and control characteristics. However,
and despite the importance of vehicle state sensing and awareness, the current state of the art is primitive as
well as prohibitively heavy, expensive, and complex. Therefore, a departure from the existing technologies is
necessary for the design and deployment of the next generation of intelligent air vehicles.

Self-sensing multifunctional materials are highly intelligent materials that constitute the future generation
of composites for aerospace applications.1–4 Furthermore, a dramatic rise is seen in the application of advanced
composite materials for aerospace applications in the last two decades. Industry analysts estimate a growth of 8 to
13 % per year in the carbon fiber reinforced plastics market for the next several years.5 Towards this end, current
research aims at the development of the technologies that will lead to the next generation of self-sensing self-
diagnostic composite structures and autonomous aerospace systems that can sense the environment (temperature,
pressure, humidity, etc.) and structural state (configuration, loads, damage, etc.), and e↵ectively interpret the
sensing data to achieve real-time state awareness under uncertainties in varying operating environments. Such
self-sensing composite materials will enable the integration with SHM systems6–10 in which a network of sensors
is attached or embedded inside the composite structure.
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The design, integration, and wind tunnel experimental assessment are presented for an intelligent composite
UAV wing with state-sensing and awareness capabilities. The proposed design incorporates novel bio-inspired
multi-modal sensor networks that can be embedded inside composite materials to provide built-in sensing and
intelligence capabilities to various structural components (wings, fuselage, other critical components). Micro-
fabricated stretchable sensor networks, including integrated piezoelectric, strain, and temperature sensors are
designed and monolithically embedded in the layup of the composite wing. The self-sensing capabilities of the
intelligent composite UAV wing are achieved via four stretchable sensor networks that are embedded inside the
carbon/glass fiber composite layup. Each of the four sensor networks fabricated for this work consist of 8 piezo-
electric lead-zirconate titanate (PZT) sensors, 6 strain gauges, and 23 resistive temperature detectors (RTDs).
The fabricated wing can sense its structural state and surrounding environment during flight and interpret the
sensing information in order to determine its actual operating state and flight configuration. Piezoelectric sen-
sors are used to sense the vibration of the wing in order to identify and monitor the coupled airflow-structural
dynamics. Strain gauges are used to determine the strain distribution of the wing and identify potential critical
areas for the considered experimental conditions. Some preliminary results focusing on the response of the strain
gauges and the non-parametric analysis of the piezoelectric response signals have been recently published by the
authors4 and are not considered in this work. However, this is the first time that a stochastic framework for the
parametric identification of the “global” wing dynamics is presented.

In this study, special emphasis is given to the wind tunnel experimental assessment under various flight
(operating) conditions defined by multiple airspeeds and angles of attack. A novel modeling approach based
on the recently introduced Vector-dependent Functionally Pooled (VFP) model structure11–13 is employed for
the stochastic identification of the coupled airflow-structural dynamics for the complete range of the admissible
flight conditions; that is all airspeeds and angles of attack that are considered in the wind tunnel experiments
and may form the flight envelope of the UAV. The unique characteristic of the VFP-based modeling approach is
that it enables the analytical inclusion of both the airspeed and angle of attack on the coupled airflow-structural
dynamics, as the VFP model parameters depend functionally on the flight conditions. The VFP identification
approach leads to the estimation of a compact and accurate “global” model in a statistically optimal sense.

This VFP-based identification framework is based on three important entities:

(i) A stochastic Functionally Pooled (FP) model structure that explicitly allows for system modeling under mul-
tiple operating conditions via a single (“global”) mathematical representation. This representation is char-
acterized by parameters that functionally (explicitly) depend on the operating parameter in a quasi-static
fashion and allows for the proper, parsimonious, modeling of the dynamics under all possible conditions
without using excessively many parameters or requiring a separate interpolation stage.

(ii) Data pooling techniques which simultaneously treat, as a single entity, the data records corresponding to
all available operating conditions. In this way potential interrelations are also accounted for.

(iii) Properly formulated statistical inference techniques for model estimation.

The rest of the paper is organized as follows: The the bio-inspired stretchable sensor networks and the wing
integration are presented in section 2. The wind tunnel experiments are described in section 3, while the VFP-
based stochastic identification approach is outlined in section 4. The experimental results are provided in section
5, while the conclusions are summarized in section 6.

2. BIO-INSPIRED SENSOR NETWORKS AND WING INTEGRATION

Recently, micro-fabricated expandable sensor networks have been developed and deployed micro-scale sensors over
macroscopic areas.1–3,14–17 In order to survive the large strains that occur in expansion, the sensors are created
on polymer substrates with nonstandard and unique micro-fabrication processes. The resulting components have
dimensions on the order of tens of micrometers (Figure 1).

These networks are created on standard 100 mm diameter substrates and expanded to span areas orders of
magnitude larger than the initial fabrication area deploying numerous micro-meter scale devices over meter scale



Figure 1. (A) A 16-node sensor network on a wafer can be expanded up to 1, 057% in each dimension after release. (B)

Close-up of the sensor node demonstrating the design of the microwires. (C) A sensor network with 169 nodes before

expansion. (D) An expanded 5041-node network is shown in contrast to a hand, which illustrates the flexibility of the

membrane. (E) Network before release on a 4-inch wafer. (F) A fabricated 256-node network on polyimide is easily held

by hand without damaging the network. It is characterized by 16 µm wide, 50 µm thick microwires.

areas. The resulting web-like network consists of distributed small scale components (nodes, wires, pads, etc.)
intended to have a minimal parasitic e↵ect on the host structure. The component size is on the same order as
an individual fiber in typical composite materials or scrim in film adhesives and small enough to be placed into
a composite without structural modifications. These networks can be used in-situ, from the material fabrication
throughout its service life, to monitor the cure process of composite materials, characterize material properties
post-cure, and monitor the structural dynamics along with the health of the structure during its life cycle.

In this work four stretchable sensor networks with integrated distributed PZT, strain, and RTD sensors have
been designed and fabricated1–3,14–16 so that they can be embedded inside the layup of the composite wing.
Extensible wires connect the network nodes and serve as the signal communication channels. Before stretching,
the network dimensions are 52.8 mm by 39.6 mm that after the stretching process expand to 140 mm by 105 mm
yielding a 700% total surface area increase.16 Each of the four sensor networks contains 8 piezoelectric sensors
(round PZTs 3.175 mm in diameter), 6 strain gauges, and 24 RTDs. The total number of embedded sensors in
the composite wing is 148.

2.1 The Intelligent Composite Wing

The prototype wing was designed, constructed and tested at Stanford University. The designed wing is based
on the cambered SG6043 high lift-to-drag ration airfoil with a 0.86 m wing span, 0.235 m chord, and an aspect
ratio of 3.66. In order to achieve the successful integration and fabrication of the wing prototype, an appropriate
network-material integration process had to be developed for embedding the micro-fabricated sensor networks
inside the composite materials.

The micro-scale, aspect ratio, and fragile nature of the stretchable network components, including both the
wires and the sensor nodes, requires the use of appropriate integration and network transfer processes. The
geometry and material of the network nodes and contact pads may cause the electrical shorting with the carbon
fibers if not properly addressed. In order to tackle these integration and manufacturing challenges, a new process
had to be developed for the transfer, electrical interfacing and electrical insulation of the network components
based on multilayer flexible PCB technologies and epoxy armoring. Via the use of the developed approach
the sensor networks were successfully integrated into carbon fiber based composite materials using a multi-step



Figure 2. The intelligent composite wing design with a total of 148 (32 piezoelectric, 24 strain gauges, and 92 RTDs)

micro-sensors embedded in the composite layup.

fabrication process. The composite wing structure was manufactured based on carbon and glass laminated
composites. The layup consists of carbon fiber (CF) plain wave fabric 1K T300 and glass fiber (GF) plain wave
fabric 18 gr/m2 infused with Araldite LY/HY5052 epoxy. The stacking sequence of the layers was [0o GF, 0o

CF, 45o CF, 45o CF, 0o CF, 0o GF] (Figure 2).

The four networks were embedded between the two top layers at 0o of the layup (near the wing surface)
during the lamination process. The glass fiber was employed due to its transparency, so that the embedded
stretchable sensor networks may be evident to the naked eye. The supporting wing structure consists of wooden
(basswood) ribs and spars.

3. WIND TUNNEL EXPERIMENTS

3.1 The Wind Tunnel

The prototype composite wing was tested in the open-loop wind tunnel facility at Stanford University. The wind
tunnel has a square test section of 0.76 m by 0.76 m (30 by 30 in) and can achieve continuous flow speeds up to
approximately 40 m/s. A custom basis was designed and fabricated to support the wing and permit adjustments
in the angle of attack. The wing was mounted horizontally inside the test section. Eight commercial strain
gauges were attached on appropriate locations of the basis to measure the aerodynamic forces. The axis of
rotation coincided approximately with the quarter of the wing chord. Figure 3 presents the composite wing with
the corresponding locations of the PZTs and strain sensors. Table 1 presents the wing dimensions.

Table 1. Wing dimensions.

Chord c 0.235 m

Span b 0.86 m

Area S 0.2 m2

Aspect Ratio AR 3.66



Figure 3. The intelligent composite wing with the embedded sensor networks and the locations of the piezoelectric and

strain sensors.

3.2 The Experiments

A series of wind tunnel experiments were conducted for various angles of attack and free-stream velocities U1.
For each angle of attack, from 0 degrees up to 18 degrees with an incremental step of 1 degree, data were
sequentially collected for velocities from 9 m/s up to 22 m/s (incremental step 1 m/s). The above procedure
resulted in 285 di↵erent experiments covering the complete range of the considered experimental conditions. The
experimental conditions along with the Reynolds numbers are outlined in Table 2.

For each experiment the vibration and strain responses were recorded at di↵erent locations on the wing via
the embedded network piezoelectric sensors (initial sampling frequency f

s

= 1000 Hz, initial signal bandwidth
0.1 � 500 Hz) and strain gauges (sampling frequency f

s

= 100 Hz, signal bandwidth DC100 Hz), respectively.
The strain signals were driven through a custom designed and built signal conditioning device into the data
acquisition system (National Instruments). The total number of the sensor signals that were obtained was
limited by the available number of channels of the data acquisition system. Table 3 presents the sensors, data
acquisition, signal details.

4. STOCHASTIC IDENTIFICATION UNDER MULTIPLE FLIGHT CONDITIONS

In this section the identification of the coupled airflow-structural dynamics is presented via the use of stochastic
functional models, or more precisely Vector-dependent Functionally Pooled AutoRegressive (VFP-AR) models.
These models are capable of representing the system dynamics for the complete range of operating (flight)
conditions (airspeeds and angle of attack). The identification of stochastic systems operating under multiple
conditions is addressed based on data records obtained under a sample of these conditions. The problem is
important in a number of practical applications and is tackled within a recently introduced Functional Pooling

Table 2. The conditions considered in the wind tunnel experiments.

Re (⇥103) 124 155 171 187 202 217 233 248 264 280 295 311 326 342

U1 (m/s) 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Angle of attack: 0 – 18 degrees; Total number of experiments: 266

Table 3. Signal pre-processing and details.

Piezoelectric sensors Strain gauges
Number of sensors: 8 15
Sampling frequency: f

s

= 1000 Hz f

s

= 100 Hz
Bandwidth: [0.1� 500] Hz [DC � 50] Hz
Signal length: N = 90, 000 samples (90 s) N = 9, 000 samples (90 s)



framework.11–13 This study focuses on the case of operating conditions characterized by two parameters, namely
the airspeed and the angle of attack of the wing.

Classical system identification aims at deriving a model representing a system under a specific operating
condition. Yet, in many cases, a system may operate under di↵erent conditions at di↵erent occasions (time
periods), with the dynamics depending in a pseudo-static fashion on certain operating parameter(s) - also referred
to as scheduling parameter(s). In such cases, given a number of data records from the system operating under a
sample of di↵erent conditions, it is highly desirable to establish a single and global model, that, while compact
(parsimonious), will be capable of accurately representing the dynamics under any considered condition.

4.1 Baseline Modeling Under a Single Operating Condition

The modeling of the wing under a single operating condition is an initial step performed in order to facilitate
(in the sense of providing approximate model orders) the subsequent step of the global modeling under all the
admissible operating conditions.

A single experiment is performed, based on which an interval estimate of a discrete-time model (or a vector
model or an array of models in the case of several vibration response measurement locations) representing
the system dynamics is obtained via standard identification procedures.18,19 In this study a single response
AutoRegressive (AR) model is used.

An AR(n) model is of the form⇤:18

y[t] +
nX

i=1

a

i

· y[t� i] = e[t] e[t] ⇠ iidN
�
0,�2

e

�
(1)

with t designating the normalized discrete time (t = 1, 2, 3, . . . with absolute time being (t � 1)T
s

, where T

s

stands for the sampling period), y[t] the measured vibration response signals as generated by the piezoelectric
sensors of the wing, n the AR order, and e[t] the stochastic model residual (one-step-ahead prediction error)
sequence, that is a white (serially uncorrelated), Gaussian, zero mean with variance �

2
e

sequence. The symbol
N (·, ·) designates Gaussian distribution with the indicated mean and variance, and iid stands for identically
independently distributed.

The model is parameterized in terms of the parameter vector ✓̄ = [a1 . . . a

n

... �2
e

]T to be estimated from the
measured signals.18 Model estimation may be achieved based on minimization of the Ordinary Least Squares
(OLS) or the Weighted Least Squares (WLS) criteria.18 The modeling procedure involves the successive fitting of
AR(n) models for increasing order n until an adequate model is selected.20 Model order selection is based on the
Bayesian Information Criterion (BIC) and the residual sum of squares normalized by the series sum of squares
(RSS/SSS). Final model validation is based on formal verification of the residual (one-step-ahead prediction
error) sequence uncorrelatedness (whiteness) hypothesis [18, pp. 512-513].

4.2 Global Modeling Under Multiple Operating Conditions

The VFP-AR representation allows for complete and precise modeling of the global wing dynamics under multiple
operating conditions defined by varying airspeed and angle of attack. The VFP model parameters and residual
series covariance depend functionally on the airspeed and angle of attack, while the corresponding interrelations
and statistical dependencies between the di↵erent operating conditions are taken into account.

The VFP-AR representation belongs to the recently introduced broader class of stochastic FP models, which
make use of data pooling techniques for combining and optimally treating (as one entity) the data obtained
from various experiments corresponding to di↵erent structural states and statistical techniques for model esti-
mation.12,13

The global modeling of the composite wing via a VFP-AR model involves consideration of all the admissible
airspeeds and angles of attack that define the flight envelope of the wing. A total of M1 ⇥ M2 experiments is
performed (physically or via analytical models and simulations), with M1 and M2 designating the number of

⇤
Lower case/capital bold face symbols designate vector/matrix quantities, respectively.



experiments under the various airspeeds and angles of attack, respectively. Each experiment is characterized by
a specific airspeed k

1 and a specific angle of attack k

2, with the complete series covering the required range of
each variable, say [k1

min

, k

1
max

] and [k2
min

, k

2
max

], via the discretizations {k11, k12, . . . , k1
M1

} and {k21, k22, . . . , k2
M2

}.
For the identification of a global VFP model the vector operating parameter k containing the airspeed and angle
of attack components, is defined as:

k = [k1
i

k

2
j

]T () k

i,j

, i = 1, . . . ,M1, j = 1, . . . ,M2 (2)

with k

i,j

designating the flight state of the wing corresponding to the i-th airspeed and the j-th angle of attack.
This procedure yields a pool of response signals (each of length N):

xk[t], yk[t] with t = 1, . . . , N, k

1 2 {k11, . . . , k1M1
}, k2 2 {k21, . . . , k2M2

}. (3)

A proper mathematical description of the wing structure may be then obtained in the form of a VFP-AR
model. In the case of several vibration measurement locations an array of such models (or else a vector model)
may be obtained, with each scalar model corresponding to each measurement location.

The VFP-AR model is of the following form:12

yk[t] +
nX

i=1

a

i

(k) · yk[t� i] = ek[t] (4a)

ek[t] ⇠ iidN
�
0,�2

e

(k)
�

k 2 R2 (4b)

a

i

(k) =
pX

j=1

a

i,j

·G
j

(k) (4c)

E{e
ki,j [t] · ekm,n [t� ⌧ ]} = �

e

[k
i,j

, k

m,n

] · �[⌧ ] (4d)

with n designating the AR order, yk[t] the piezoelectric sensor’s response signal, and ek[t] the model’s residual
(one-step-ahead prediction error) sequence, that is a white (serially uncorrelated) zero mean sequence with vari-
ance �2

e

(k). This may potentially be cross-correlated with its counterparts corresponding to di↵erent experiments
(di↵erent k’s). The symbol E{·} designates statistical expectation, �[⌧ ] the Kronecker delta (equal to unity for
⌧ = 0 and equal to zero for ⌧ 6= 0), N (·, ·) Gaussian distribution with the indicated mean and variance, and iid
stands for identically independently distributed.

As (4c) indicates, the AR parameters a
i

(k) are modeled as explicit functions of the vector k (which contains
the airspeed and angle of attack components) by belonging to p-dimensional functional subspace spanned by the
mutually independent basis functions G1(k), G2(k), . . . , Gp

(k) (functional basis). The functional basis consists
of polynomials of two variables (bivariate) obtained as tensor products from their corresponding univariate poly-
nomials (Chebyshev, Legendre, Jacobi, and other families11,12). The constants a

i,j

designate the AR coe�cients
of projection.

The VFP-AR model of (4a)–(4d) is parameterized in terms of the parameter vector to be estimated from the
measured signals:

✓̄ = [ a1,1 a1,2 . . . a

i,j

... �2
e

(k) ]T 8 k (5)

and may be written in linear regression form as:

yk[t] =
⇥
'T

k[t]⌦ gT (k)
⇤
· ✓ + ek[t] = �T

k[t] · ✓ + ek[t] (6)



with:

'k[t] :=
h
�yk[t� 1] . . . � yk[t� n]

i
T

[n⇥1]
(7a)

g(k) :=
h
G1(k) . . . Gp

(k)
i
T

[p⇥1]
(7b)

✓ :=
h
a1,1 a1,2 . . . a

n,p

i
T

[(np⇥1]
(7c)

and T designating transposition and ⌦ Kronecker product [21, Chap. 7].

Pooling together the expressions (6) of the VFP-AR model corresponding to all vector operating parameters
k (k1,1, k1,2, . . . , kM1,M2) considered in the experiments (cross-sectional pooling) yields:

2

64
y

k1,1 [t]
...

y

kM1,M2
[t]

3

75 =

2

64

�T

k1,1
[t]

...
�T

kM1,M2
[t]

3

75 · ✓ +

2

64
e

k1,1 [t]
...

e

kM1,M2
[t]

3

75 =) y[t] = �[t] · ✓ + e[t]. (8)

Then, following substitution of the data for t = 1, . . . , N the following expression is obtained:

y = � · ✓ + e (9)

with

y :=

2

64
y[1]
...

y[N ]

3

75 , � :=

2

64
�[1]
...

�[N ]

3

75 , e :=

2

64
e[1]
...

e[N ]

3

75 . (10)

Using the above linear regression framework the simplest approach for estimating the projection coe�cient
vector ✓ is based on minimization of the Ordinary Least Squares (OLS) criterion J

OLS := 1
N

P
N

t=1 e
T [t]e[t].

A more appropriate criterion is (in view of the Gauss-Markov theorem22) the Weighted Least Squares (WLS)
criterion:

J

WLS :=
1

N

NX

t=1

eT [t]��1
e[t]e[t] =

1

N

eT��1
e e (11)

which leads to the Weighted Least Squares (WLS) estimator:

b✓
WLS

=
⇥
�T��1

e �
⇤�1⇥

�T��1
e y

⇤
. (12)

In these expressions �e = E{eeT } (�e = �e[t] ⌦ I
N

, with I
N

designating the N ⇥N unity matrix) designates
the residual covariance matrix, which is practically unavailable. Nevertheless, it may be consistently estimated

by applying (in an initial step) Ordinary Least Squares (details in12). Once b✓
WLS

has been obtained, the final
residual variance and residual covariance matrix estimates are obtained as:

b�2
e

(k, b✓
WLS

) =
1

N

NX

t=1

e

2
k[t,

b✓
WLS

], b�e[t] =
1

N

NX

t=1

e[t, b✓
WLS

]eT [t, b✓
WLS

]. (13)

The estimator b✓
WLS

may, under mild conditions, be shown to be asymptotically Gaussian distributed with
mean coinciding with the true parameter vector ✓o and covariance matrix P✓:

p
N(b✓

N

� ✓o) ⇠ N (0,P✓) (N �! 1) (14)



Figure 4. Indicative simulation results: (a) lift coe�cient CL (left subplot) and (b) lift-to-drag coe�cient ratio CL/CD

(right subplot) versus angle of attack for the SG6043 airfoil and various Reynolds numbers.

based on which interval estimates of the true parameter vector may be constructed.12

The problem of VFP-AR model structure selection (structure estimation) for a given basis function family
(such as Chebyshev, Legendre, and so on), that is model order determination for the AR polynomial and
determination of their corresponding functional subspaces, is referred to as the model identification problem.
Usually, the AR model order is initially selected via customary model order selection techniques (BIC, RSS,
frequency stabilization diagrams),18 whereas the functional subspace dimensionality is selected via a Genetic
Algorithm (GA) procedure.12 Initially, the maximum functional subspace dimensionality is selected, which
defines the search space of the functional subspace estimation subproblem. The determination of the exact
subspace dimensionality is achieved via the use of GAs based on minimization of the BIC with respect to the
candidate basis functions. In the current study, the estimation of the functional subspace dimensionality was
achieved via the use of the BIC criterion for increasing functional subspace dimensionality.

5. EXPERIMENTAL RESULTS

5.1 Numerical Simulations

In order to extract the aerodynamic properties of the fabricated wing based on which the experimental results will
be interpreted and assessed, a series of numerical simulations were conducted using the XFOIL, an interactive
program for the design and analysis of subsonic isolated airfoils developed at MIT.23 Given the coordinates
specifying the shape of the 2D airfoil, Reynolds number and free stream velocity XFOIL can calculate the
pressure distribution on the airfoil and hence lift and drag characteristics.

Figure 4a and Figure 4b present the lift coe�cient versus the angle of attack and lift to drag coe�cient ratio
C

L

/C

D

results of the SG6043 airfoil of the wing, respectively, for various Reynolds numbers (U1 = 7, 10, 12 and
15 m/s). It may be readily observed that the wing exhibits stall (loss of lift shown as shaded area in Figure 4a)
starting from an angle of attack of approximately 12 degrees for a Reynolds number of Re = 100, 000. Moreover,
observe that the maximum C

L

/C

D

ratio is obtained for angles between 4 and 8 degrees (shaded areas in Figure
4b).

Figure 5 presents indicative signals obtained from piezoelectric sensor 1 (see Figure 3) under various angles
of attack and free stream velocities of U1 = 11 m/s and U1 = 15 m/s (see Table 2). Observe the random
(stochastic) nature of these signals, which is due to the wind tunnel airflow actuation and the fluid-structure
interaction. In addition, it is evident that for higher angles of attack and as the wing approaches stall the signal
amplitude (voltage) increases.

Figure 6 presents indicative signal energy (volt2 ·t) results obtained from piezoelectric sensor 1 during the wind
tunnel experiments. The angle of attack varied between 0 and 15 degrees with a constant free stream velocity of



Figure 5. Indicative signals obtained from piezoelectric sensor 1 under various angles of attack: (a) free stream velocity

U1 = 11 m/s (top subplot) and (b) free stream velocity U1 = 15 m/s (bottom subplot).

Figure 6. Indicative wind tunnel signal energy versus angle of attack results for piezoelectric sensor 1 and free stream

velocity U1 = 15 m/s. The mean value of the signal energy is shown as red line. The 99% confidence bounds are shown

as green shaded areas.

U1 = 15 m/s. The goal is to correlate the signal energy in the time domain with the airflow characteristics, the
structural dynamics, and aeroelastic properties in order to identify and track appropriate signal features that
can be used for the airflow and wing vibration monitoring, the localization of the flow separation over the wing
chord, and the early detection of stall under various flight and environmental conditions. Figure 6 presents the
mean value of the vibrational signal energy along with the 99% confidence bounds. The initial signal of 90 s
(N = 90, 000 samples) was split in signal windows of 0.5 s (N = 500 samples). Then, for each signal window the
mean value and the standard deviation of the signal energy were calculated.

As the wing angle exceeds the value of 12 degrees the signal energy significantly increases and reaches the



Figure 7. Indicative non-parametric Welch-based PSD estimates (piezoelectric sensor 1) versus angle of attack for (a)

U1 = 11 m/s (Re = 171, 000; left subplot) and (b) U1 = 15 m/s (Re = 233, 000; right subplot) free stream velocities.

maximum value as it approaches the stall range (14 degrees), while slightly decreases after stall has occurred
(15 degrees). The wind tunnel results indicated that for the velocities of 11 m/s and 12 m/s the stall angle is
13 degrees, whereas for the higher velocities of 14 m/s and 15 m/s the stall angle appears at 14 degrees. These
results are in agreement with the trend of signals in Figure 5 as in both cases the signal amplitude/energy is
maximized within the stall range of the wing. Also, the results are in agreement with the numerical simulations
presented in Figure 4.

5.2 Non-parametric Analysis

Non-parametric identification is based on 90, 000 (90 s) sample-long response signals obtained from the embedded
piezoelectric sensors (see Table 3. A 5096 sample-long Hamming data window (frequency resolution �f = 0.24
Hz) with 90% overlap is used for the Welch-based spectral estimation (MATLAB function pwelch.m).

Figure 7 presents indicative power spectral density (PSD) Welch-based estimates of the piezoelectric response
signals obtained from sensor 1 for increasing angle of attack and free stream velocities U1 = 11 m/s (Re =
171, 000) and U1 = 15 m/s (Re = 233, 000). Notice that as the angle of attack increases the PSD amplitude in
the lower frequency range of [112] Hz significantly increases as well. More specifically, as the angle of the wing
approaches the critical stall range of 13 to 14 degrees, depending on the velocity, the low frequency vibrations
become dominant and thus indicating the proximity to the stall of the wing. Form this Figure it is evident
that by monitoring the identified lower frequency bandwidths that are sensitive to increasing angle of attack
we may have a strong indication of stall. All the embedded piezoelectric sensors of the wing exhibit a similar
performance, but for the sake of brevity the results are presently omitted.

5.3 Baseline Parametric Modeling

Conventional AR models representing the wing are obtained through standard identification procedures18,20

based on the collected piezoelectric response signals (MATLAB function arx.m). The response signal bandwidth
is selected as 0.1�100 Hz after the initial signals were low-pass filtered (Chebyshev Type II) and sub-sampled to
a resulting sampling frequency f

s

= 200 Hz (initial sampling frequency was at 1000 Hz). Each signal resulted in
a length of N = 4, 000 samples (20 s) and was subsequently sample mean corrected (Table 4). For piezoelectric
sensor 1, this leads to an AR(72) model for a collected data set corresponding to an airspeed of 11 m/s and
an angle of attack of 3 degrees. This model is used as reference and for providing approximate orders for the
identification of the global VFP-AR models of the next section. For the sake of brevity, in the following sections
indicative results from sensor 1 only will be presented.



Figure 8. Indicative parametric results obtained from the VFP-AR(72)24 model (set airspeed k1
= 13 m/s): spectral

amplitude as function of frequency and angle of attack.

5.4 Global Modeling Under Multiple Flight Conditions

The parametric VFP-based identification of the coupled airflow-structural dynamics is based on signals collected
from the piezoelectric sensors under the various wind tunnel experiments (see Table 2).

The global modeling of the composite wing is based on signals obtained from a total of M1 ⇥ M2 = 144
experiments. Airspeeds up to 17 m/s and angles of attack up to 15 degrees were currently considered for the
VFP-based modeling procedure. The airspeed and angle of attack increments used are �k1 = 1 m/s and �k

2 = 1
degree, respectively, covering the intervals [9, 17] m/s and [0, 15] degrees.

Model order selection starts with the orders selected for the conventional AR models representing the wing
structure for a constant indicative experimental condition. The final model orders being presently selected are
based on the BIC criterion20 and model validation techniques, such as checking the whiteness (uncorrelated-
ness) and the normality of the model residuals (MATLAB functions acf.m and normplot.m, respectively).18,20

The functional subspaces are selected via a similar BIC-based process. The functional subspace consists of 24
Chebyshev Type II bivariate polynomial basis functions.11,12,24

The final identified global model is a VFP-AR(72)24. The functional subspace consists of the first p = 24
shifted Chebyshev Type II 2-dimensional polynomials. Indicative VFP-based spectral results obtained from
the VFP-AR(72)24 model (for set airspeed k

1 = 13 m/s) are, as functions of frequency and angle of attack,
depicted in Figure 8. By observing the frequency evolution versus the angle of attack it may be assessed that
the amplitude of the parametric power spectral density increases for lower frequencies with the increase of the
angle of attack (compare with the non-parametric analysis of Figure 7).

Indicative parametric spectral results obtained from the VFP-AR(72)24 model (for set angle of attack k

2 = 0
degrees) are, as functions of frequency and airspeed, depicted in Figure 9. Figure 9 presents a close-up of the
0.1� 30 Hz frequency range for increasing airspeed. In this case observe how the wing mode at 4.5 Hz for 9 m/s
gradually increases with the increasing airspeed until unified with the mode at 8.5 Hz at 16 m/s. This behavior
of the wing modes as identified with the VFP-AR model corresponds to the generation of the dynamic flutter

Table 4. Piezoelectric signal pre-processing for the parametric identification.

Sampling frequency: f

s

= 200 Hz (after filtering and subsampling)
Final bandwidth: [0.1� 100] Hz
Digital filtering: Low-pass Chebyshev Type II (7th order)
Signal length: N = 4, 000 samples (20 s)



Figure 9. Indicative parametric spectral results obtained from the VFP-AR(72)24 model (set angle of attack k2
= 0

degrees): spectral amplitude as function of frequency and airspeed.

Figure 10. Indicative VFP-AR(72)24 model parameters versus angle of attack for a set airspeed k1
= 15 m/s.

phenomenon. Via the use of such a global VFP model it is possible to improve the aircraft control in order to
suppress, minimize, and even predict dynamic flutter via appropriate real-time monitoring techniques.

Indicative AR parameters of the VFP-AR(72)24 model are depicted in Figure 10 as functions of the angel
of attack for a constant airspeed of 15 m/s. However, as previously mentioned, the VFP model parameters are
explicit functions of both the airspeed and the angle of attack based on the selected functional subspace and
the estimated coe�cients of projections. Towards this end, Figure 11 presents indicative VFP-AR(72)24 model
parameters as functions of both airspeed and angel of attack.



Figure 11. Indicative VFP-AR(72)24 model parameters as function of airspeed and angle of attack.

6. CONCLUDING REMARKS

The objective of this work was to outline the main design, fabrication, and data analysis challenges of a bio-
inspired self-sensing intelligent composite UAV wing with state sensing and awareness capabilities. The embedded
bio-inspired stretchable sensor networks consisting of piezoelectric, strain gauges, and resistive temperature
detectors enabled the identification of the coupled structural and aerodynamic properties under varying operating
conditions and uncertainties. Piezoelectric sensors were used to sense the vibration of the wing in order to identify
the coupled airflow-structural dynamics. Special emphasis was given to the wind tunnel experimental assessment
under various flight (operating) conditions defined by multiple airspeeds and angles of attack. A novel modeling
approach based on the recently introduced Vector-dependent Functionally Pooled (VFP) model structure was
employed for the stochastic identification of the global coupled airflow-structural dynamics of the wing. The
obtained results demonstrated the successful integration of the micro-fabricated stretchable sensor networks
with the composite materials of the wing, as well as the e↵ectiveness of the stochastic VFP-based “global”
identification approach, proving their integration potential for the next generation of “fly-by-feel” aerial vehicles.
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