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Abstract
Our purpose addresses accurate fatigue damage prognostics in composite aircraft structures based

on an SHM approach. A methodology based on the combination of an active sensing SHM technique

and a state-parameter estimator to predict the fatigue damage and compute the remaining useful life

of a structure is proposed. Active sensing SHM utilizes active sensors, such as piezoelectric sensors

(PZTs) for monitoring local defects and can potentially interrogate large structural areas. Ultrasonic

guided waves that propagate on the structure and recorded by piezoelectric sensors are used to extract

damage sensitive features (damage index) for damage detection, localization and quantification. Next,

the damage index and the corresponding estimated damage may be used as inputs in an appropriate

fatigue model to enable the damage prognostics of the composite structure. The joint extended Kalman

filter (JEKF) is used to estimate the Wu and Yao model parameters. The behavior of the JEKF is first

studied by using simulated data and then experimental data. It is shown that some materials under

estimation initial conditions provide better results. This combination of sensors and JEKF algorithm,

teach that the real-time calculation of the remain useful life is possible and it could be sufficiently

effective to be study in a real-time situation.

1. INTRODUCTION

Composite materials are emerging as the material of choice for aircraft structural components as they
can improve the mechanical properties, reduce the weight, and reduce the life-cycle cost [1]. Recently,
composites have been used in the aircraft fuselage of Boeing 787 and Airbus A350. Furthermore,
modern aircraft are outfitted with various types of sensors and sensor networks to enable the transition
from time-based to condition-based maintenance. Information processing algorithms can be integrated
with sensors and signal processing to perform structural health monitoring (SHM) [2–4]. SHM has the
potential to significantly reduce operational cost and maintenance related downtime.
In general, SHM technology can be classified into two types: passive and active. Passive sensing SHM
utilizes continuous sensor measurements from accelerometers, strain gauges, fiber optics, etc. to mon-
itor the structural behavior and determine the unknown global and local inputs which cause changes
in sensor measurements, such as external loads, incipient damage, and temperature. On the other hand,
active sensing SHM utilizes active sensors, such as piezoelectric sensors (PZTs), which can be used both
as transmitters (actuators) and receivers, for monitoring local defects by generating controlled diagnos-
tic signals into structures [5–8]. Typically, SHM methods involve the detection, monitoring, evaluation,
and assessment of an adverse event that may affect the structural health state [7]. In the current state-of-
the-art literature a significant amount of research is targeted to the development of diagnostic approaches
based on various sensor technologies. These approaches are able to achieve a certain level of capability
in terms of detection, evaluation, and assessment of adverse events that can affect the proper structural
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operation, performance, and safety. However, damage prognostics and remaining useful service-life
estimation remain extremely challenging tasks that necessitate the development of novel effective ap-
proaches and methodologies. In the case of active sensing SHM systems, acousto-ultrasonic guided
waves are generated via the use of piezoelectric actuators and propagate on the structure. These waves
are recorded by piezoelectric sensors and subsequently used for the extraction of damage sensitive fea-
tures or damage indices (DIs) for damage detection, localization and quantification. Next, these damage
indices and the corresponding estimated and quantified damage may be used as inputs in an appropriate
prognostic model.
Our purpose addresses accurate fatigue damage prognostic based on an SHM approach. A methodol-
ogy based on the combination of an active sensing SHM technique and a state-parameter estimator to
predict the fatigue damage and compute the remaining useful life of a structure component is proposed.
Fiber-reinforced composite materials under different fatigue loading and sequences as well as model for
fatigue damage prediction proposed by Wu and Yao in [9] are considered. The fatigue phenomenological
nonlinear model depending on two uncertain material parameters is derived from stiffness degradation
rule and was verified with experimental data. A sensitivity analysis has been performed based on the
methodology proposed by Lemaı̂tre et al. [10]. In order to get accurate values, the two model param-
eters are estimated using the joint extended Kalman filter (JEKF) method. Indeed, the EKF method
based on a recursive digital processing is appropriate to real time applications such as active sensing
SHM method. First, simulated data generated from the Wu and Yao model are used to estimate the two
parameters. Glass fiber and carbon fiber composite materials under various fatigue loading have been
tested. The influence of the process and measurement noises has been studied. The impact of parameter
initial values and of the DI and parameter variances on the estimation have been also studied. Materials
tested show a similar general trend. But estimation error magnitudes on DI’s and parameters depend on
material. Moreover, a better error estimation is always obtained when the process noise is smaller than
the measurement noise. Fatigue damage expermiemental data are processed to JEKF state-parameter
estimation.

2. ACTIVE SENSING SHM SYSTEM

When an elastic wave travels through a region where there is a change in material properties, scattering
occurs in all directions. Active sensing methods utilize the distributed actuator/sensors, permanently
attached to the structure, to generate the elastic wave and measure the arriving waves at sensors [6]. The
damage diagnosis is performed through the examination of the arriving waves including the scattered
wave in comparison with a “baseline” condition. When a single actuator–sensor path is considered for
damage interrogation, the amount a signal changes is quantified as scattered energy and may be related
to the change in local material properties. Since the scattered energy contains the information of both
attenuation and phase delay of the directly transmitted wave due to the presence of a flaw, an appropriate
damage index can be selected to correlate the change in sensor measurements to crack size.
Typically, SHM involves four functional levels referred to as Technology Classification Levels (TCL)
[7]: (i) damage detection, (ii) identification/localization, (iii) quantification, and (iv) estimation of the
remaining service life/strength (prognosis). The performance of an active sensing SHM system depends
upon several key parameters, such as the type, number and location of sensors, the inspection interval,
and the diagnostic algorithms used to process and interpret the sensing data [7]. A schematic represen-
tation of an active sensing SHM system is presented in Figure 1.
In active sensing SHM systems, acousto-ultrasonic guided waves are generated via the use of piezoelec-
tric actuators, that can also operate as sensors, and propagate on the structure. Typically, sensor data
may be collected either over predetermined time intervals in a scheduled manner or continuously in an
automatic way. In that respect, the effectiveness of an SHM system is affected by the sensor/actuator
network (number and locations of sensors and actuators). Next, the ultrasonic signals are recorded by
the available piezoelectric sensors (see Figure 1). Each sensor-actuator pair forms a distinct signal prop-
agation path with an appropriate number of paths to be determined based on the employed diagnostic



Figure 1: Schematic representation of the generic active sensing SHM principles of operation [7].

approach. In general, the use of more sensors and corresponding paths may increase the accuracy of
the diagnostic algorithm [7, 8]. Using the available ultrasonic signals and appropriate signal processing
techniques damage sensitive features, usually referred as damage index (DI), are extracted under vari-
ous operating conditions (temperature, loads, etc.) during the service life of the structure. These DIs
are subsequently utilized for tackling the tasks of damage detection, damage localization, and damage
quantification. The extracted DIs along with the information related to the damage location and damage
size (e.g. crack length, matrix crack density for composites, delamination area, etc.) can be used in the
prognostic model building stage for the estimation of the remaining strenght/useful life and the deter-
mination of appropriate maintenance and life-cycle management approaches. In this preliminary study,
the Wu and Yao [9] model, that takes into account the damage growth at different fatigue loading levels
is considered.
The diagnostic effectiveness characterization of SHM systems requires understanding of the way the
various system parameters affect the sensor signals. Once the effects are understood and properly quan-
tified, it is crucial to select a damage index that is insensitive to all other environmental and external
factors other than damage. The DI that is highly sensitive to damage and much less sensitive to other
external factors will be selected for detecting, localizing, and characterizing the damage presence on the
structure. Therefore, the diagnostic sensitivity of the SHM system depends highly on the appropriate
selection of the DI. In a recent study [7], it was proved that the DI formulation may solely depend on
the coefficients related to the guided wave propagation.

3. SENSITIVITY ANALYSIS DAMAGE MODEL

For our study, the recent phenomenological damage growth model for composites proposed by Wu and
Yao [9] is used. The material stiffness degradation is used as the damage evolution parameter. The Wu
and Yao model uses extensive experimental data to determine the empirical parameters and gives results
for E-glass/epoxy and Carbon/epoxy models. Generally, a large amount of experimental data leads to a
better fitting damage growth model. Wu and Yao describes the whole fatigue life evolution of composite



materials as

D(n) = 1−

(

1−

(

n

nl

)B
)A

(1)

where D is the normalized accumulated damage at loading cycle n depending on material property
parameters A and B, and nl is the fatigue life at the corresponding applied load level.
A sensitivity analysis of parameters A and B on structure component probability of failure is addressed
by considering the perturbation methodology proposed by Lemaı̂tre et al. [10]. Sensitivity indices allow
us to quantify the impact of input random variables such as parameters A and B on the probability
of failure. The main idea is to modify the probability density function of input random variables, for
instance, by a mean shifting of these random variables and analyze the consequence on the probability
of failure. In this case, the mean of a random variable X is a perturbation δ instead of the expectation
E[X ] of the distribution with no perturbation. The perturbed probability of failure is therefore computed.
The perturbation δ is µ + δσ where µ = E[X ] and σ is the standard deviation of the distribution with
no perturbation.
The crude Monte Carlo method is carried out to provide a statistical estimation P̂f of the probability of
failure

P̂f =
1

N

N

∑
i=1

1G(xi,t)>yth
(xi) (2)

where Y = G(X , t) is a deterministic model depending on an input random variable X ∈ Rm of known
density f , t ∈ Rp is an input deterministic variable and Y ∈ R is an output random variable. N is the
sample size. In the context of structural monitoring, a structure component is failed if the value of the
scalar y returned by function G is greater than a predefined threshold yth. A failure criterion is therefore
defines as y = G(x, t)> yth where x is a realization of vector X .

In (2), it is assumed that Xi ∼ X and the uncertainty on the estimation of P̂f is Var(P̂f ) =
P̂f (1−P̂f )

N . The
Wu and Yao model is used to compute the damage growth at a certain number of cycles. According to
Eq. 1,

G(X , t) = 1− (1− tB)A (3)

where t = n
nl
∈ R and X = (A,B)T ∈ R2 where A and B are input random variables associated to model

uncertain parameters A and B. These random variables are sampled from their distributions assuming
that that they follow a normal distribution with parameter values as means and standard deviations of
5% from Table 1 in [9]. Sensitivity analysis is performed for the glass fiber material defined at the first
line of this table. In a first approximation, one assumes that variables A and B are not correlated. A
structure made with 500 identical structure components is considered. For all calculations, the Monte
Carlo sample drawn is 1000 and the failure threshold value is 0.6. Sensitivity indices are computed
at predetermined loading cycle numbers. Figures 2 and 3 show estimated indices for the Monte Carlo
model with a mean shifting at loading cycles 48000. At a number of cycles of 36000, the Monte Carlo
simulation based on a size sample of 500000 provides an estimated failure probability of 210−6, means
only one structure component failed. In this case, the variance of the sensitivity indices is not possible.
At 48000 cycles, the estimated failure probability is 3.3510−3, means 1675 structure components failed.
Figure 2 shows the impact of parameter A on the failure probability. An increase of the parameter A

mean raises the failure probability. For δ = 1, the new failure probability is 10 times larger than the
one with the unperturbed distribution. A decrease of A mean diminishes the failure probability. For
δ =−0.7, the failure probability is divided by 10 than the one with the unperturbed distribution. Figure
3 shows the impact of parameter B on the failure probability. The magnitude is lesser than parameter
A one and the impact of B is opposite to A one. This means that an increase of B leads to a decrease
of the failure probability with a factor 20 and inversely. Parameter B has a low impact on the failure
probability.
At 56000 cycles, the estimated failure probability is 2.28810−3, means 114385 structure components
failed. It is observed that parameter B has a low impact increasing with a mean decrease and inversely.



Figure 2: Parameter A for glass fiber FRCglass. Figure 3: Parameter B for glass fiber FRCglass.

Parameter A has a strong impact. The failure probability is doubled for δ = 1 and it is divided by 5
for δ = −1. Sensitivity analysis shows that, in a first approximation, parameter A appears to be more
influent on the failure probability of a glass fiber composite structure component than parameter B. It is
therefore important to get a good estimation of parameter A.

4. STATE-PARAMETER ESTIMATION MODELLING

In this section, the estimation problem modelling based on the JEKF is described. First, the JEKF
method is briefly introduced; then, it is applied to the Wu and Yao parameter model estimation.

4.1 Joint extended Kalman filter method

The JEKF method consists in the use of the augmented state vector Xk ∈ Rn+q at time k ∈ N defined
as Xk = (Sk,Λk)T where Sk ∈ Rn represents the random vector of the system state and Λk ∈ Rq the
unknown vector of parameters. The modelling of a nonlinear discrete dynamical system based on the
joint formulation lead to the equations

⎧

⎨

⎩

Sk = f (Sk−1,Λk−1,k−1)+Ck−1Wk−1 Dynamics

Λk = id(Λk−1)+Yk−1 Parameter

Zk = h(Sk,k)+Vk Observation

(4)

Nonlinear functions f and h are defined on Rn and take their values in Rn et Rp respectively. They
represent the state process and measurement evolution. The second equation means that parameters do
not evolve over time. In the third equation, Zk ∈ Rp is the random observation vector at time k (output).
{Wk} ∈ Rm, {Yk} ∈ Rq and {Vk} ∈ Rp are series of random vectors representing the state (or process)
noise, parameter noise and observation noise. Ck ∈ Mn,m(R) is the deterministic matrix of state noise.
The Jacobian matrix Jk(X̂k−1) at time k relative to the augmented state Xk evaluated at the last estimate
X̂k−1 = (Ŝk−1, Λ̂k−1)T , i.e. at time k−1, is

Jk(X̂k−1) =

(

Jf ,k(Ŝk−1) Jf ,k(Λ̂k−1)
Jid,k(Ŝk−1) Jid,k(Λ̂k−1)

)

where Jf ,k ∈ Mn(R) is the Jacobian matrix of f with respect to S, Jf ,k(Λ̂k−1) ∈ Mn,q(R) is the Jacobian
matrix of f with respect to Λ, Jid,k ∈Mq,n(R) is the Jacobian matrix of the identity function with respect
to S and Jid,k(Λ̂k−1) ∈ Mq(R) is the Jacobian matrix of the identity function with respect to Λ.



Observing that Jid,k(Ŝk−1) = 0q,n and Jid,k(Λ̂k−1) = Iq, therefore

Jk(X̂k−1) =

(

Jf ,k(Ŝk−1) Jf ,k(Λ̂k−1)
0q,n Iq

)

(5)

where Jf ,k(Ŝk−1) =
∂ f (i)(S,Λ)

∂ s( j)

∣

∣

∣(S=Ŝk−1,Λ=Λ̂k−1)
, ∀1 ≤ i, j ≤ n ,

and Jf ,k(Λ̂k−1) =
∂ f (i)(S,Λ)

∂λ ( j)

∣

∣

∣(S=Ŝk−1,Λ=Λ̂k−1)
, ∀1 ≤ i ≤ q, 1 ≤ j ≤ n .

According to the observation equation from system (4) the Jacobian matrix of h evaluated at the state
prediction X̂−

k at time k is

Hk =
∂h(i)(S,k)

∂x( j)

∣

∣

∣X=X̂−
k
, ∀1 ≤ i, j ≤ p.

The standard algorithm for the EKF method is then applied to solve system (4).

Algorithm 1 Joint EKF algorithm

Initialization: X̂−
0 ,P−

0 , Λ̂−
0

Prediction:

{

X̂−
k = f (X̂k−1)

P−
k = Jk(X̂k−1)Pk−1Jk(X̂k−1)T +Ck−1Qk−1CT

k−1

Correction:

⎧

⎪

⎨

⎪

⎩

Kk = P−
k HT

k (HkP−
k HT

k +Rk)−1

X̂k = X̂−
k +Kk(Zk −h(X̂−

k ))

Pk = (In −KkHk)P
−
k .

Output: State-parameter estimation X̂ = X̂k and covariance matrix estimation error P = Pk

4.2 Application to the Wu and Yao model

The JEKF method is now applied to estimate the fatigue index damage D and parameters A and B of Eq.
1. In this case, the joint vector is X = (D,A,B)T . Assuming that Y = Oq, system (4) become

⎧

⎨

⎩

Dk = f (Dk−1,Λk−1)+Ck−1Wk−1

Λk = id(Λk−1)
Zk = HDk +Vk

(6)

where the vector to be estimated is Λ = (A,B)T and the sensitivity matrix is H = (100) because only
DI is observed. The first recurrent equation in (6) is obtained by approximating the first derivative
expressing the rate of DI (7 ) by a finite difference. From

D′(n) =
A B

nl

(

n

nl

)B−1
(

1−

(

n

nl

)B
)A−1

(7)

we obtain Dk = f (Dk−1,Λk−1) where function f is defined as

f (Dk−1,Λk−1) = Dk−1 +
A B

nl

(

nk−1

nl

)B−1
(

1−

(

nk−1

nl

)B
)A−1

(nk −nk−1). (8)

The JEKF requires the computation of the Jacobian matrix Jk(X̂k) at step k defined in (5). This matrix is
expressed as

Jk(X̂k) =

⎛

⎝

Jf ,k(D̂k−1) Jf ,k(Âk−1) Jf ,k(B̂k−1)
0 1 0
0 0 1

⎞

⎠ (9)



where Jf ,k(D̂k−1) =
∂ f (D,Λ)

∂D

∣

∣

∣(D=D̂k−1,Λ=Λ̂k−1)
, Jf ,k(Âk−1) =

∂ f (D,Λ)
∂A

∣

∣

∣(D=D̂k−1,Λ=Λ̂k−1)
and Jf ,k(B̂k−1) =

∂ f (D,Λ)
∂B

∣

∣

∣(D=D̂k−1,Λ=Λ̂k−1)
.

5. RESULTS AND DISCUSSION

5.1 Methodology

Both DI D and parameters A and B are estimated using the JEKF. A first step consists in the study of
the JEKF behavior by using DI simulated data generated from Eq.1 and adding a Gaussian noise. Three
glass fiber and carbon fiber composite materials under various fatigue loading addressed in Table 1, [9],
have been tested. Then, for the thirteen materials mentioned in this table, experimental data are used to
perform the state-parameter estimation.
As said, the first study is based on DI data generation using the Wu and Yao model with parameter values
of A and B provided in Table 1, measurement time interval is every 100 cycles and whole fatigue life is
nl = 10000 cycles. The additive noise is a normal distribution with mean zero and standard deviation of
5%. Three different composite materials have been considered:

• the glass fiber HC9106-3 [0/903], called FRCglass, under a fatigue loading level of 75% of its
ultimate strength σult whose corresponding parameter values A = 0.314 and B = 0.025,

• two carbon fiber composites T300/QY8911 with sequences [45/90/− 45/02/− 45/90/45] and
[02/45/02/− 45/0/90], called FRCa and FRCc, under fatigue loading levels of 441.7 MPa and
917.5 MPa, whose corresponding parameter values A = 0.703, B = 0.445 and A = 0.571, B =
0.057 respectively.

The framework proposed in this paper is first validated by taking into account parameter values of Table
1, [9], to generate data and to initialize the JEKF process. A reference case is therefore obtained. Then a
deep sensitivity analyzis is carried out by studying the impact of the JEKF inputs on estimation results.
First, the impact of process and noise covariance matrices Q and R on the estimation is studied. Three
cases are considered: R > Q, R = Q and R < Q as mentioned in Table 1 below, which shows the JEKF
input values successively used to estimation process. In a second step, for each one of these three cases,

Estimation initial conditions

Process and measurement noises
R >Q: R = 0.1, Q = 0.001
R = Q: R = 0.01, Q = 0.01
R <Q: R = 0.001, Q = 0.1

P0D 0.1 - 0.01 - 0.001 - 0.0001

P0A 0.01 - 0.001 - 0.0001 - 0.00001

P0B 1 - 0.1 - 0.01 - 0.001 - 0.0001

Initial prediction error 1%, 10% and 20%

Table 1: JEKF algorithm inputs.

the influence on the estimation of initial variances P0D, P0A, P0B, i.e. initial diagonal coefficients of
matrix P, on variables D, A and B respectively is successively studied. This means that P0A and P0B

are set, and P0D varies with values given in Table 1. Estimation error evolution (EEE) on D, A and B

is then plot and analyzed. In the same way, P0D and P0A are set, P0B varies and the EEE on D, A and
B is analyzed. Finally, the role of P0A and P0B is inverted and the EEE on D, A and B is addressed. A
third step consists in analyzing the impact of the initial joint vector prediction X̂−

0 = (D̂−
0 , Â

−
0 , B̂

−
0 )

T by
assuming that this vector is known with an error of 1%, 10% or 20%. For each one of these error values,
the variation of initial variances on D, A and B is combined and a similar study as previously is realized.
This third step is repeated for each three cases R > Q, R = Q and R < Q.



The second study consists in performing state-parameter estimation based on real data from fatigue
experiment on thirteen composite fibers provided in [9] - see Table 1 and Fig. 2. For each material,
systematic simulations have been done by gradually modifying the JEKF input values, means initial
variances P0D, P0A and P0B, measurement noise R and process noises QD, QA, QB on D, A and B respec-
tively, in order to find the better JEKF initial variable values leading to an acceptable estimation of D,
A and B. All these values are between 10−5 and 102. At each simulation, only one variable value is
changed by increasing its exponent of one. Each variable has therefore 8 different values. 87 = 2097152
simulations have been performed. For the 13 materials, the better trade-off between the seven input
variables leading to the smaller relative state-parameter estimation error is kept for other simulations.

5.2 Estimation from simulated data

5.2.1 Process and measurement noise sensitivity

In the case R < Q, the EEE on D, A and B are same for all simulations with both glass and carbon fibers.
In the case R = Q, the EEE are same for all simulations with carbon fibers and same or very close for
glass fiber. In the case R > Q, variations are observed with different evolutions depending on materials.
For carbon fibers, the EEE is same or very close when either the variance on D varies, either the variance
on B varies. But when the variance on A varies, larger variations are observed on the EEE on A. For
glass fiber, except for the reference case, larger variations are observed on the EEE on D, A and B.
From EEE numerical value point of view, estimation error obtained with carbon fibers are greater than
those obtained with glass fibers. Values will be given in the next section. But we observe that, for all
materials, a better error estimation is always obtained with a process noise Q smaller than a measurement
noise R.

5.2.2 Initial variances and joint vector sensitivity

Sensitivity to both initial variances P0D, P0A, P0B and initial joint vector prediction X̂−
0 is studied accord-

ing to the framework described in 5.1. For carbon fiber FRCa in cases R = Q and R < Q, the EEE curves
show similar trends for any variance values and are counfounded. It is also noted that the estimation
error on A and B increases and oscillates with cycles, with a larger amplitude for B. For R > Q, in the
case where D varies, EEE curves on D, A and B have a same trend, very close at the begining of the
iterative process to finally merge. In case where variance on A changes, for initial prediction errors of
10% and 20%, the greater the variance is, the smaller the EEE on A is while it is the contrary in the
reference case. So, the effect of a large variance on A is compensated by a large initial prediction error.
No variation is observed on the EEE on B. When variance on B changes, the greater the variance is, the
greater the EEE is with little difference between EEE curves. Regarding the EEE on A, the estimation
error increases with cycles when variance on B increases; but, as above, this effect is compensated by a
greater initial prediction error. Moreover, the impact on A is greater than the one on B. The EEE on B

has a similar trend than previous cases, i.e. R = Q and R < Q but the EEE on A is very different. Fig. 4
highligths sensitivity of parameters A and B on estimations.
Still for FRCa, estimation errors on D are less than 0.04 if R > Q, 0.1 if R = Q and 0.14 if R < Q. The
maximum estimation error on A, in the case of a 20% error on the prediction, is around 0.16 if R > Q,
0.24 if R = Q and 0.35 if R < Q. The maximum estimation error on B, in the case of a 20% error on the
prediction, is around 0.1 if R > Q, 0.14 if R = Q and 0.18 if R < Q. Same order of magnitude is observed
for FRCc material. For R > Q, A also shows larger variation than B and is more influent. However, the
EEE increase with variance on A is not compensated by a high initial prediction error.
For glass fiber FRCglass, in the case R < Q, there is no impact of initial variances. In the case R = Q,
either EEE curves are merged either they differ with very small discrepancies. In case R > Q, similar
analysis is done as in the case of FRCa material. Moreover, for FRCglass, estimation errors on D are less
than 0.1 in the 3 cases R > Q, R = Q, R < Q. The maximum estimation error on A, in the case of a 20%



Figure 4: Estimation error for FRCa in the case R > Q - Left: Parameter A , initial prediction error 1%, Center:
Parameter A, initial prediction error 20%, Rigth: Parameter B, initial prediction error 20%.

error on the prediction, is around 0.07 if R > Q, 0.2 if R = Q and 0.9 if R < Q. The maximum estimation
error on B, in the case of a 20% error on the prediction, is around 0.045 if R > Q, 0.18 if R = Q and 0.35
if R < Q. Fig. 5 refers to these results.

Figure 5: Estimation error for FRCglass in the case R > Q - Left: Parameter A , initial prediction error 1%, Center:
Parameter A, initial prediction error 20%, Rigth: Parameter B, initial prediction error 20%.

In conclusion, each simulation lead to a different JEKF behavior that depends on material considered.
But, similarities on the EEE on A and B, in cases R = Q and R < Q, for both FRCa and FRCglass are
noted. In the case R > Q, parameter A shows large variations for the three materials while variations
of parameter B are smaller. This means that parameter A has more influence on the estimation than
parameter B. These results are in accordance with theoretical sensitivity results mentioned in section 3.

5.3 Estimation from real data

Results obtained with fatigue DI real data are now presented. As explained in section 5.1, a systematic
process allows to select materials leading to acceptable state-parameter estimations on both D, A and
B. Only two materials, FRCglass and the unaged specimen AS4/PR500 [0/90w2], called UAS, are candi-
dates. For FRCglass, only six measurements in its whole life are avalaible. Nevertheless, the JEKF works
and provides an estimation on A between 0.300 and 0.315 and an estimation of B close to 0.025. Fig. 6
shows parameter estimation for UAS material where estimations are represented by little triangles. Even
if there are only few DI real data, the JEKF provides a good estimation of parameters A and B close to
experimental parameter values A = 0.715 and B = 0.475 (see [9]).



Figure 6: JEKF estimation from real data for UAS material.

6. CONCLUSION

In this paper, a framework based on the combination of an active sensing SHM technique and a state-
parameter estimator allowing to obtain accurate fatigue model parameter values for composite material is
proposed. Fatigue damage can therefore be predicted and remaining useful life of structure components
computed. A theoretical sensitivity analysis shows that parameter B has less influence on the failure
probability of a glass fiber composite structure component than parameter A. A good estimation of
parameter A is therefore useful. Estimations of A and B performed using JEKF with simulated data
for glass fiber and carbon fiber composite materials under various fatigue loading show that, for all
materials, a better error estimation is obtained with a process noise Q smaller than a measurement noise
R. Moreover, in this case, parameter A shows larger variations than parameter B and has more influence
on the estimation than parameter B. These results are in accordance with theoretical sensitivity analysis.
Finally, based on fatigue DI real data, the JEKF provides a good estimation of parameters A and B close
to experimental parameter values corresponding to the composite material tested.
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