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This paper introduces a novel auto-throttle controller designed for robust and fuel-efficient operation 
under changing flight conditions in four-dimensional (4D) flight trajectories (3D + time). Following 
typical receding horizon techniques, the throttle values are obtained by optimizing the predicted response 
of the system over future time intervals. The novelty is two-fold: First, the controller is designed to 
achieve a user-defined, realistic reference value for the aircraft Specific Fuel Consumption (SFC), while 
maintaining the nominal safety margins during the 4D flights. Second, the throttle commands result 
from a closed-form expression with minimal computational effort, thus simplifying the proposed auto-
throttle’s on-board implementation. Tests against a conventional PID-based auto-throttle illustrate the 
current controller’s superior robustness under challenging flight conditions (turbulence).
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1. Introduction

One of the basic targets of Air Traffic Management (ATM) is 
the implementation of the Four-Dimensional (4D) flight concept. In 
essence, the 4D flight relies on the definition of Four-Dimensional 
Way Points (4DWPs), which relate the 3D aircraft position to cor-
responding time points (T) throughout the flight. The succession 
of 4DWPs define the Four-Dimensional Contracts (4DCos), which 
are specific to the given aircraft flight. Ensuring flight safety in 
4DCos is a capital task, which is based on the introduction of 
“safety bubbles”. These define the maximum allowable cross-track 
and along-track deviations of the aircraft from its current position 
before conflicts with other aircraft occur. Although several new 
constraints related to the strict aircraft 4DCo compliance are in-
troduced, the 4DCo concept provides new opportunities for a safer, 
environmentally friendlier and less human-involved management 
of the airspace [13].

✩ An early version of this work has been presented in the 9th Asian Control Con-
ference (ASCC 2013) Istanbul, June 23–26, 2013.
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From an ATM point of view, the 4DCo concept has been 
extensively studied, among others, for optimizing the fuel effi-
ciency (consumption/emissions) on a given transition between way 
points. The first results appeared almost 3 decades ago, with rep-
resentative efforts including [23] and [4], whereas recent results 
may be found in [8] and [9]. The aim of these studies has always 
been to deliver fuel-optimal trajectories during either climb/de-
scend flight phases as in [4,23], or constant altitude flights possibly 
in presence of horizontal winds as in [8,9]. In [23] and [4] the tra-
jectory is obtained via the minimization of the (modeled) Direct 
Operating Cost (DOC) of the given aircraft and flight, which essen-
tially represents the combined costs of the fuel consumed and the 
flight duration. In [8] and [9] the trajectory results from solving a 
singular optimal control problem with the constraint of a fixed ar-
rival time and under the effects of horizontal winds and changing 
aircraft mass. Following this approach, the optimal cruise speed 
and the optimal control required for meeting the time constraints 
in the considered case are delivered. Nevertheless, even when a 
fuel-optimal succession of 4DWPs is defined for a given trajectory, 
the aircraft should move from one such 4DWP to the next as safely 
and efficiently as possible: In other words, aircraft fuel use and 
safety are also related to developing suitable auto-throttle strate-
gies achieving both 4DCo compliance and optimal (in some sense) 
efficiency.
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An extensive description of engine control strategies under mul-
tiple (mechanical or aerothermal) constraints may be found in [24]. 
Therein, the basic principles of operation and the limitations for 
each engine component are reviewed, and various control strate-
gies respecting the typical requirements for sensors and actuators 
are given. On the other hand, the control objective is the effective 
use of the engine for better fuel consumption and part life, rather 
than the satisfaction of critical 4DCo-related constraints such as 
the aircraft’s position in the safety bubble. Similar efforts for de-
signing controllers which take into account multiple objectives 
(one of which is the fuel use) may be found in [22]. There, the re-
sponse time during the engine’s acceleration/deceleration and the 
fuel consumption are considered as objective functions, whereas 
a Wiener model with experimentally estimated parameters rep-
resents the gas turbine engine. The controller gains are tuned by 
Particle Swarm Optimization (PSO) techniques, meaning that the 
on-line gain computation depends on the PSO convergence rate. 
Again, the control objective is the effective fuel use and the pro-
tection of physical limitations of the engine components. In other 
words, most engine control strategies consider the effective fuel 
use as one of several other mechanical- (rather than flight-) related 
objectives that have to be achieved. An exception may be found 
in [3], with the engine control strategy involving constraints rele-
vant to both performance (thrust, specific fuel consumption) and 
operability (costs, in-flight mishaps) factors. Due to the existence 
of constraints (among others) on the aircraft state, the problem is 
formulated in a nonlinear predictive control form, meaning that its 
solution (hence, the control values) must be obtained via an itera-
tive procedure. The on-board computation of control values might, 
thus, be compromised.

Fuel efficiency and overall optimization of jet engines have of-
ten been linked to SFC minimization [19,20]. Even though mea-
suring the SFC is still a controversial subject, it is widely accepted 
that the SFC may be estimated either from thermodynamic models 
[15], or indirectly by thrust estimation via physics-based models 
[10] or from data provided by the Full Authority Digital Engine 
Control (FADEC) [18], as will be discussed later on. In any case, 
optimizing engine control for minimal SFC seems already feasible, 
and may even be executed on-line [19,20] if engine performance 
charts are available.

This paper aims at introducing an auto-throttle controller de-
sign, which leads to obtaining aircraft 4DCo compliance, while 
simultaneously achieving a (realistic) user-defined reference SFC 
value. In other words, both safety and effective fuel use (in the pre-
viously described sense) are objectives to be fulfilled by the control 
strategy. The controller design is based on typical receding horizon 
techniques as in [3], with control values resulting from optimizing 
the predicted system response over future time intervals. It essen-
tially exploits a variant of Model Predictive Control (MPC) referred 
to as Generalized Predictive Control (GPC) as proposed by Clarke 
et al. in [6] and extensively analyzed in [5]. The GPC is a special 
MPC case, which provides a closed-form solution to the control 
problem under the condition that the system can be modeled us-
ing linear representations. For a brief but comprehensive analysis 
(and list of references) of the MPC methodologies, the reader is 
referred to [16].

The novelty of the current scheme is that the system response 
is now related to fuel efficiency in terms of SFC (as in [18–20]) 
and to flight safety in terms of the aircraft position inside the 
4DCo safety bubble. The latter corresponds here to an operabil-
ity objective [3] and, to the best of the authors’ knowledge, it 
has never been used as such before. The advantage of the pro-
posed controller is that the control values result from solving a 
linear predictive control problem. This is feasible for two reasons: 
First, the constraint related to the aircraft’s 4DCo compliance is 
defined as an objective in the cost index of the predictive con-
trol problem (see Subsection 2.3). Hence, no explicit constraints in 
the (generalized predictive) control problem (as in [21]) are used, 
and no iterative techniques for computing the control solution are 
necessary. Second, with respect to the SFC objective, a linear Au-
toRegressive with eXogenous excitation (ARX) representation of the 
relationship between throttle command and SFC may be identified, 
if the latter is available or can be dependably estimated. The use 
of ARX representations for modeling engine dynamics has often 
proved effective [7], and helps formulating a GPC problem (as will 
be shown later on), whose solution admits an analytical closed-
form. Thus, computing the control values is an instant, real-time 
procedure, which could be easily performed on-board without in-
ducing computational burden. The proposed controller is imple-
mented on a Boeing 737 simulation software and tested via several 
flights conducted under normal or degraded conditions. Compar-
isons in such conditions are made with a PID controller, tuned in 
the (traditional) sense of achieving 4DCo compliance. The robust-
ness advantage in favor of the currently proposed controller seems 
quite significant.

The paper is organized as follows: Section 2 presents the GPC 
problem formulation and provides the step by step analysis of the 
control strategy along with the theoretic analysis of closed loop 
stability. In Section 3, the proposed controller is implemented and 
tested in a simulated Boeing 737, whereas its performance is eval-
uated against a classical PID scheme under challenging environ-
mental conditions. Finally, conclusions are drawn in Section 4.

2. Principles of controller design

In terms of controller design, a typical starting point is the 
availability of an accurate representation of the system dynam-
ics. An accurate system model may be derived by using physical 
principles, especially when the system structure is perfectly known 
and/or easy to be studied. Alternatively, stochastic or deterministic 
models may be identified for successfully representing the macro-
scopic system behavior between desired Input and Output (I/O) 
channels of the system without using any knowledge of its internal 
structure. In the current case, the relationship between the throttle 
command and the resulting aircraft SFC has to be modeled. Given 
the complexity of the underlying (thermodynamic, mechanical and 
so on) processes, effort is put towards identifying a (possibly sim-
ple) linear stochastic ARX time series model for achieving an accu-
rate and robust representation of these dynamics.

Once the ARX model is identified, the control problem may be 
formulated in a GPC framework. This means that specific attributes 
of the system behavior are predicted over future time intervals and 
compared with desired relevant reference values. Mathematically, 
this comparison admits the form of a quadratic criterion, whose 
minimization yields the control values required for achieving the 
reference values set. As will become obvious later on, the problem 
formulation and solution is made easier by modeling the relation-
ship between the throttle command and the SFC via a linear ARX 
representation. This results in an easy and real-time fast computa-
tion of the required control values. In the current study, two main 
system attributes are involved in the MPC problem formulation:

(i) The SFC values, which should achieve some (realistic) user-
defined references; this is the first of the control objectives 
and is taken into account by the Basic Minimization Criterion 
(BMC), which penalizes the mean square error between pre-
dicted (by the ARX model) and desired SFC values.

(ii) The aircraft compliance with the allocated 4DCo, which is the 
second control objective; this is accounted for by an extra term 
added to the BMC, which penalizes the aircraft deviations from 
the 4D trajectories imposed by the 4DCo.
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Details on the ARX identification and the GPC problem formulation 
are given in the following subsections.

2.1. Modeling of the relationship between throttle and SFC

The modeling of the relationship between throttle command 
and engine SFC may be based on a discrete-time stochastic model 
obtained via standard identification procedures [17]. In this study, 
an ARX(na, nb) representation is considered, which admits the 
form [17]:

y[t] +
na∑

i=1

ai · y[t − i] =
nb∑

i=0

bi · u[t − i] + w[t] (1)

Using the backshift operator (Bi · y[t] � y[t − i]), (1) becomes:

A(B) · y[t] = B(B) · u[t] + w[t], w[t] ∼ iid N
(
0,σ 2

w

)
(2)

A(B) = 1 + a1 · B + . . . + ana · Bna

B(B) = b0 + b1 · B + . . . + bnb · Bnb (3)

with t designating the normalized discrete time2 (t = 1, 2, . . .), and 
y[t], u[t] the measured output (SFC) and control input (throttle 
command) signals, respectively. The AutoRegressive (AR) and eX-
ogenous (X) orders are noted as na and nb, respectively, whereas 
A(B), B(B) are the AR and X polynomials, respectively. The sig-
nal w[t] is uncorrelated (white) with zero mean and variance σ 2

w . 
It coincides with the model based one-step-ahead prediction er-
ror, and is uncorrelated with the excitation u[t]. The symbol N (·,·)
designates Gaussian distribution with the indicated mean and vari-
ance, and iid stands for identically independently distributed. The 
model admits the linear regression form:

y[t] = φT [t] · θ + w[t] (4)

with φ[t] = [−y[t − 1], . . . , −y[t − na], u[t], . . . , u[t − nb]]T and 
θ = [a1, . . .ana, b0 . . .bnb]T . The estimation of the parameter vec-
tor θ is based on the measured input and output data and is 
achieved by minimizing Ordinary Least Squares (OLS) or Weighted 
Least Squares (WLS) criteria [17, pp. 8–9].

As previously stated, obtaining values for the SFC depends on 
the possibility of estimating thrust. In general, thrust estimation 
may be performed either by using physics-based thermodynamic 
models as stand-alone thrust estimators [15], or as the basis for 
designing observers for on-line estimation [10]. Again, thrust may 
be estimated from data either collected or estimated by the digital 
avionics and communicated to FADEC system, as claimed in [18]. 
Note that choosing to focus on SFC for controller design purposes 
instead of, for instance, the pure fuel flow is due to the fact that 
the SFC perfectly describes fuel efficiency, since the fuel usage is 
related to the thrust produced. The importance of SFC in engine 
development is also highlighted by claims that its reduction by 
4% is a reason for implementing a new engine design [20]. For 
the same reasons, algorithms exploiting engine performance charts 
and attempting to optimize engine control on-line with respect to 
the SFC have already been reported [19,20].

2.2. The basic minimization criterion

The Basic Minimization Criterion (BMC) penalizes the mean 
square error between predicted SFC and reference value at each 
time instant. The identified ARX model is used for predicting SFC 

2 The absolute time is (t − 1)Ts , where Ts stands for the sampling period.
values over a j-step-ahead prediction horizon based on the cur-
rent and past throttle commands. Subsequently, the BMC mini-
mization results in the future values of the control input (throttle 
command), which will achieve SFC values close to those set as ref-
erences. Consider the Diophantine Equation (see [6]):

E j(B) · A(B) + B j · F j(B) = 1, (5)

with E j(B) and F j(B) polynomials uniquely defined for the given 
A(B), and j the number of future steps forming the prediction 
horizon. The optimal j-th-step-ahead predictor involving the mea-
sured output data up to time t and some u[t + j] for j > 1 is 
obtained as [6]:

ŷ[t + j|t] = G j(B) · u[t + j] + F j(B) · y[t], (6)

where

G j(B) � E j(B) · B(B). (7)

Denoting the coefficients of the polynomials G j(B) and F j(B)

as g j,0, . . . , g j, j−1 and f j,0, . . . , f j,na−1, respectively, the vector of 
j estimated future outputs may be expressed as:

ŷt = G · ut + pt (8)

where:

ŷt = [̂
y[t + 1] . . . ŷ[t + j]]T

, (9a)

ut = [
u[t + 1] . . . u[t + j]]T

, (9b)

G =
⎡
⎣

g1,0 . . . 0
...

. . .
...

g j, j−1 . . . g j,0

⎤
⎦ , (9c)

pt =
⎡
⎢⎣

g1,nb . . . g1,1 f1,na−1 . . . f1,0
...

. . .
...

...
. . .

...

g j, j−1 . . . g j,0 f j,na−1 . . . f j,0

⎤
⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u[t − nb + 1]
...

u[t]
y[t − na + 1]

...

y[t]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (9d)

Now, consider the following quadratic criterion:

Jt =
j∑

i=1

(
y[t + i] − r[t + i])2

+ μ ·
j∑

i=1

(
u[t + i] − u[t + i − 1])2

. (10)

The first term of the criterion penalizes the squared difference 
between the system’s actual (measured/estimated) SFC and a ref-
erence (desired) SFC signal rt = [r[t + 1] . . . r[t + j]]T . The second 
term penalizes the squared first differences of the future input 
control (throttle) commands, with μ being a weighting constant. 
The term is often used when the model that predicts the output 
(here, the ARX model) has non-minimum phase characteristics [16, 
p. 808]. It penalizes any abrupt activity of the throttle command, 
allowing for smoother throttle operation. As shown in [11], the last 
sum can be expressed as D · u − I 0 , where I0 = [1, 0, · · · ,0]T and:
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Fig. 1. The aircraft desired speed at the current condition depends on WP(1) and 
WP(2). A component-speed is calculated for each of these two WPs, by dividing its 
distance from the aircraft with the remaining time-to-arrival. The desired speed is 
a linear combination of the two component speeds.

D =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
−1 1 0 · · · 0

0 −1 1
...

...
. . .

. . . 0
0 · · · 0 −1 1

⎤
⎥⎥⎥⎥⎥⎦

.

Hence, the quadratic criterion may be expressed as:

Jt = (G · ut + pt − rt)
T · (G · ut + pt − rt)

+ μ · (D · ut − I 0)
T · (D · ut − I 0). (11)

As Jt is a quadratic function of the unknown control vector ut (yet 
to be estimated), it can be minimized by setting to zero its partial 
derivative with respect to ut . This yields:

ut = (
G T G + μ · DT D

)−1 · (μ · DT I 0 + G T (rt − pt)
)
. (12)

Note that this is a closed-form solution of the control value ut . 
Hence, the current scheme features a significant advantage in 
terms of computational burden, since it does not require itera-
tive procedures for computing the control solution. Consequently, 
no extra on-board computational effort (nor time) is required for 
computing the values of ut , making the proposed controller easier 
to implement in real-time applications.

2.3. Extensions to the basic minimization criterion for 4DCo compliance

In order for the GPC scheme to take into account the assigned 
4DCo and ensure aircraft compliance to it, an extra term is added 
to the BMC. The criterion then admits the following form:

J EXT
t = Jt + λ0[t] ·

j∑
i=1

u2[t + i] + λ1[t] ·
j∑

i=1

(
1 − u[t + i])2

(13)

with λ0[t] and λ1[t] being positive time-varying weighting factors. 
Note that these factors are updated only after the “current” control 
value is computed, and remain constant during the minimization 
of J EXT

t , from which the computation of the “next” control value 
is obtained. The first term penalizes the squared control signal 
values: higher λ0[t] values should result in throttle commands 
of lower magnitudes. Similarly, the second term penalizes the 
squared differences between the control signal and unity: higher 
λ1[t] values yield increased throttle command magnitudes, as will 
be explained later on. The selection of unity stems from the fact 
that the throttle commands are in the [0, 1] interval.

In order to compute λ0[t] and λ1[t], a desired aircraft ground 
speed must be defined. This speed is a linear combination of two 
component ground speeds, which are associated to the distances 
from (and the times-of-arrival at) the two WPs ahead from the 
current aircraft position, namely WP(1) and WP(2) depicted in 
Fig. 1. The first component speed v1[t] is related to WP(1), and 
is computed by dividing the distance x1[t] with the estimated 
time-to-arrival (Fig. 1). The same holds for the second compo-
nent speed v2[t], which is computed by dividing the distance x2[t]
with the estimated time-to-arrival related to WP(2). The desired 
Fig. 2. Methods for defining the desired aircraft ground speed. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

ground speed results from linearly combining these two compo-
nent ground speeds with weights W [t] and 1 − W [t] that come 
from a sigmoid function W [t] = (erf (8 · (x[t] − 0.5)) + 1)/2. The 
term erf (·) is the Gauss Error Function [1, pp. 100–111], whereas 
x[t] is the distance to be covered until the next WP and is equal 
to x1[t] over the total distance x2[t] between two WPs (Fig. 1). 
These weights and the sigmoid function produce a smooth tran-
sition from the first component ground speed to the second, as 
the aircraft reaches the next WP, as indicated by the green line in 
Fig. 2. If a linear (instead of sigmoid) transition is used, the de-
sired ground speed is not continuous when the aircraft changes 
WP (red line). Note, also, that using only the first component as 
the desired speed is not an acceptable solution: Had this been the 
case, the desired speed would become either very large or small 
when reaching the WP, as indicated by the black line in Fig. 2. 
This is the reason for defining the desired speed by means of a 
linear combination of the two components.

A step-by-step procedure for the determination of the desired 
ground speed is outlined below:

Step 1: At each time instant calculate the two component ground 
speeds v1[t], v2[t] using the distances x1[t] and x2[t] and the 
estimated times-of-arrival with respect to waypoints WP(1)

and WP(2), respectively (see Fig. 1).
Step 2: Using the ratio of the distance x1[t] to be covered until 

the next WP (WP(1) in Fig. 1) over the total distance x2[t]
(WP(2) in Fig. 1), designated as x[t] = x1[t]/x2[t], calculate the 
weights W [t] and 1 − W [t] using the sigmoid function W [t] =
(erf (8 · (x[t] − 0.5)) + 1)/2.

Step 3: Calculate the desired speed vd[t] as a linear combina-
tion of the two component ground speeds vd1 [t], vd2 [t] with 
weights equal to W [t] and 1 − W [t], that is ud[t] = W [t] ·
v1[t] + (1 − W [t]) · v2[t].

As seen, W [t] is suitably defined for normalizing the input–
output to the zero-one interval. Factor 8 is empirically derived and 
allows for regulating the sigmoid’s curvature. The aim is to achieve 
a trade-off between smooth transition and flatness of the sigmoid 
limits, as shown in Fig. 3. A curvature factor of 4 (black line) 
produces a smooth transition, but without flat enough sigmoid 
limits. The flatness of the limits is important in order to avoid 
having discontinuities when the aircraft reaches the next WP, as 
discussed previously. A curvature factor of 12 (red line) produces 
flat enough sigmoid limits, but also a sharp transition leading to 
sudden changes in the desired ground speed if the two compo-
nents differ significantly. Finally, a curvature factor of 8 (green line) 
produces a smooth transition and appropriately flat sigmoid limits.
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Fig. 3. The sigmoid function for various curvature factors. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of 
this article.)

Given the desired ground speed, the weighting factors λ0[t] and 
λ1[t] may now be defined as:

λ0[t] = ca · ecb(vtr [t]−vd[t]), (14a)

λ1[t] = ca · ecb(vd[t]−vtr [t]) (14b)

where ca , cb are user defined tuning parameters and vd[t], vtr[t]
the desired and actual aircraft ground speeds, respectively. Accord-
ing to (13), penalty is imposed on any (potential) non-compliance 
of the aircraft to its allocated 4D contract using λ0 and λ1 (with 
the argument t dropped for convenience). The relevant terms im-
pose penalties according to whether the aircraft is “late” or “early” 
with respect to its nominal 4D position as set by the allocated 4D 
contract. When the aircraft is “early”, λ0 increases, and the mag-
nitude of the control value is penalized. At the same time, λ1 de-
creases and the associated term becomes less significant, because 
the danger of achieving full-throttle (that is ut = 1) is minimal, 
given that the aircraft is early and the throttle should be reduced. 
The opposite reasoning is valid when the aircraft is “late” with re-
spect to its allocated 4D position. Finally, if the actual speed is 
close to the desired one, both λ0 and λ1 will admit small values 
(close to ca). Then, the SFC-related part Jt in (13) becomes domi-
nant, meaning that the control values will be computed primarily 
for achieving the desired SFC values rather than 4DCo compliance. 
The latter is ensured by the fact that if the actual speed is equal to 
the desired one, the aircraft will arrive at the next WP on time. 
Adding the extension terms to the BMC, the quadratic criterion 
(13) becomes:

J EXT
t = Jt + λ0[t] · uT

t ut + λ1[t] · (Ie − ut)
T (Ie − ut), (15)

where Ie = [1 . . . 1]T . Note that by using λ0 and λ1 in J EXT
t , 

the 4DCo compliance is achievable without introducing explicit con-
straints in the control problem. Hence, setting the partial derivative 
with respect to ut of J EXT

t to zero yields the closed-form solution:

ut = (
G T G + μ · DT D

+ (
λ0[t] + λ1[t]

) · I
)−1 · (μ · DT I 0

+ λ1[t] · Ie + G T · (rt − pt)
)
, (16)

where I is the identity matrix. The GPC-based auto-throttle block 
diagram is depicted in Fig. 4.

2.4. Closed loop stability analysis

The stability analysis of the controlled closed loop system will 
be based on qualitative characteristics of the open-loop system, be-
cause specific knowledge on its input/output relationships (transfer 
Fig. 4. The GPC-based auto-throttle block diagram.

functions, for instance) is unavailable. The relationship between 
the throttle command and the resulting ground speed is initially 
considered.

Fig. 5 presents the negative-feedback closed loop formed by the 
proposed controller block and that corresponding to the open-loop 
relationship between throttle and ground speed (block F ). In prin-
ciple, the desired ground speed vd[t] is compared with the actual 
one designated as vtr [t], and the error e[t] = vd[t] − vtr[t] is used 
along with (16) to provide the throttle command ut . The theo-
retic transfer function of the block F is unknown. Nevertheless, 
given that the (commercial) aircraft systems are designed to be 
stable and as linear as possible, it may safely be assumed that the 
transfer function of block F is stable and has a finite static gain 
γF . For instance, the system response in terms of ground speed 
to a step throttle input may be seen in Fig. 5, and resembles to 
the step response of a first-order stable system. The transfer func-
tion parameters are approximately constant inside (limited) areas 
of the aircraft location in the flight envelope, and under compa-
rable external disturbances. Naturally, even if the transfer function 
parameters admit different (constant) values in different flight en-
velope locations, the stability of the relationship between throttle 
and ground speed and the existence of some finite static gain γF

will be valid.
In order to analyze the stability of this closed loop, two cases 

can be distinguished. The first case corresponds to the possibil-
ity of e[t] < 0, which means that the aircraft flies faster than it 
should, with respect to its allocated 4D contract. Then, each time a 
new throttle command ut is to be computed, from (14a) λ1 dimin-
ishes exponentially with e[t] whereas λ0 grows, and (16) shows 
that ut will always decrease. In that case, the aircraft will fly 
slower and e[t] will continue admitting negative values, but to-
wards zero. Thus e[t] cannot grow unbounded in this case. This 
conclusion is also valid if disturbances and (modeling or other) un-
certainties are present in the closed loop of Fig. 5. Then, the worst 
scenario for the case considered would be that the aircraft flies 
even faster with respect to the given throttle command, so that 
e[t] < 0 with |e[t]| increasing. This would translate in even smaller 
throttle commands, so that the aircraft would fly slower and e[t]
would ultimately decrease or at least stay bounded.

The second case corresponds to the possibility of e[t] > 0, 
which means that the aircraft flies slower than it should with re-
spect to its 4D contract. At a given time t , let e[t] = ε with ε
a small (“epsilon-esque”) positive number. Then, using (14a) and 
(16) the throttle command will be (approximately) equal to the 
following value:

ut = (
G T G + μ · DT D

+ 2 · ca · I
)−1 · (μ · D T I 0 + ca · Ie

+ G T · (rt − pt)
) = u∗. (17)

The controller block in Fig. 5 will have a gain γc = ε−1 · ‖u∗‖, 
which is, understandably, “large”. Now recall that by virtue of the 
small gain theorem (see [14] and [2]), the condition of γc · γF < 1
is sufficient for achieving closed loop stability. In the current case, 
given that γc is “large”, γc · γF is probably larger than 1. Then, 
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Fig. 5. The conceptual closed loop between desired and true ground speeds and the step response of the open loop block F.
given that the small gain theorem only provides a sufficient sta-
bility condition, either e[t] continues to admit small, finite val-
ues, or e[t] starts growing towards “large” values M . In this last 
(and worst case) scenario, the controller gain will become equal 
to γc = ‖u‖/M ≤ 1/M � 1. At a given point, when e[t] reaches 
some critical finite value ecr , given that γc < 1/ecr , the product 
γc ·γF < 1. Hence, by means of the small gain theorem, this is suf-
ficient for achieving stability of the closed loop in Fig. 5, so that 
e[t] starts decreasing again. Hence, e[t] ≤ ecr < ∞ in that case, 
too. The error e[t] will also be bounded in case of uncertainties 
or disturbances present in the closed loop of Fig. 5. Then, the 
worst scenario for the case considered would be that the uncer-
tainty or disturbance impact causes e[t] to admit a large positive 
value M even faster than if such adverse factors were absent. Then, 
γc → 1/ecr even faster than before and γc ·γF < 1, again. Note that 
the analysis via the small gain theorem is known to provide very 
conservative bounds. In other words, the analysis mainly indicates 
that (for that worst case scenario) the closed loop is still stable. If 
more details of the open loop system were available, convergence 
results (and less conservative bounds) could be obtained.

Now it remains to show that the signals involved in the closed 
loop system remain at least bounded. From (11), (15) and by 
means of standard calculus, J EXT

t admits the following form:

J EXT
t = ∥∥G · ut + (pt − rt)

∥∥2 + μ · ‖D · ut − I 0‖2

+ λ0[t] · ‖ut‖2 + λ1[t] · ‖Ie − ut‖2

= ‖G · ut‖2 + ‖pt − rt‖2 + 2 · (pt − rt)
T · G · ut

+ μ · ‖D · ut‖2 + μ · ‖I 0‖2

− 2 · μ · I T
0 · D · ut + λ0[t] · ‖ut‖2 + λ1[t] · ‖Ie‖2

+ λ1[t] · ‖ut‖2 − 2 · λ1[t] · I T
e · ut (18)

From (16) it follows that:
(
G T G + μ · DT D + (

λ0[t] + λ1[t]
) · I

) · ut

= μ · DT I 0 + λ1[t] · Ie + G T · (rt − pt) (19)

Multiplying (19) by uT
t yields:

uT
t · (G T G + μ · DT D + (

λ0[t] + λ1[t]
) · I

) · ut

= uT
t · (μ · DT I 0 + λ1[t] · Ie + G T · (rt − pt)

)
(20)

or

‖G · ut‖2 + μ · ‖D · ut‖2 + (
λ0[t] + λ1[t]

) · ‖ut‖2

= uT
t · (μ · DT I 0 + λ1[t] · Ie + G T · (rt − pt)

)
. (21)

Combining (18) and (21), it follows:

J EXT
t = −(

(rt − pt)
T · G + μ · I T

0 · D + λ1[t] · I T
e

) · ut

+ ‖pt − rt‖2 + μ · ‖I 0‖2 + λ1[t] · ‖Ie‖2. (22)
Inserting (16) into (22) leads to:

J EXT
t = −(

(rt − pt)
T · G + ·μ · ‖I 0‖T · D + λ1[t] · I T

e

)
· (G T G + μ · DT D + (

λ0[t] + λ1[t]
) · I

)−1

· (G · (rt − pt) + μ · DT · I 0 + λ1[t] · Ie
) + ‖pt − rt‖2

+ μ · ‖I 0‖2 + λ1[t] · ‖Ie‖2

= −∥∥{(
G T G + μ · DT D + (

λ0[t] + λ1[t]
) · I

)−1}1/2

· (G · (rt − pt) + μ · DT · I 0 + λ1[t] · Ie
)∥∥2

+ ‖pt − rt‖2 + μ + λ1[t] · nIe , (23)

with nIe the length of vector I e . By definition J EXT
t ≥ 0 for all t . 

Then, the quadratic term ‖{(G T G + μ · DT D + (λ0[t] + λ1[t]) ·
I)−1}1/2 · (G · (rt − pt) + μ · DT · I 0 + λ1[t] · Ie)‖2 is smaller than 
‖pt − rt‖2 +μ +λ1[t] ·nIe for all t . In order to investigate whether 
the signals in the controlled system stay bounded, one has to make 
sure that J EXT

t < ∞ for all t . For this purpose two scenarios are 
considered:
Scenario a: The aircraft flies faster than it should, meaning that it 
will arrive earlier than planned at its next WP.
Scenario b: The aircraft flies slower than it should, meaning that it 
will arrive later than planned at its next WP.

When scenario a is valid, and given that the aircraft is “early”, 
λ1[t] → 0, while λ0[t] ≤ ca · e−cb ·(vd[t]−vtr [t]) < ∞ because (vd[t] −
vtr[t]) < 0. Then (23) becomes:

J EXT
t ≈ −∥∥{(

G T G + μ · DT D + λ0[t] · I
)−1}1/2

· (G · (rt − pt) + μ · DT · I 0
)∥∥2 + ‖pt − rt‖2 + μ (24)

Note, that (24) could only grow unbounded with t if ‖pt − rt‖ →
∞, due to ‖pt‖ becoming very large with t . But from (9d), given 
that the identified ARX model is stable and that ut in (16) is 
bounded (and decreasing when scenario a is valid), ‖pt‖ could 
not grow to ∞. This is also reasonable because, when scenario a 
is valid, the aircraft will have to fly slower, thus achieving better 
SFC. The same conclusion is valid if disturbances or (modeling or 
other) uncertainties are present in the closed loop of Fig. 5. Then, 
the worst case under the scenario a would be that of the aircraft 
flying even faster than it should with respect to the given throt-
tle command, so that e[t] < 0 with |e[t]| growing. Again, the stable 
ARX model ensures that ‖pt‖ < ∞, because the throttle commands 
would be reduced even further by the controller. Hence, when sce-
nario a is valid J EXT

t < ∞ in time.
When scenario b is valid, then λ0[t] → 0 whereas λ1[t] ≤ ca ·

ecb ·(vd[t]−vtr [t]) with (vd[t] − vtr[t]) > 0. As demonstrated earlier on, 
(vd[t] − vtr[t]) ≤ ecr , meaning that λ1[t] ≤ ca · ecb ·ecr < ∞ for all t . 
Then (24) could only grow unbounded with t if ‖pt − rt‖ → ∞. 
Actually, since the aircraft is “late” when scenario b is valid, from 
(16) ut will grow with time and, given that y[t] in (9d) is pro-
vided by a stable linear ARX model, y[t] (and ‖pt‖) will grow too. 
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Let t∗ be the critical instant after which ut starts increasing. Con-
sider t > t∗ , for which ‖pt − rt‖ → Mt , with Mt a possibly large 
number. Then for t, t + 1, ... the numbers Mt , Mt+1, ... will form 
an increasing sequence, which, nonetheless, cannot escape to ∞
in finite time since y[t] in pt is provided by a linear stable ARX 
model. Again for t > t∗ and using (23) the values of J EXT

t will ap-
proximately be as follows:

J EXT
t ≈ −∥∥{(

G T G + μ · DT D + λ1[t] · I
)−1}1/2

· (G · (rt − pt) + μ · DT · I 0 + λ1[t] · Ie
)∥∥2

+ ‖pt − rt‖2 + μ + λ1[t] · nIe

≤ −Kt · (M2
t + μ + ca · ecb ·ecr · nIe

)
+ M2

t + μ + ca · ecb ·ecr · nIe , (25)

with Kt < 1 positive numbers depending on λ0[t] and the norms 
of G and D . Thus, J EXT

t will start growing. Nonetheless, since for 
t > t∗ ut is growing, the aircraft will fly faster and, inevitably, for 
some t > tcr (with tcr > t∗ a specific finite time point), the air-
craft will exceed the desired ground speed ud[t] and it will again 
be “early” with respect to its planned arrival time at the next WP. 
Thus, scenario b will no longer be valid, meaning that the aircraft 
will fly according to scenario a. Then again, ut will start decreasing 
and the values of J EXT

t < ∞ as demonstrated earlier on. Note that 
if disturbances or (modeling or other) uncertainties are present in 
the closed loop of Fig. 5, then the worst case under the considered 
scenario b would be that their impact hinders the aircraft acceler-
ation so that an even bigger throttle command would be required 
for achieving the given speed. Then, for t > t∗ again ‖pt‖ → Mt

and an increasing sequence Mt , Mt+1, ... would be formed, as pre-
viously described. The difference is that, due to the hindered ac-
celeration, the time instant tcr will now arrive later meaning that 
the value Mtcr will be larger than before, but still bounded for the 
reasons explained earlier. Hence, in all cases J EXT

t < ∞ and the sig-
nals involved cannot grow unbounded, meaning that the stability 
of the controlled system is achieved.

Remark. As previously shown, closed loop stability is obtain-
able even in presence of disturbances (or uncertainties) in Fig. 5. 
But, closed loop robustness will be challenged, although the pro-
posed controller performs better than alternatives (see Section 3). 
In other words, the performance of the controller will be af-
fected under such conditions. One way to attenuate their impact 
is to use disturbance observer schemes [25,26]. These utilize any 
known characteristics (describing functions, for instance) of the 
disturbance-entering channels, along with assumptions on the dis-
turbance rate of change in order to estimate disturbance and other 
uncertainties. Then, this knowledge is used to filter out the distur-
bance impact on the signals involved in the MPC law and, thus, 
effectively enhance robustness of the closed loop. In the current 
case, disturbance observers could be used in an effective manner, 
provided that assumptions on disturbances caused by turbulence 
or sudden wind gusts would be available.

3. Simulation results

3.1. Identification of the relationship between throttle command and 
SFC

The identification of an ARX model representing the relation-
ship between throttle command and engine SFC utilizes data from 
a simulated Boeing 737 implemented in the open source JSBSim 
simulator [12]. The same aircraft is used for implementing the 
designed controller. The flights considered for the ARX model iden-
tification procedure feature constant altitude, speed and heading, 
Fig. 6. Bayesian Information Criterion (BIC) order selection criterion for ARX(n, n)

models.

whereas no turbulence, gusts or winds are present. They cover a 
wide range of altitudes (from 1000 to 36 000 ft) with the dura-
tion of each flight equal to 180 seconds, and data recorded at a 
sampling rate f s = 20 Hz. Initial position and control inputs of the 
aircraft are provided via a trimming function of the flight simu-
lator. The throttle commands used for these flights are selected 
as resulting from a low-pass filtered Gaussian noise, whose mean 
value is the throttle control value obtained from the trimming 
function for the specific flight. This is done for properly exciting 
the engine dynamics and ensure identifiability of the relationship 
between throttle command and SFC.

The ARX identification procedure involves fitting ARX(na, nb)

models of successively increasing orders na and nb to the available 
throttle and SFC data, with each such model evaluated by means of 
the Bayesian Information Criterion (BIC) [17, pp. 505–507]. A plot 
of BIC values computed using ARX(na, nb) models for growing 
values of na and nb is shown in Fig. 6. The minimal value of 
BIC indicates the optimal na, nb values for which the associated 
ARX(na, nb) achieves effective representation of the modeled dy-
namics (see Fig. 6). Hence, an adequate trade-off between accurate 
representation of the considered dynamics and limited number of 
ARX terms in θ [see (4)] may be obtained. In the current case, the 
minimal BIC value is obtained for na = nb = 12. Finally, the se-
lected ARX model is validated by checking the correlation of its 
residuals w[t] [see (4)]. Lack of correlation among values of resid-
uals w[t] indicates that all meaningful information has been ac-
counted for by the ARX model, with residuals resembling to white 
noise. The procedure for checking lack of correlation is standard 
and is presented in detail in [17, pp. 511–513]. It is based on the 
autocorrelation function describing the dependency between w[t]
and past (lagged) values w[t − i]. The estimated values of the auto-
correlation for several (50–100) lags are plotted on a single chart 
along with statistical upper and lower bounds, which depend on 
the confidence level of the autocorrelation estimation (typically 95 
or 99%). Sequence w[t] is concluded as statistically uncorrelated if 
almost all plotted values are inside the bounds. Fig. 7 shows some 
representative results of the ARX(12, 12) identification. Specifically, 
Fig. 7(a) presents an autocorrelation chart based on residuals w[t]
from the ARX(12, 12) model for a flight evolving at 24 000 ft. 
Almost all autocorrelation values lie within the 95% confidence 
bounds (horizontal dashed lines), thus stating that the ARX(12, 12)

model is successfully validated. An additional pole-zero plot shown 
in Fig. 7(b) confirms that the model is both stable and minimum-
phase, as its poles and zeros are located within the unit circle. 
Furthermore, Fig. 7(c) shows an example from actual SFC values 
for a flight evolving at 24 000 ft versus the SFC values predicted by 
the identified ARX(12, 12) model during 200 time samples. Clearly, 
the predicted SFC values are always very close to the actual ones, 
thus demonstrating the ARX(12, 12) prediction capabilities.
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Fig. 7. (a) Autocorrelation function of the ARX(12, 12) model’s one-step-ahead prediction error (residuals), (b) pole-zero plot of the selected ARX model and (c) example of 
actual versus ARX(12, 12)-predicted SFC values during 200 time samples of a flight at 24 000 ft.

Fig. 8. Simulated B737 flight trajectories on 3-D space for the three assessment scenarios.
3.2. Controller assessment

The proposed GPC-based controller is compared with a tradi-
tional PID on various simulated cruise scenarios involving turbu-
lence and/or wind. The tuning of the PID controller for ensuring 
4DCo compliance was achieved via a two-stage iterative optimiza-
tion approach, as the open loop transfer function of the aircraft 
dynamics was unavailable (see also Subsection 2.4). In the first 
stage the initial gains of the PID were determined via the Ziegler–
Nichols method. Then, in the second stage, a trial-and-error opti-
mization approach was employed based on which the refinement 
of the controller gains was achieved. Note that these flights are 
different with respect to those conducted for the ARX identifica-
tion. They have a duration of 16 minutes and, as shown in Fig. 8, 
involve three 4DCos featuring:

(i) A climb of 1000 feet at time t = 350 s, a turn of 25 degrees at 
t = 630 s, and an increase of speed by 25 fps at t = 880 s.

(ii) An increase of speed by 25 fps at time t = 350 s, a climb of 
1000 feet at t = 530 s, a turn of −15 degrees at t = 630, and 
an decrease of speed by 25 fps at t = 880 s.

(iii) A climb of 1000 feet at time t = 350 s, a turn of 10 degrees at 
t = 630 s, and an decrease of speed by 25 fps at t = 880 s.

Different flight cases correspond to different initial altitude and 
speed values (see Table 1), and are obtained via the trimming func-
tion of the JSBSim simulator. Note that, regardless of the wind/tur-
bulence conditions used in each simulated flight, the throttle com-
mands (16) are delivered using the identified ARX model obtained 
for turbulence- and wind-free flights carried out at an altitude 
comparable to that of the considered fight case. Apart from being 
realistic, this practice allows for testing the robustness of the pro-
Table 1
Simulated flight cases for the comparison of GPC-based and PID controllers.

Flight case Altitude (ft) Ground speed (fps)

1 24 000 661
2 24 000 737
3 26 000 696
4 26 000 756
5 28 000 725
6 28 000 775
7 31 000 741

posed controller, since this is expected to perform adequately even 
under wind/turbulence conditions, for which it was not optimized. 
Again, following the same guidelines, the reference SFC value rt

in (16) should correspond to flights conducted under conditions 
which do not involve abrupt maneuvering, sudden wind gusts or 
significant turbulence. Then, the system should respect these SFC 
values, if possible also in case of degraded conditions (significant 
turbulence/winds). Therefore, as reference SFC values we consider 
those recorded during a single simulation carried out at an alti-
tude comparable to that of the considered fight case, with initial 
commands and speed values given by the trimming function of 
the JSBSim simulator. Naturally, any other user-defined references, 
(for instance, data from past flights available in flight company 
databases) are also appropriate. Thus, the SFC should reach this 
representative (rather than minimal) value under the commands of 
the proposed auto-throttle, while aircraft 4DCo compliance and ro-
bustness under unexpected flight conditions should be maintained.

The user defined tuning parameters of the controller are deter-
mined as ca = 1, cb = 0.3, μ = 200 and j = 30 samples (1.5 s), by 
a trial-and-error procedure.
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Fig. 9. Throttle commands (a), (b) and (c) correspond to 4DCos i, ii, and iii, respectively (see Fig. 8) and corresponding deviations (d), (e) and (f) (below) with respect to 
aircraft’s 4DCo of the two controllers in absence of turbulence.

Fig. 10. Throttle commands (a), (b) and (c) correspond to 4DCos i, ii, and iii, respectively (see Fig. 8) and corresponding deviations (d), (e) and (f) (below) with respect to 
aircraft’s 4DCo of the two controllers in presence of turbulence of type A.
Fig. 9 presents the comparison of the GPC- and PID-based con-
trollers for an indicative cruise flight (flight case 7 in Table 1) with 
wind gusts but no turbulence. Figs. 9(a), 9(b), and 9(c) depict the 
throttle command obtained by the two controllers for the three 
4DCo cases. It is clear that both controllers produce almost identi-
cal throttle commands under turbulence-free conditions. Figs. 9(d), 
9(e), and 9(f) present the 4DCo deviations for the same flight and 
corresponding 4DCos. Again, both controllers achieve compliance 
of the aircraft with the assigned 4DCo, although the currently pro-
posed auto-throttle controller slightly outperforms that based on 
the PID. The results of Fig. 9 are an indication that the two-stage 
iterative tuning approach of the PID controller, even suboptimal, 
results in an almost identical throttle command when compared to 
the GPC-based controller in turbulence-free flights. Fig. 10 presents 
comparative results for the same flight case as before, but this time 
under type A (that is, limited) turbulence, as provided by the simu-
lator. In this case, the command outputs of the two controllers are 
quite different. It is clear that both controllers are affected by tur-
bulence, since they were not tuned for achieving optimal operation 
under such conditions. Nonetheless, the GPC-based provides signif-
icantly smoother throttle commands than the controller based on 
the PID, with the latter exhibiting high-frequency oscillations. In 
the case of type B (that is, significant) turbulence (Fig. 11), the op-
eration of the PID based controller deteriorates notably, with even 
more significant high-frequency oscillations. On the contrary, the 
proposed GPC-based controller is almost not affected at all. Over-
all, the GPC-based is quite more robust than the PID auto-throttle 
system in presence of turbulence. Although the throttle commands 
of the controllers differ significantly, their performance regarding 
the aircraft deviations with respect to the 4DCo is quite similar. 
Nevertheless, any throttle activity like the one exhibited by the PID 
based controller in Fig. 10 and 11 may not be considered as imple-
mentable and could constitute a threat for the system’s long term 
reliability.

The marked difference in the control activity of the throttle 
command is less prominent for turbulence-free flights. This fact 
designates the proposed controller as more robust compared with 
classical solutions under flight conditions that the controller was 
not designed for (turbulence). Furthermore, note that both con-
trollers achieved SFC values very close to the references. In other 
words, if realistic SFC values are set as references, the operational 
advantage of the proposed auto-throttle in its current application 
is related to achieving accurate 4DCo compliance, enhanced ro-
bustness and smoother throttle activity with respect to classical 
alternatives (PID). Work is currently underway for achieving mean-
ingful reduction of SFC coupled to 4D Contract compliance.

Remark. The technical details for implementing the proposed con-
troller are obviously related to the aircraft under consideration. At 
this stage, given that the controller is implemented in a simulated 
737, the technical problems related to the actual hardware imple-
mentation are hard to identify. On a conceptual basis, however, the 
biggest issue stems from the fact that a dependable SFC estimate 
has to be obtained on-board, for instance by the FADEC system, as 
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Fig. 11. Throttle commands (a), (b) and (c) correspond to 4DCos i, ii, and iii, respectively (see Fig. 8) and corresponding deviations (d), (e) and (f) (below) with respect to 
aircraft’s 4DCo of the two controllers in presence of turbulence of type B.
claimed in [18]. If this is not the case, a dependable thrust estimate 
has to be obtained on-board, using, for instance, the estimation 
filters in [10]. On the other hand, the actual on-board resources 
dedicated to the calculation of the throttle commands are, indeed, 
minimal because the latter is obtained via a closed-form solution. 
In any case, the technical implementation of the proposed con-
troller should be included in a dedicated case study, and as such it 
cannot be the object of the current work.

4. Conclusions

A novel auto-throttle controller aiming at simultaneously ob-
taining safe aircraft positioning in 4DCo flight and achieving rea-
sonable fuel use (in terms of SFC) has been presented. The con-
troller design is formulated as a model (and, specifically, general-
ized) predictive control problem, with its solution providing the 
throttle command. The innovation resides in the fact that two 
objectives are achieved when computing the auto-throttle com-
mand: Respecting some designated SFC reference values and com-
plying with the assigned 4DCo. Due to the identification of a linear 
stochastic ARX representation for the relationship between throt-
tle command and SFC, the formulation of a generalized predictive 
control problem is enabled. Thus, in the present case an analyti-
cal closed-form solution to the GPC problem providing the throttle 
command is obtainable. This is beneficial for the controller’s on-
board implementation, since no extra computational burden is im-
posed. Comparisons via simulated flights with a conventional PID 
controller show that the proposed solution is more robust under 
demanding conditions (turbulence), while achieving an improve-
ment in terms of aircraft 4DCo compliance. Overall, in the current 
case, emphasis was not given to the absolute SFC minimization, 
but rather its regulation to a reasonable benchmark value. Abso-
lute SFC minimization is the objective of future work.
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