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a b s t r a c t

A vibration based statistical time series method that is capable of effective damage

detection, precise localization, and magnitude estimation within a unified stochastic

framework is introduced. The method constitutes an important generalization of the

recently introduced functional model based method (FMBM) in that it allows for precise

damage localization over properly defined continuous topologies (instead of pre-defined

specific locations) and magnitude estimation for the first time within the context of

statistical time series methods that use partial identified models and a limited number of

measured signals. Estimator uncertainties are taken into account, and uncertainty ellipsoids

are provided for the damage location and magnitude. The method is based on the extended

class of vector-dependent functionally pooled (VFP) models, which are characterized by

parameters that depend on both damage magnitude and location, as well as on proper

statistical estimation and decision making schemes. The method is validated and its

effectiveness is experimentally assessed via a proof-of-concept application to damage

detection, precise localization, and magnitude estimation on a prototype GARTEUR-type

laboratory scale aircraft skeleton structure. The damage scenarios consist of varying size

small masses attached to various continuous topologies on the structure. The method is

shown to achieve effective damage detection, precise localization, and magnitude estima-

tion based on even a single pair of measured excitation–response vibration signals.

& 2012 Elsevier Ltd. All rights reserved.
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A functional argument in parentheses designates function of a real variable; for instance P(x) is a function of the real
variable x.

A functional argument in brackets designates function of an integer variable; for instance x½t� is a function of
normalized discrete time ðt¼ 1,2, . . .Þ. The conversion from discrete normalized time to analog time is based on ðt�1ÞTs,
with Ts designating the sampling period.

A hat designates estimator/estimate; for instance bh is an estimator/estimate of h.

2. Introduction

Damage detection, localization, and magnitude estimation (collectively referred to as damage diagnosis, or damage
detection and identification) in vibrating structures, including aerospace, mechanical, civil, and marine structures, are of
paramount importance for reasons associated with improved dynamic performance, proper operation, increased safety,
and reduced maintenance costs [1–4].

The need for global damage diagnosis has led to the development of methods that focus on detecting changes in a
structure’s vibration response characteristics as a result of changes in the dynamics caused by damage [2–7]. Most
methods typically involve two phases: an initial baseline (training) phase which is performed once at outset, and under
which the dynamics of the structure under healthy (and perhaps certain damage) conditions are obtained, and an
inspection phase which may be performed on demand, or periodically, or even continuously in time (online), and under
which the current structural dynamics are identified and ‘‘compared’’ in a proper sense to those of the baseline phase in
order to achieve damage detection, localization and magnitude estimation.

Vibration based methods may be classified into two main subfamilies: (a) those based on detailed physical or analytical
models (such as finite element models, FEMs) describing the complete structural dynamics and (b) those based on
statistical time series and related methods. FEM based methods require the use of detailed ‘‘large’’ models, describing the
complete structural dynamics, that need to be accurately updated in the inspection phase [3,8–13]. This is not only a
burden for the inspection phase, but also an operation requiring a large number of installed sensors and measured signals
[3,14,15].

Statistical time series and related methods offer the important advantage of being based on partial models of the
structural dynamics, which are identified based on a potentially ‘‘small’’ number of vibration signals (sometimes even on a
single signal or a single signal pair)—see the survey papers [5,6,16]. They may be thought of as generalizations of earlier
techniques using deterministic models and identification techniques—a classical early approach being that of damage
detection based on natural frequency changes in modal models [2,7,17]. Statistical time series type methods utilize
statistical models and identification techniques that take uncertainties into account, they may operate on normal
operating vibration signals, in an output-only mode, and also on structures of any size and geometry [18–23]. They may be
thought of as including the related class of statistical pattern recognition type methods [24–29]. While damage detection
may be potentially treated effectively by many of these methods, the damage localization problem is typically treated as a
classification problem, meaning that a damage location is selected among a finite number of potential damage locations.
This is a simplification, resulting in a much simpler problem than precise damage localization over properly defined
continuous topologies on a structure – that is to say infinite possible damage locations – which essentially corresponds to
the actual SHM problem. Furthermore, damage magnitude estimation is generally not possible (except for maybe some
‘‘rough’’ characterization)—a method offering an approach for properly tackling this problem has been recently introduced
by the second author and co-workers [30,31].

The aim of the present study is the introduction and experimental validation and assessment of a generalized version of
the FMBM which is – for the first time within the context of statistical time series type methods – achieving complete and
precise damage localization over continuous topologies on a structure, combined with damage magnitude estimation.
Furthermore, estimator uncertainties are fully taken into account in all phases of the diagnostic procedure, and uncertainty
ellipsoids are provided for combined damage location and magnitude. Like the original FMBM, the method utilizes a partial
and reduced size identified model, and is capable of operating on a ‘‘low’’ number of measurement sensors – even on a
single pair for ‘‘small’’ structures – and any type of vibration response signals (acceleration, velocity, displacement).

The method’s cornerstone is the new extended class of vector-dependent functionally pooled (VFP) models [32]. These are
generalizations of the functional pooled (FP) models of Sakellariou and Fassois [30,33], which now allow for the analytical
inclusion of both damage location and magnitude on the structural dynamics. VFP models thus allow for the extension of
the notion of damage mode (fault mode) to include damage not only of all possible magnitudes, but also of all possible
locations on a specific continuous topology on a structure. As VFP models have a richer structure than their FP counterparts
and use bivariate (two-dimensional) polynomials belonging to functional subspaces for parameter projection, functional
subspace dimensionality estimation is a more complicated task which is accomplished through a suitable genetic algorithm
(GA) based procedure.

The method is validated and its effectiveness is experimentally assessed via a proof-of-concept application to damage
detection, precise localization, and magnitude estimation on a prototype GARTEUR-type laboratory scale aircraft skeleton
structure [34,35]. The damage scenarios considered include the attachment of varying size small masses to various
continuous topologies on the structure. Such added mass ‘‘pseudo-faults’’ are often used in the literature as approximate
ways of generating signals corresponding to various fault scenarios; for instance see [36–39]. In any case, the issue of using
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added-mass type ‘‘pseudo-faults’’ is not of central importance in the present study, as the main goal is the development of
the method and its validation by a simple proof-of-concept application.

The novelties achieved through this experimental study include:
(a)
1

The feasibility of achieving precise damage localization and magnitude estimation based on only a single excitation–
response signal pair is, for the first time, investigated and demonstrated.
(b)
 Localization and damage magnitude uncertainties are explicitly considered and estimated, with uncertainty ellipsoids

corresponding to specified probability levels being constructed.

(c)
 The method’s operation and effectiveness is examined for both ‘‘local’’ and ‘‘remote’’ (with respect to the sensor

location) damages. This is critical in view of the need for effective diagnosis with the smallest possible number of
available sensors.
(d)
 The effectiveness of the method in properly detecting and ‘‘negatively’’ localizing (that is excluding all considered
structural topologies) damage that does not belong to any of the modeled types/topologies (referred to as unmodeled

damage) is examined.
The rest of the paper is organized as follows: The proposed VFP-ARX model based method is presented in Section 3, and
the experimental set-up used for validation and assessment is described in Section 4. Experimental results are provided in
Section 5, while the conclusions are summarized in Section 6.
3. The VFP-ARX model based method

Like all statistical time series methods for SHM, the stochastic functional model, or more precisely the Vector-
dependent Functionally Pooled AutoRegressive with eXogenous excitation (VFP-ARX) model based method, for combined
damage detection, localization, and magnitude estimation consists of two phases: (a) A baseline (training) phase, which
includes modeling of the considered damage topologies (modes), for the continuum of damage locations and magnitudes
on a structural topology, via the novel class of stochastic VFP-ARX models, and (b) the inspection phase, which is performed
whenever necessary or continuously during the structure’s service cycle, and includes the functions of damage detection,
localization, and magnitude estimation.
3.1. Baseline phase

3.1.1. Baseline modeling of the healthy structure

Although not strictly required, the modeling of the healthy (nominal) structure is an initial step performed in order to
facilitate (in the sense of providing approximate model orders) the subsequent step of damage topology (mode) modeling.

A single experiment is performed, based on which an interval estimate of a discrete-time model (or a vector model or
an array of models in the case of several vibration response measurement locations) representing the healthy structural
dynamics is obtained via standard identification procedures [40–42]. In this study an array of two single excitation and
single response AutoRegressive with eXogenous excitation (ARX) models is used.

An ARX(na,nb) model is of the form1 [42]:

y½t�þ
Xna

i ¼ 1

ai � y½t�i� ¼
Xnb

i ¼ 0

bi � x½t�i�þe½t�, e½t� � iid N ð0,s2
e Þ ð1Þ

with t designating the normalized discrete time (t¼ 1,2,3, . . . with absolute time being ðt�1ÞTs, where Ts stands for the
sampling period), x½t�, y½t� the measured excitation and vibration response signals, respectively, na, nb the AutoRegressive
(AR) and eXogenous (X) orders, respectively, and e½t� the stochastic model residual (one-step-ahead prediction error)
sequence, that is a white (serially uncorrelated), Gaussian, zero mean with variance s2

e sequence, uncorrelated with the
excitation x½t�. The symbol N ð�,�Þ designates Gaussian distribution with the indicated mean and variance, and iid stands for
identically independently distributed.

The model is parameterized in terms of the parameter vector h ¼ ½ai ^ bi ^ s2
e �

T to be estimated from the measured
signals [42,40]. Model estimation may be achieved based on minimization of the ordinary least squares (OLS) or the
weighted least squares (WLS) criteria [42,40]. The modeling procedure involves the successive fitting of ARX(na,nb) models
for increasing orders na and nb, until an adequate model is selected [42]. Model order selection is based on the Bayesian
information criterion (BIC) and the residual sum of squares normalized by the series sum of squares (RSS/SSS). Final model
validation is based on formal verification of the residual (one-step-ahead prediction error) sequence uncorrelatedness
(whiteness) hypothesis [40, pp. 512–513].
Lower case/capital bold face symbols designate vector/matrix quantities, respectively.
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3.1.2. The notion of damage topology (mode)

The notion of damage topology (mode) refers to the union of all admissible damage magnitudes on a particular topology
(section or component) of the structure (damage of all possible magnitudes at all possible locations along a topology).
Hence, a damage topology is defined via two variables: (a) damage magnitude and (b) damage location. For this purpose,
the novel stochastic Vector-dependent Functionally Pooled AutoRegressive with eXogenous excitation (VFP-ARX) models
are used [32]. The VFP-ARX representation allows for complete and precise damage topology description, as the model
parameters and residual series covariance depend functionally on damage magnitude and damage location, while the
corresponding interrelations and statistical dependencies between the different damage magnitudes and locations are
taken into account.

The VFP-ARX representation belongs to the recently introduced broader class of stochastic FP models, which make use
of data pooling techniques for combining and optimally treating (as one entity) the data obtained from various
experiments corresponding to different structural states and statistical techniques for model estimation [32,33,43].

3.1.3. Damage topology (mode) modeling

The modeling of a specific damage topology (mode) via a VFP-ARX model involves consideration of all admissible
damage magnitudes occurring at predetermined locations on a specific section/component of the structure (right/left
wing, horizontal stabilizer, and so on). For this reason a total of M1 �M2 experiments is performed (physically or via
analytical models and simulation), with M1 and M2 designating the number of experiments under the various damage
magnitudes and locations, respectively. Each experiment is characterized by a specific damage magnitude k1 and a specific
damage location k2, with the complete series covering the required range of each variable, say ½k1

min, k1
max� and ½k2

min, k2
max�,

via the discretizations fk1
1,k1

2, . . . ,k1
M1
g and fk2

1,k2
2, . . . ,k2

M2
g (it is tacitly assumed, without loss of generality, that the healthy

structure corresponds to k1
¼ 0). For the identification of a model corresponding to a specific damage topology the vector

operating parameter k containing the damage magnitude and damage location components is defined as

k :¼ ½k1
i k2

j �
T3ki,j, i¼ 1, . . . ,M1, j¼ 1, . . . ,M2 ð2Þ

with ki,j designating the state of the structure corresponding to the i-th damage magnitude and the j-th damage location.
This procedure yields a pool of excitation–response signal pairs (each of length N):

xk½t�,yk½t� with t¼ 1, . . . ,N, k1
2 fk1

1, . . . ,k1
M1
g, k2

2 fk2
1, . . . ,k2

M2
g: ð3Þ

A proper mathematical description of the structure for the considered damage topology may be then obtained in the
form of a VFP-ARX model. In the case of several vibration measurement locations an array of such models (or else a vector
model) may be obtained, with each scalar model corresponding to each measurement location and being designated as
MXY

k (with X indicating the damage topology and Y the vibration measurement location).
The VFP-ARX model structure postulated is of the following form [32]:

yk½t�þ
Xna

i ¼ 1

aiðkÞ � yk½t�i� ¼
Xnb

i ¼ 0

biðkÞ � xk½t�i�þek½t� ð4aÞ

ek½t� � iid N ð0,s2
e ðkÞÞ, k 2 R2

ð4bÞ

aiðkÞ :¼
Xp

j ¼ 1

ai,j � GjðkÞ, biðkÞ :¼
Xp

j ¼ 1

bi,j � GjðkÞ ð4cÞ

Efeki,j
½t� � ekm,n

½t�t�g ¼ ge½ki,j,km,n� � d½t� ð4dÞ

with na, nb designating the AutoRegressive (AR) and eXogenous (X) orders, respectively, xk½t�, yk½t� the excitation and
response signals, respectively, and ek½t� the model’s residual (one-step-ahead prediction error) sequence, that is a white
(serially uncorrelated) zero mean sequence with variance s2

e ðkÞ. This sequence should be uncorrelated with the excitation
xk½t� but potentially cross-correlated with its counterparts corresponding to different experiments (different k’s). The
symbol Ef�g designates statistical expectation, d½t� the Kronecker delta (equal to unity for t¼ 0 and equal to zero for ta0),
N ð�,�Þ Gaussian distribution with the indicated mean and variance, and iid stands for identically independently distributed.

As (4c) indicates, the AR and X parameters aiðkÞ, biðkÞ are modeled as explicit functions of the vector k (which contains
the damage magnitude and damage location components) by belonging to p-dimensional functional subspace spanned by
the mutually independent basis functions G1ðkÞ,G2ðkÞ, . . . ,GpðkÞ (functional basis). The functional basis consists of
polynomials of two variables (bivariate) obtained as tensor products from their corresponding univariate polynomials
(Chebyshev, Legendre, Jacobi, and other families [44]), while the whole procedure of the subspace creation is described in
detail in Appendix A. The constants ai,j and bi,j designate the AR and X, respectively, coefficients of projection.

The VFP-ARX model of (4a)–(4d) is parameterized in terms of the parameter vector to be estimated from the measured
signals:

h :¼ ½ai,j ^ bi,j ^ s2
e ðkÞ�

T 8 k ð5Þ
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and may be written in linear regression form as

yk½t� ¼ ½u
T
k½t� � gT ðkÞ� � hþek½t� ¼uT

k½t� � hþek½t� ð6Þ

with

uk½t� :¼ ½�yk½t�1� . . .�yk½t�na�^xk½t� . . . xk½t�nb��T½ðnaþnbþ1Þ�1� ð7aÞ

gðkÞ :¼ ½G1ðkÞ . . .GpðkÞ�
T
½p�1� ð7bÞ

h :¼ ½a1,1 . . . ana,p^b0,1 . . . bnb,p�
T
½ðnaþnbþ1Þp�1� ð7cÞ

and T designating transposition and � Kronecker product [45, Chapter 7].
Pooling together the expressions (6) of the VFP-ARX model corresponding to all vector operating parameters

k ðk1,1,k1,2, . . . ,kM1 ,M2
Þ considered in the experiments (cross-sectional pooling) yields

yk1,1
½t�

^

ykM1 ,M2
½t�

2664
3775¼

/T
k1,1
½t�

^

/T
kM1 ,M2

½t�

2664
3775 � hþ

ek1,1
½t�

^

ekM1 ,M2
½t�

2664
3775) y½t� ¼U½t� � hþe½t�: ð8Þ

Then, following substitution of the data for t¼1,y,N the following expression is obtained:

y¼U � hþe ð9Þ

with

y :¼

y½1�

^

y½N�

264
375, U :¼

U½1�
^

U½N�

264
375, e :¼

e½1�

^

e½N�

264
375: ð10Þ

Using the above linear regression framework the simplest approach for estimating the projection coefficient vector h is
based on minimization of the ordinary least squares (OLS) criterion JOLS :¼ ð1=NÞ

PN
t ¼ 1 eT ½t�e½t�.

A more appropriate criterion is (in view of the Gauss–Markov theorem [46]) the weighted least squares (WLS) criterion:

JWLS :¼
1

N

XN

t ¼ 1

eT ½t�C�1
e½t�e½t� ¼

1

N
eTC�1

e e ð11Þ

which leads to the weighted least squares (WLS) estimator:

bhWLS
¼ ½UTC�1

e U��1½UTC�1
e y� ð12Þ

In these expressions Ce ¼ EfeeT g (Ce ¼Ce½t� � IN , with IN designating the N � N unity matrix) designates the residual

covariance matrix, which is practically unavailable. Nevertheless, it may be consistently estimated by applying (in an

initial step) ordinary least squares (details in [32]). Once bhWLS
has been obtained, the final residual variance and residual

covariance matrix estimates are obtained as

bs2
e ðk,bhWLS

Þ ¼
1

N

XN

t ¼ 1

e2
k½t,bhWLS

�, bCe½t� ¼
1

N

XN

t ¼ 1

e½t,bhWLS
�eT ½t,bhWLS

�: ð13Þ

The estimator bhWLS
may, under mild conditions, be shown to be asymptotically Gaussian distributed with mean

coinciding with the true parameter vector h0 and covariance matrix Ph:ffiffiffiffi
N
p
ðbhN�h0

Þ �N ð0,PhÞ ðN-1Þ ð14Þ

based on which interval estimates of the true parameter vector may be constructed [32].
The problem of VFP-ARX model structure selection (structure estimation) for a given basis function family (such as

Chebyshev, Legendre, and so on), that is model order determination for the AR and X polynomials and determination of
their corresponding functional subspaces, is referred to as the model identification problem. Usually, the AR and X model
orders are initially selected via customary model order selection techniques (BIC, RSS, stabilization diagrams) [40],
whereas the functional subspace dimensionalities are selected via a genetic algorithm (GA) procedure [47]. Initially,
maximum functional subspace dimensionalities are selected, which define the search space of the functional subspace
estimation subproblem. The determination of the exact subspace dimensionalities is achieved via the use of GAs based on
minimization of the BIC with respect to the candidate basis functions.

3.2. Inspection phase

Let x½t�, y½t� ðt¼ 1,2, . . . ,NÞ represent the current excitation and response signals, respectively, obtained from the
structure in an unknown (to be classified) state. Damage detection, localization, and magnitude estimation are based on the



F.P. Kopsaftopoulos, S.D. Fassois / Mechanical Systems and Signal Processing 39 (2013) 143–161148
pre-determined (in the baseline phase) VFP-ARX models, with each model corresponding to a specific damage topology
(mode). The current excitation and response signals are driven through these models and estimates of the current values of
the operating vector k and residual series ek½t� are obtained from each one. These estimates are subsequently used for
tackling the damage detection, localization, and magnitude estimation tasks within a statistical decision making
framework.

3.2.1. Step I: damage detection

Damage detection is based on the re-parameterized, in terms of k and s2
e ðkÞ VFP-ARX model of any damage topology

(e.g. V). Thus, the projection coefficients are replaced by the corresponding estimates available from the baseline phase,
while the vector k containing the damage magnitude and location, and the residual series variance s2

e ðkÞ are the current
unknown parameters to be estimated:

MV
ðk,s2

e ðkÞÞ : y½t�þ
Xna

i ¼ 1

aiðkÞ � y½t�i� ¼
Xnb

i ¼ 0

biðkÞ � x½t�i�þe½t�: ð15Þ

The estimation of the currently unknown parameters k and s2
e ðkÞ based on the current excitation and response signals

may be achieved via the following nonlinear least squares (NLS) and variance estimators (refer to [40, pp. 327–329] for
details on NLS estimation):

bk ¼ arg min
k

XN

t ¼ 1

e2½t�, s2
e ð
bkÞ ¼ 1

N

XN

t ¼ 1

e2½t,bk� ð16Þ

the first one realized via a hybrid optimization scheme based on genetic algorithms (GA) [47] and constrained nonlinear
optimization (sequential quadratic programming—SQP) [48,49].

The GA aims at exploring the complete search space (ðk1,k2
Þ plane) with the objective of locating promising regions

within which the ‘‘true’’ k might be located. Despite the GA’s inherent ability for effective global optimization, they often
suffer in terms of exact global optimum localization. Hence, a constrained nonlinear optimization scheme is employed in a
suitably defined neighborhood of the GA result in order to find the exact global optimum bk.

Assuming that the structure is indeed under a damage belonging to damage topology V (or healthy) the first estimator
may be shown to be asymptotically ðN-1Þ Gaussian distributed, with mean equal to the true k value and covariance
matrix Rk ð

bk �N ðk,RkÞÞ coinciding with the Cramer–Rao lower bound, which may be obtained as

bRk ¼
bs2

e ð
bkÞ

N

1

N

XN

t ¼ 1

uT ½t� �
@gT ðkÞ

@k

� ����
k ¼bk � bh

�
� uT ½t� �

@gT ðkÞ

@k

� ����
k ¼bk � bh

�T
" #�1

: ð17Þ

In this expression u½t� is defined as in (7a), while bh designates the available from the baseline phase estimate of projection
coefficients vector corresponding to the selected damage topology model.

Since the healthy structure corresponds to k1
¼ 0 (zero damage magnitude) for any damage topology model, damage

detection may be based on the following hypothesis testing problem:

H0 : k1
¼ 0 ðnull hypothesis2healthy structureÞ

H1 : k1a0 ðalternative hypothesis2damaged structureÞ: ð18Þ

Under the null (H0) hypothesis, the following statistic follows t-distribution with N�1 degrees of freedom
(which should be adjusted to N�2 in case the estimated mean is subtracted from the residual series in the computation
of bRk):

t¼
bk1

bs
k1

� tðN�1Þ ð19Þ

with bs
k1 being the positive square root of the first diagonal element of bRk (estimated standard deviation of k1). This leads

to the following test at the a risk level (probability of false alarm, or type I error, that is accepting H1 although H0 is true,
being equal to a):

ta=2ðN�1Þrtrt1�a=2ðN�1Þ ) H0 is accepted ðhealthy structureÞ

Else) H1 is accepted ðdamaged structureÞ ð20Þ

with ta designating the t distribution’s (with the indicated degrees of freedom) a critical point [defined such that
ProbðtrtaÞ ¼ a].

3.2.2. Step II: damage topology (mode) identification

Damage topology (mode) identification corresponds to the examination of which one of the available damage topology
VFP-ARX models provides, for its estimated bk, a valid representation of the current structural dynamics based on residual
uncorrelatedness (whiteness) hypothesis testing. The current damage topology is that corresponding to the valid model,
which will exhibit an uncorrelated (white) residual sequence for the corresponding bk.
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Once damage occurrence has been detected, current damage topology determination is based on the successive
estimation (using the current data) and validation of the re-parameterized MV

ðk,s2
e ðkÞÞ VFP-ARX models (Eq. (15)) for

V ¼ A,B, . . . corresponding to the various damage modes. The procedure stops as soon as a particular model is successfully
validated, with the corresponding damage topology identified as current. Model validation may be based on a statistical
test examining the residual uncorrelatedness (whiteness) via the statistical hypothesis testing problem:

H0 : rV ½t� ¼ 0 t¼ 1,2, . . . ,r ðdamage is of type VÞ

H1 : rV ½t�a0 for some t ðdamage is not of type VÞ ð21Þ

in which rV ½t� ðt¼ 1,2, . . . ,rÞ designates the residual series normalized autocorrelation at lag t. Under the null hypothesis
the following Q statistic follows a chi-square ðw2Þ distribution with r degrees of freedom [50, p. 314]:

Q ¼NðNþ2Þ �
Xr

t ¼ 1

ðN�tÞ�1br2
V ½t� � w

2ðrÞ ð22Þ

in which N designates the residual signal length (in number of samples), brV ½t� the estimated (sample) normalized
autocorrelation at lag t, and r the maximum lag. This leads to the following test at the a risk level:

Q ow2
1�aðrÞ ) H0 is accepted ðdamage is of type VÞ

Else) H1 is accepted ðdamage is not of type VÞ ð23Þ

with w2
1�aðrÞ designating the distribution’s ð1�aÞ critical point.

It should be noticed that inability to identify a particular damage topology (obviously as not previously modeled)
indirectly implies damage detection.

3.2.3. Step III: damage localization and magnitude estimation

Damage localization and magnitude estimation are then based on the interval estimates of k2 and k1, respectively,
which are constructed based on the bk, bRk estimates obtained from the corresponding re-parameterized VFP-ARX model
(of the form (15)) of the current valid damage topology. Thus, using (19), the interval estimates of k1 (damage magnitude)
and k2 (damage location) at the a risk level are

ki interval estimate : ½bki
�ta

2
ðN�1Þ � bs

ki ,bki
þt1�a2

ðN�1Þ � bs
ki � ð24Þ

with i¼1 for damage magnitude and i¼2 for damage location, while bs
ki is the positive square root of the i-th diagonal

element of bRk.
Bivariate confidence bounds for k¼ ½k1 k2

�T may be also obtained by observing that the quantity follows chi-square
distribution with two degrees of freedom [40, p. 558]:

ðbk�kÞTR�1
k ð
bk�kÞ � w2

1�að2Þ: ð25Þ

Thus the probability that

ðbk�kÞTR�1
k ð
bk�kÞrw2

1�að2Þ ð26Þ

is equal to 1�a ðw2
1�að2Þ designating the w2 distribution’s with two degrees of freedom 1�a critical point). This expression

defines an ellipsoid on the ðk1,k2
Þ plane within which the true ðk1,k2

Þ point should lie with probability ð1�aÞ, or
equivalently, with risk a (bivariate confidence bounds). The shape of the ellipsoid is determined by Rk. Notice that in
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Fig. 1. Flowchart representation of the VFP-ARX model based method.
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practice Rk is replaced by its estimate, which is assumed to be of negligible variability.
Fig. 1 presents a flowchart representation of the VFP-ARX model based method.

4. The experimental set-up

4.1. The structure

The scale aircraft skeleton structure used in the experiments was designed by ONERA (France) in conjunction with the
Structures and Materials Action Group SM-AG19 of the Group for Aeronautical Research and Technology in Europe
(GARTEUR) [34,35]. The currently used structure has been manufactured at the University of Patras (Fig. 2a). This testbed
represents a typical aircraft skeleton design and consists of six solid beams with rectangular cross sections representing
the fuselage, the wing, the horizontal and vertical stabilizers, and the right and left wing tips. All parts of the structure are
constructed from standard aluminum and are jointed together via steel plates and screws. The total mass of the structure
is approximately 50 kg and its dimensions are indicated in Table 1.

4.2. The damage topologies and scenarios

The damage scenarios considered correspond to the attachment of a variable number of small unit masses, simulating
local elasticity reductions, at three different topologies (presently geometrical axes) on the structure. Each unit mass
weighs approximately 8.132 g and is attached to the structure using adhesive wax. As already mentioned in Section 2, such
added mass ‘‘pseudo-faults’’ are often used in the literature as approximate ways of generating signals corresponding to
various fault scenarios; for instance see [30,36–39]. Other types of damages, such as the loosening of bolts, have been also
Fig. 2. (a) The scale aircraft skeleton structure and the experimental set-up; (b) the right wing-tip with the force excitation (Point X), the first vibration

measurement position (Point Y), and the aa0 and bb0 axes that define the A and B damage topologies, respectively; (c) the horizontal stabilizer with the

second vibration measurement position (Point Z) and the cc0 axis that defines the C damage topology.

Table 1
Dimensions of the scale aircraft skeleton structure.

Component Length (mm) Width (mm) Thickness (mm)

Fuselage 1500 150 50

Wings 2000 100 10

Horizontal stabilizer 300 100 10

Vertical stabilizer 400 100 10

Wing-tips 400 100 10



Table 2
The considered damage topologies (modes)—refer to Fig. 2b–c.

Damage topology (mode) Description

A Any mass anywhere on the right wing (k1
2 ½0,81:32� g, k2

2 ½0,80� cm)

B Any mass anywhere on the right wing-tip (k1
2 ½0,81:32� g, k2

2 ½0,40� cm)

C Any mass anywhere on the hor. stab. (k1
2 ½0,81:32� g, k2

2 ½0,40� cm)

Table 3
Signal pre-processing and details.

Sampling frequency: fs¼256 Hz Bandwidth: [4–90] Hz

Signal length: N¼1500 samples (5.85 s)
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effectively considered – with similar results – in other recent studies [51,52]. In any case the issue of ‘‘pseudo-faults’’ used
in the training (baseline) phase is not of central importance in the present study, which focuses on the development of the
method and its validation by a simple proof-of-concept application.

In the context of this study each damage belongs to one of three distinct damage topologies (modes) (see Fig. 2 and
Table 2):
(a)
 The first (damage topology (mode) A) corresponds to the attachment of up to 10 unit masses at a single location,
representing different damage magnitudes in the range of ½0,81:32� g, at any point on the aa0 axis (Fig. 2b), starting
from a and moving to the left along the right wing of the aircraft in the range 0–80 cm— Fig. 2.
(b)
 The second (damage topology (mode) B) corresponds to the attachment of up to 10 unit masses at a single location,
representing different damage magnitudes in the range of ½0,81:32� g, at any point on the bb0 axis (Fig. 2b), starting
from b and moving backwards along the right wing-tip in the range 0–40 cm.
(c)
 The third (damage topology (mode) C) corresponds to the attachment of up to 10 unit masses at a single location,
representing different damage magnitudes in the range of ½0,81:32� g, at any point on the cc0 axis (Fig. 2c), starting from
c and moving to the left along the horizontal stabilizer in the range 0–40 cm.
Each damage – belonging to any one of the above topologies or, perhaps, to an ‘‘unmodeled’’ topology – is designated as
FX

k1 ,k2 , with X¼A, B, C indicating a particular damage topology, k1 the damage magnitude (g of added mass) and k2 the
precise damage location (distance in cm) along the pertinent axis. The healthy structure corresponds to k1

¼ 0 (0 g of
added mass) and is designated as Fo.
4.3. The experimental procedure

Damage detection, localization, and magnitude estimation are based on vibration testing of the structure, which is
suspended through a set of bungee cords and hooks from a long rigid beam sustained by four heavy-type stands (Fig. 2a).
The suspension is designed in a way as to exhibit a pendulum rigid body mode below the frequency range of interest, as
the boundary conditions are free–free.

The excitation is broadband random stationary Gaussian applied vertically at the right wing-tip (Point X, Fig. 2b)
through an electromechanical modal shaker (MB Dynamics Modal 50A, max load 225 N) equipped with a stinger. The
actual force exerted on the structure is measured via an impedance head (PCB M288D01, sensitivity 98.41 mV/lb), while
the resulting vertical acceleration responses at Points Y and Z (Fig. 2b–c) are measured via lightweight accelerometers (PCB
352A10 miniature ICP accelerometers, 0.7 g, frequency range 0.003–10 kHz, sensitivity � 1:052 mV=m=s2). The force and
acceleration signals are driven through a conditioning charge amplifier (PCB 481A02) into the data acquisition system
based on SigLab 20-42 measurement modules (each module featuring four 20-bit simultaneously sampled A/D channels,
two 16-bit D/A channels, and analog anti-aliasing filters).
4.4. The signals

The excitation and response signal bandwidth is selected as 4–90 Hz, with the lower limit set in order to avoid instrument
dynamics and rigid body modes. Each signal is digitized at fs¼256 Hz, resulting in a length of N¼1500 samples, and is
subsequently sample mean corrected and normalized by its sample standard deviation (Table 3).



Table 4
The considered test casesa.

Test case Damage Damage topology (mode) Description

I Fo – Healthy structure

II FA
8:132,80

A Mass of 8.132 g at 80 cm (right wing)

III FA
32:528,0

A Mass of 32.528 g at 0 cm (right wing)

IV FA
40:66,75

A Mass of 40.66 g at 75 cm (right wing)

V FB
8:132,0

B Mass of 8.132 g at 0 cm (right wing-tip)

VI FB
16:26,5

B Mass of 16.26 g at 5 cm (right wing-tip)

VII FC
12:19,10

C Mass of 12.19 g at 10 cm (horizontal stab.)

VIII FC
81:32,30

C Mass of 81.32 g at 30 cm (horizontal stab.)

IX F40:66,10 Unmodeled Mass of 40.66 g at 10 cm (left wing-tip)

a Each case is considered separately via Point Y and Point Z measurements.

Fig. 3. The effects of two topology A damages on parametrically obtained FRF magnitude curves corresponding to each one of the Point X–Point Y (a–b)

and Point X–Point Z (c–d) transfer functions. The gray zones depict 95% confidence intervals (uncertainty zones) for the healthy FRF magnitudes.

The (b) and (d) subplots are blow ups of (a) and (c), respectively.
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5. Damage detection, localization, and magnitude estimation results

Damage detection, localization, and magnitude estimation results for damage of any magnitude occurring anywhere in
one of the three specified topologies (modes) are now presented.

The considered damage test cases are summarized in Table 4—each test case is considered twice, first via the Point Y
and then via the Point Z sensor. Notice that Test Case I corresponds to the healthy structure, Test Cases II–IV to damage in
topology A (right wing), Test Cases V–VI to damage in topology B (right wing-tip), Test Cases VII–VIII to damage in
topology C (horizontal stabilizer), while Test Case IX does not belong to any of the considered topologies and for this reason
it is referred to as ‘‘unmodeled’’ (it corresponds to damage on the left wing-tip). The challenging issue with this last Test
Case is whether or not it will be possible to detect it and ‘‘negatively’’ localize it as not belonging to any one of the A–C
topologies. It should be further emphasized that none of the damages considered in the Test Cases is used in the baseline
(training) phase of the next subsection.

The damage diagnosis method operates on a single pair of excitation–response signals, namely the excitation force that
is always applied at Point X, and a vibration acceleration response measured either at Point Y or at Point Z (Fig. 2b–c).
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Depending on the distance of the employed accelerometer sensor from the damage occurrence location, the damage is
labeled as being ‘‘local’’ or ‘‘remote’’ to the response sensor used.

The effects of the considered damage cases to the structural dynamics are depicted in Fig. 3, which presents parametric
(ARX(48, 48) model based) frequency response function (FRF) magnitude estimates (Matlab function ffplot.m) for the Point
X–Point Y and Point X–Point Z transfer functions for the healthy and two damage cases belonging to topology (mode) A
(notice that 95% confidence intervals are also depicted for the healthy FRFs). Evidently, the effects of damage are rather
small, which underscores the challenges underlying the damage diagnosis problem.

5.1. Baseline phase

5.1.1. Baseline modeling of the healthy structure

Conventional ARX models representing the healthy structure are obtained through standard identification procedures
[42,40] based on obtained excitation–response signals (5.85 s, N¼1500 sample long, Matlab function arx.m). This leads to
an ARX(48, 48) model characterized by zero delay (b0a0 in the exogenous polynomial) for the Point X–Point Y transfer
function. Similarly, an ARX(51, 51) model ðb0a0Þ is obtained for the Point X–Point Z transfer function. These models are
used as reference and for providing approximate orders for the corresponding damage topology (mode) models of the next
paragraph.

5.1.2. Modeling of the dynamics for damage topologies (modes) A, B, C

Damage mode modeling for damage topology (mode) A (right wing—refer to Table 2) is based on signals obtained from
a total of M1 �M2 ¼ 99 experiments. Nine experiments correspond to the healthy structure ðk1

¼ 0 gÞ and 90 to the
damaged structure (1–10 unit masses being placed at each one of nine locations on the right wing— Fig. 2b). The mass and
location increments used are dk1

¼ 8:132 g and dk2
¼ 10 cm, covering the intervals ½0,81:32� g and [0, 80] cm.

Damage mode modeling for damage topologies (modes) B (right wing-tip) and C (horizontal stabilizer) (refer to Table 2)
is based on signals obtained from a total of M1 �M2 ¼ 55 experiments. Five experiments correspond to the healthy
structure ðk1

¼ 0 gÞ and 50 to the damaged structure (1–10 unit masses being placed at each one of five locations on the
right wing-tip for damage mode B or on the horizontal stabilizer for damage mode C— Fig. 2b–c). The mass and location
increments used are dk1

¼ 8:132 g and dk2
¼ 10 cm, covering the intervals [0, 81.32] g and [0, 40] cm.

Based on the signals collected from the aforementioned experiments, two models are identified for each one of the A, B,
C damage topologies: the first model describes the Point X–Point Y dynamics (transfer function) and the second the Point
X–Point Z dynamics (transfer function).

Model order selection starts with the orders selected for the conventional ARX models representing the healthy
structure, the final model orders being presently selected based on the BIC criterion [42] and model validation techniques,
such as checking the whiteness (uncorrelatedness) and the normality of the model residuals (Matlab functions acf.m and
normplot.m, respectively) [42,40]. The functional subspaces are selected via a genetic algorithm (GA) based procedure
(Matlab function ga.m). An extended functional subspace consisting of 45 Chebyshev Type II bivariate polynomial basis
functions (see Appendix A) is initially considered, with the GA aiming at selecting the optimal functional basis subset
based on BIC minimization (see Appendix B—GA estimation details in Table 7).

The identified damage topology models are summarized in Table 6 and are as follows:
(a)
 Point X–Point Y dynamics: A VFP-ARX damage model is identified for each damage topology based on N¼1500
sample-long signals: a VFP-ARX(48, 48) for damage topology A, a VFP-ARX(57, 57) for damage topology B, and a
VFP-ARX(44, 44) model for damage topology C. Each functional subspace consists of p¼30 Chebyshev Type II
two-dimensional polynomials.
(b)
 Point X–Point Z dynamics: A VFP-ARX damage model is identified for each damage topology based on N¼1500 sample-
long signals: a VFP-ARX(51, 51) for damage topology A, a VFP-ARX(69, 69) for damage topology B, and a VFP-ARX(65, 65)
model for damage topology C. Like in the previous case, each functional subspace consists of p¼30 Chebyshev Type II
two-dimensional polynomials.
Indicative FRF magnitude curves obtained from damage topology A and the Point Y VFP2ARXð48,48Þ30 model (designated
as MAY

k ) are, as functions of frequency, damage magnitude and location, depicted in Fig. 4. Indicative AR parameters of the
same model are depicted in Fig. 5 as functions of damage magnitude and location. Similarly, indicative natural frequencies
obtained by the model as functions of damage magnitude and location are presented in Fig. 6 (also compare with Fig. 3 and
Table 5).

5.2. Inspection phase: damage detection, localization and magnitude estimation

The effectiveness of the damage diagnosis method is now assessed via the Test Cases of Table 4. It should be stressed
that the damages associated with the Test Cases do not coincide with those used in the baseline (training) phase—apart
from Test Case I that corresponds to the healthy structure. Each one of the first eight Test Cases (I–VIII) is considered twice:



Fig. 4. Damage topology A model ðMAY
k Þ based FRF magnitude versus frequency and (a) damage magnitude (for set location k2

¼ 0 cm) and (b) damage

location (for set magnitude k1
¼ 48:792 g).

Fig. 5. Typical damage topology A model ðMAY
k Þ AR parameters versus damage magnitude (k1 g) and location (k2 cm).
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once using the Point Y sensor and once using the Point Z sensor. In this way each damage may be either ‘‘local’’ or ‘‘remote’’
depending on the sensor used, so that the capability of the method to operate under either one of the two circumstances is
assessed. The ninth Test Case (IX) in Table 4 is ‘‘unmodeled’’, meaning that it does not belong to any one of the three
(A, B, C) topologies. Still, it is particularly interesting to examine whether or not its presence can be detected, and whether
or not it can be ‘‘negatively’’ localized, the latter meaning whether it can be actually concluded that it does not belong to
any of the three considered topologies. An additional question is whether this can be achieved using any one of the three
different topology (A or B or C) models; for this reason Test Case IX is considered three times (using both sensors) and the
results are designated as IXa, IXb, IXc, respectively.



Fig. 6. Indicative natural frequencies versus damage magnitude (k1 g) and damage location (k2 cm) based on the damage topology A ðMAY
k Þ model:

(a) second mode; (b) third mode; (c) fourth mode; and (d) fifth mode (compare with Table 5 and Fig. 4).

Table 5
Global modal characteristics (natural frequencies and

damping ratios) of the structure based on the identi-

fied ARX(48, 48) model of the healthy structure.

Structural

mode

Natural frequency

(Hz)

Damping ratio

(%)

1 06.21 8.70

2 17.95 0.33

3 39.80 0.26

4 46.11 0.75

5 54.51 0.04

6 55.37 0.24

8 59.60 3.29

9 69.74 0.78

10 80.11 0.14
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Damage detection results for each Test Case and each one of the two response sensors are presented in Fig. 7. Evidently,
damage is in all cases clearly detected as the t statistic is where it should be, that is within the dashed lines in the healthy
Test Case (I) and beyond them in all damaged Test Cases (II–IXc). Notice that the color code in the bars indicates the actual
topology of each considered damage. An important observation here is that all damages are detected, including the
‘‘unmodeled’’ damage, and this is irrespectively of the damage being ‘‘local’’ or ‘‘remote’’ to the sensor used. The
importance of this result is related to the fact that even one (or a few, depending on the structure) sensor is sufficient for
detecting damage, even if that is taking place at a ‘‘remote’’ location.

Damage topology (mode) identification results for each Test Case are pictorially presented in Fig. 8 separately for each
one of the two response sensors. The hypotheses of the current damage belonging to topology A, topology B, or topology C
are considered in each Test Case (plot) using the corresponding topology VFP-ARX model. One of these hypotheses is
accepted if the corresponding Q statistic is lower than the critical point (dashed horizontal line). The actual damage and its



Table 6
The structure of the identified damage topology models.

Damage topology (mode) Vibration measurement at Point Y Vibration measurement at Point Z

A MAY
k : VFP2ARXð48,48Þ30 MAZ

k : VFP2ARXð51,51Þ30

B MBY
k : VFP2ARXð57,57Þ30 MBZ

k : VFP2ARXð69,69Þ30

C MCY
k : VFP2ARXð44,44Þ30 MCZ

k : VFP2ARXð65,65Þ30

Weighted least squares (WLS) estimation

99 training experiments for damage topology A; 55 training experiments each for topologies B and C

Frequency range [4–90] Hz, Sampling frequency fs¼256 Hz

Signal length N¼1500 samples (5.85 s)

Table 7
Genetic algorithm (GA) details for functional subspace dimensionality estimation.

Population size Elite count Crossover fraction Maximum number of generations

100 20 0.7 1000
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Fig. 7. Damage detection results for the various Test Cases and each vibration measurement position (upper plot: Point Y; lower plot: Point Z): t statistic

(bars) and the critical points (- - -) at the a¼ 0:05 risk level. In each Test Case damage is detected if t exceeds the critical point. (For interpretation of the

references to color in this figure caption, the reader is referred to the web version of this article.)
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characterization as either ‘‘local’’ or ‘‘remote’’ are indicated above each plot. The results of all Test Cases are remarkable, as
the actual damage topology (mode) is correctly identified by each one of the two sensors. In the last two plots it is
demonstrated that the ‘‘unmodeled’’ damage of Test Case IX is correctly rejected as being associated with one of the A, B, C
topologies. These results demonstrate that correct damage topology identification is feasible based on any one of the two
sensors, while the same is true for ‘‘negative’’ topology identification of the ‘‘unmodeled’’ damage.

Damage localization and magnitude interval estimation results are presented in Fig. 9 for each Test Case and each one
of the two response sensors (both shown in the same plot). It should be noticed that damage detection may be also
re-confirmed based on these results, by simply examining whether or not the interval estimate of damage magnitude
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(at a certain risk level) includes the zero (no damage)—this is essentially equivalent to the test of Step I of the method.
In Test Case I the structure is in fact healthy (Fo), hence the interval estimate of only the damage magnitude is depicted.
Evidently, no damage is detected as the interval estimate at the a¼ 0:05 risk level (shaded strip) includes the k1

¼ 0 value
(notice that the dashed vertical line designates the true damage magnitude while the middle line the point estimate and
the left and right vertical lines the lower and upper confidence bounds, respectively). In the rest of the Test Cases the
bivariate ðk1,k2

Þ estimates are presented both as point estimates (diamonds) and interval (uncertainty) estimates
(ellipsoids) at the a¼ 0:05 risk level. The results obtained by the ‘‘local’’ response sensor are shown as dark (blue), while
those obtained by the ‘‘remote’’ sensor as light (magenta). A damage is, in each of these cases, correctly detected as the damage
magnitude’s interval (uncertainty) estimate does not include the k1

¼ 0 value (vertical axis). It should be further observed that
impressively accurate estimates of the damage magnitude and location, also characterized by narrow uncertainties, are
obtained. It is also observed that, in general, the ‘‘local’’ sensors achieve slightly better performance; yet the results are very
impressive for all Test Cases.

6. Concluding remarks

A vibration based statistical time series method that is capable of effective damage detection, precise localization, and
magnitude estimation within a unified stochastic framework has been introduced. The method is based on the novel
extended class of vector-dependent functionally pooled (VFP) models and proper statistical decision making schemes. VFP
models are capable of accurately representing a structure in a damaged state for that state’s continuum of damage
magnitudes and locations on a particular topology. In its inspection phase, the method operates in three distinct steps
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as ‘‘remote’’ (light-magenta). Damage magnitude and location point estimates are indicated by diamonds and interval (uncertainty) estimates by

ellipsoids at the a¼ 0:05 risk level. Damage detection may be also re-confirmed by examining whether the damage magnitude uncertainty includes the

zero (no damage) point. In each Test Case the actual damage is indicated by a cross in the diagram as well as above each plot. (For interpretation of the

references to color in this figure caption, the reader is referred to the web version of this article.)
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taking place within a unified framework: step I involves damage detection, step II involves damage topology identification,
and step III involves precise damage localization and magnitude estimation within the identified topology. Damage
topologies are continuous, involving an infinite number of potential damage locations; they are presently confined to a
single dimensionality but, of course, this may be properly generalized.

The method allows, for the first time within the context of statistical time series and related methods, for complete and
precise damage localization on any continuous topology on a structure using a very limited – depending on the size and
complexity of the structure – number of sensors. As demonstrated, for ‘‘simple’’ and ‘‘limited’’ size structures even a single
pair of excitation–response sensors may be sufficient. Furthermore, estimator uncertainties are fully taken into account in
all diagnostic phases, while uncertainty ellipsoids are provided for the damage location and magnitude.

The validity and effectiveness of the method have been experimentally assessed via a proof-of-concept application
involving damage detection, precise localization, and magnitude estimation on a prototype GARTEUR-type laboratory
aircraft skeleton structure. Damages of different magnitudes occurring on various topologies on the structure (and
involving an infinite number of locations within each topology) have been represented by small added masses simulating
local stiffness reductions. Although the added masses have been quite small compared to the overall skeleton mass, with
their effects on the dynamics being rather minor, the method has proved remarkably effective in detecting damage,
identifying the correct damage topology, and then precisely localizing and accurately estimating the damage magnitude.
No false alarm or missed damage events have been reported, while the corresponding uncertainty ellipsoids have been
impressively accurate, while providing the user with a good feeling about estimation uncertainty.

The main lessons learnt and conclusions drawn from this study may be summarized as follows:
(i)
 First and foremost, the study – including the proof-of-concept application – has demonstrated the important fact
that effective damage detection, damage topology identification, and damage precise localization and magnitude
estimation are possible based on partial models of the structural dynamics and a very limited number of sensors (even
in a single excitation–response signal pair). This is in sharp contrast to methods requiring detailed and ‘‘complete’’
models (such as FEMs) and a multitude of sensors.
(ii)
 From a slightly different perspective, the study has demonstrated the very significant amount of information on the state
of the structure embedded even in a single excitation–response signal pair. Thus, an important message is that it may not
be necessary to employ a ‘‘high’’ number of sensors for precise damage diagnosis; instead, a ‘‘few’’ sensors and powerful
signal analysis for extracting the embedded information may be a much more practical and effective approach.
(iii)
 The diagnostic performance in terms of damage detection, topology identification, and precise localization and
magnitude estimation achieved in the proof-of-concept study (though under controlled laboratory conditions) has been
impressive. Damage localization and magnitude estimation are not only excellent at the nominal (point estimation) level,
but also at a probabilistic level that provides very accurate and tight uncertainty bounds (ellipsoids).
(iv)
 A practically important observation is that the diagnosis performance characteristics do not appear significantly
dependent on the proximity of the damage location to the sensor used. Although the uncertainty bounds have been
somewhat tighter when estimated by ‘‘local’’, rather than ‘‘remote’’, sensors, this effect has been remarkably limited.
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(v)
 ‘‘Unmodeled’’ damages, that is damages not belonging to any of the considered structural topologies (and thus not
modeled in the baseline phase) have been very successfully detected and ‘‘negatively’’ identified as not belonging to
the modeled topologies. This is very important as it provides detection and some localization information even for
damages for which the method has not been trained.
(vi)
 The fact that effective damage diagnosis is possible without the need for specifically designed excitations and special
testing procedures is also very important. Combined with the use of often naturally occurring random excitation and
the fact that good results may be obtained with even low/limited frequency bandwidth (4–90 Hz, which includes 10
of the structural modes in the present study) allows for potentially in-operation damage diagnosis. The potential use
of higher frequency range/bandwidth is expected to lead to further gains in performance.
(vii)
 The method may operate on any type (acceleration, velocity, displacement) of vibration signals and may be modified to
be applied to the output-only case, where only vibration response signal(s) is(are) available. Naturally, the difficulty is
higher in this case, and performance is expected to be affected. This is an issue to be considered in future studies.
(viii)
 The price to be paid for the aforementioned benefits mainly involves the baseline (training) phase, and more
specifically the identification of the necessary VFP models—yet, this takes place only once, while the inspection
phase is simple and automated. Nevertheless, user expertise is necessary in the baseline phase, along with the
availability of excitation–response signal records. Although the former is expected to be reduced in the future via
more automated procedures, excitation–response signal records still need to be obtained possibly through scale
laboratory models or via finite element models (FEMs). Even then, the advantages over alternative (including FEM
based) methods remain, in that the FEM is only needed in the baseline phase for inferring the partial and much more
‘‘compact’’ VFP models, and in that no model updating is required in the inspection phase.
(ix)
 Naturally, a number of issues remain open for future work. Among them are the treatment of multiple damage
scenarios (the present method should have no problem with detection, but precise localization or magnitude
estimation are not generally possible under the current formulation), as well as operation under varying operating
conditions and large uncertainties.
Appendix A. Bivariate polynomials

Bivariate (two-dimensional) orthogonal polynomials may be obtained as tensor products from their corresponding
(Chebyshev, Legendre, Jacobi, or other [44,53,54]) univariate counterparts. For example, the bivariate Chebyshev orthogonal
polynomials have the following form:

Pmnðx,yÞ ¼ PmðxÞ � PnðyÞ ðx,yÞ 2 ½�1,1� � ½�1,1� � R2
ðA:1Þ

with Pmn the bivariate Chebyshev polynomial of total degree mn and PmðxÞ,PnðyÞ the univariate Chebyshev polynomials of
degrees m,n, respectively.

Theorem (construction of bivariate polynomial orthogonal basis) [54,53]. A polynomial orthogonal basis of maximum

degree mn contains a total of 1
2 ðmnþ1Þðmnþ2Þ basis functions obtained as follows:

1: constant basis function P0,0

2: linear basis functions P1,0,P0,1

3: quadratic basis functions P2,0,P1,1,P0,2

^

mnþ1: degree mn basis functions Pmn,0,Pmn�1,1,Pmn�2,2, . . . ,P1,mn�1,P0,mn:

&

The univariate polynomials used in this study in order to obtain their bivariate counterparts are the shifted Chebyshev
polynomials of the second kind (Type II Chebyshev polynomials), which belong to the broader family of Chebyshev
orthogonal polynomials. These polynomials obey the following recurrence relation:

a1,nGnþ1ðxÞ ¼ ða2,nþa3,nxÞGnðxÞ�a4,nGn�1ðxÞ x 2 ½0,1� � R ðA:2Þ

with a1,n ¼ a4,n ¼ 1, a2,n ¼�2, a3,n ¼ 4, and G0ðxÞ ¼ 0, G1ðxÞ ¼ 1.
Hence, the first five shifted Chebyshev polynomials of the second kind are:

P0 ¼ 1

P1 ¼�1þ2x

P2 ¼ 1�8xþ8x2

P3 ¼�1þ18x�48x2þ32x3

P4 ¼ 1�32xþ160x2�256x3þ128x4
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In the present framework, where the two variables are damage magnitude (k1) and damage location (k2), the following
variable selections are made:

x 2 ½0,1� � R, x¼ k1=k1
max y 2 ½0,1� � R, y¼ k2=k2

max ðA:3Þ

Appendix B. The Bayesian information criterion for VFP-ARX models

LetMðhÞ be a general VFP-ARX model describing a given pool of N sample-long excitation–response signals zN ¼ ðxN
k ,yN

k Þ.

Structure estimation for MðhÞ may then be based on minimization of the Bayesian information criterion (BIC) [33,55]:

cMðbhÞ ¼ arg min
MðhÞ

BIC, BIC¼
1

NM1M2
�Lðh=zNÞþdimðhÞ �

ln ðNM1M2Þ

2

� �
ðB:1Þ

with Lð�Þ designating the natural logarithm of the conditional likelihood of the indicated quantity. The Gaussian

log-likelihood function of a VFP-ARX model MðhÞ given the signal samples zN may be shown to be

Lðh=zNÞ ¼�
NM1M2

2
ðln 2pþ1Þ�

N

2
ln detfCe½t�g ðB:2Þ

Hence, structure estimation for a VFP-ARX model MðhÞ based on BIC minimization may be obtained as

cMðbhÞ ¼ arg min
MðhÞ

1

NM1M2

N

2
ln detfCe½t�gþdimðhÞ �

ln ðNM1M2Þ

2

� �
¼ arg min

MðhÞ
ln detfCe½t�gþdimðhÞ �

ln ðNM1M2Þ

N1

� �
:

ðB:3Þ
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