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ABSTRACT
A model residual based Sequential Probability Ratio Test (SPRT) framework for vibration based struc-
tural damage diagnosis is introduced. This employs the residual sequences obtained from a single sta-
tistical time series model of the healthy structure, and its performance is pre-determined via the use
of the Operating Characteristic and Average Sample Number functions in combination with baseline
experiments. The approach postulated in this framework is shown to achieve early damage detection
and identification (classification) via its application to damage diagnosis on a GARTEUR scale aircraft
skeleton structure. Comparisons with a non-parametric Power Spectral Density based method are also
presented.

Keywords: Damage Detection, Damage Identification, Structural Health Monitoring, Time Series Meth-
ods, Sequential Methods

1. INTRODUCTION

Statistical time series methods form an important and rapidly evolving class, within the broader vibra-
tion based family of Structural Health Monitoring (SHM) methods [1–4]. Their main elements are: (i)
random excitation and/or vibration response signals (time series), (ii) statistical model building, and (iii)
statistical decision making for inferring the health state of a structure. They offer a number of potential
advantages, including no requirement for physics based or finite element models as they are data based
(inverse type) methods, no requirement for complete modal models, effective treatment of uncertainties,
and statistical decision making with specified performance characteristics [1, 2].

The vast majority of statistical time series SHM methods is based on Fixed Sample Size (FSS) hypothesis
testing procedures used in the statistical decision making. On the other hand, sequential methods have the
feature that the number of observations required is not determined in advance, but depends, at each stage,
on the results of the observations previously made. Thus, the number of observations required by the test
is not predetermined, but a random variable. A merit of the sequential approach, as applied to testing
statistical hypotheses, is that test procedures can be constructed which require, on average, a substantially
smaller number of observations than equally reliable test procedures based on a predetermined (fixed)
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number of observations [5]. Moreover, a potential advantage of a damage diagnosis method based on
sequential procedures is its straightforward extension for online implementation, which is of high interest
within the SHM context. In this context, preliminary – with respect to the use of a Sequential Probability
Ratio Test (SPRT) scheme – studies include [6,7], where the binary form of the SPRT based on AR-ARX
model residuals has been applied for damage detection in a laboratory three-story building model and an
eight-degree-of-freedom mass-spring system, respectively.

The goal of the present study is the introduction and experimental assessment of a model residual based
SPRT framework for SHM capable of achieving early and robust damage detection and identification
under uncertainties. This framework is based on the statistically optimal SPRT (both its binary and mul-
tihypothesis versions [8, 9]), while taking advantage – for the first time in the context of vibration based
SHM – of its properties and capabilities. The basis of the proposed framework consists of the residual
sequences obtained through a single stochastic time series model of the healthy structural dynamics. Its
effectiveness is validated and experimentally assessed via its application to a GARTEUR aircraft scale
skeleton structure and damages that correspond to loosening of various bolts that connect its structural el-
ements. This structure has been employed by the authors and their collaborators in various SHM studies
using either similar loosened-bolt damage types [10] or other damage types [11, 12].

The results presented herein are for three vibration response measurement positions, with a single mea-
surement used at a time. The random force excitation is provided via an electromechanical shaker, while
the vibration responses are measured via lightweight accelerometers. The main features and operational
characteristics of the framework are discussed along with practical issues. Comparisons with a non-
parametric Power Spectral Density (PSD) based method [1, 4] are also made.

2. THE MODEL RESIDUAL BASED SPRT FRAMEWORK

The postulated framework consists of two phases: (a) An initial baseline phase, which includes the
modeling of the healthy structure, and (b) the inspection phase, which is performed during the structure’s
service cycle or continuously (online), and includes the functions of damage detection and identification.

2.1. Baseline phase

Data records from the healthy structure are employed for the identification of an appropriate parametric
time series model. Specifically a scalar (univariate) model is needed in case of a single vibration response
measurement location, or a vector (multivariate) model (or suboptimally an array of scalar models) is
needed in case that more vibration response measurement locations are to be simultaneously used. In the
linear response-only case, AutoRegressive (AR) or AutoRegressive Moving Average (ARMA) models
may be employed [13]. In the present study a single measurement location, and a corresponding scalar
AutoRegressive (AR) model, is used at a time.

2.2. Inspection Phase

Damage detection and identification are based on the binary and multihypothesis versions of the SPRT,
respectively [8, 9], which are used in order to detect a change in the standard deviation σ of the model
residual sequence obtained by driving the current (unknown) response signals through a single baseline
healthy model. The SPRT allows for the specification of two values σo and σ1 for the standard deviation,
so that the structure is determined in healthy state iff σ ≤ σo, and in damaged state iff σ ≥ σ1. The
zone between σo and σ1 constitutes an uncertainty zone, thus for σ lying in it the decision is postponed
and data collection continues. The values of σo and σ1 are user defined and express the increase of the
standard deviation ratio q = σ1/σo for which the structure is considered to be damaged. For example, a
ratio of q = 1.1 means that the structure is considered damaged whenever there is an increase of 10% in
the standard deviation σ of the current residual sequence compared to a threshold value σo.

Damage detection is based on the binary hypothesis testing problem implemented via the SPRT of
strength (α, β), with α, β designating the type I (false alarm) and II (missed damage) error probabil-
ities, respectively:

Ho : σ ≤ σo (null hypothesis – healthy structure)
H1 : σ ≥ σ1 (alternative hypothesis – damaged structure)

(1)
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with σ designating the standard deviation of a scalar model residual signal e[t] obtained by driving the
current response signal through the healthy structural model, and σo, σ1 user defined values. Under the
null hypothesis of a healthy structure the residuals e[t] are iid zero mean Gaussian with variance σ2,
hence e[t] ∼ iid N (0, σ2).

The basis of the SPRT is the logarithm of the likelihood ratio function which is computed at data sample
t (presently coinciding with discrete time) as follows:

Λ[t] = log
f(e[1], . . . , e[t]|H1)
f(e[1], . . . , e[t]|Ho)

=
t∑

l=1

log
f(e[t]|H1)
f(e[t]|Ho)

= t·log
σo

σ1
+

σ2
1 − σ2

o

2σ2
oσ

2
1

·
t∑

l=1

e2[t], t = 1, 2, . . . (2)

with Λ[t] designating the decision parameter of the method and f(e[t]|Hi) the probability density func-
tion (normal distribution) of the residual sequence under hypothesis Hi (i = 0, 1).

Decision making is then based on the test (of strength (α, β)):

Λ[t] ≤ log B accept Ho (healthy structure)
Λ[t] ≥ log A accept H1 (damaged structure)

log B < Λ[t] ≤ log A no decision is made (continue the test)
(3)

with A = (1 − β)/α and B = β/(1− α). Following a decision at a stopping sample (time) T̂ , it is
possible to continue the test by resetting Λ[T̂ +1] to zero and continuing by collecting additional residual
samples.

For any value of the residual standard deviation σ, the Operating Characteristic (OC) function of the
SPRT denotes the probability that the test will terminate with the acceptance of the null hypothesis Ho

[8]. Similarly, the Average Sample Number (ASN) function represents the average number of inspection
samples required by the SPRT to reach a decision [8]. The ASN is an approximation of the expected
value Eσ{T} of the number of residual samples required by a sampling plan of strength (α, β) and
standard deviations σo, σ1 in order to reach a terminal decision.

Damage identification is based on the multihypothesis sequential test, which is based on the Armitage
test [8, 9]. Then, considering k hypotheses (k potential damage states), the multihypothesis test to be
implemented may be expressed as follows:

HA : σ = σA Hypothesis A – damage is of type A
HB : σ = σB Hypothesis B – damage is of type B

...
...

...
(4)

The standard deviation values σA, σB, . . . are user defined and may be determined based on available
baseline data obtained from the structure under damage types A,B, . . ., respectively. A typical selection
of σA, σB, . . . could be as the mean values of the residual standard deviations estimated from the available
baseline data records under the corresponding damage structural states. By denoting the log likelihood
under hypothesis Hi (Hi is true, i = A,B, . . .) as Li there are 1

2k(k − 1) log likelihood ratios for the
various pairs of hypotheses, with each one expressed in terms of k − 1 independent likelihood ratios
[9, 14]:

Λij [t] =
Li[t]
Lj [t]

= t · log
σj

σi
+

σ2
i − σ2

j

2σ2
j σ

2
i

·
t∑

l=1

e2[t] i, j = A,B, . . . and i 6= j. (5)

Then, the multihypothesis test termination is defined by the pair (T, δ), with T indicating the stopping
time and δ the final decision [14, pp. 237–238]:

T̂ = min
j

inf
{

t : Λij [t] ≥ log Aij ∀ i 6= j, i < j, t = 1, 2, . . .
}

, δ̂ = arg min
j=1,...,k

T. (6)

Let aij the probability of accepting Hi when in fact Hj is true (error probabilities), that is αij = P (δ =
Hi/Hj), i 6= j, and let aii the probability of accepting Hi when in fact Hi is true (correct decision
probabilities), that is αii = P (δ = Hi/Hi). The error probabilities aij may be controlled via suitable
selection of the Aij’s [8, 9].
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Figure 1 The aircraft scale skeleton structure and the experimental set-up: The force excitation (Point X), the
vibration measurement locations (Points Y1–Y3), and the bolts connecting the various elements of the structure.

3. THE STRUCTURE AND THE EXPERIMENTAL SET-UP

The scale aircraft skeleton laboratory structure was designed by ONERA in conjunction with the GAR-
TEUR SM–AG19 Group and manufactured at the University of Patras (Figure 1). It represents a typical
aircraft skeleton design and consists of six solid beams with rectangular cross sections representing the
fuselage (1500× 150× 50 mm), the wing (2000× 100× 10 mm), the horizontal (300× 100× 10 mm)
and vertical stabilizers (400× 100× 10 mm), and the right and left wing-tips (400× 100× 10 mm). All
parts are constructed from standard aluminium (total mass 50 kg).

The structure is suspended through a set of bungee cords and hooks from a long rigid beam sustained
by two heavy-type stands. The suspension is designed in a way as to exhibit a pendulum rigid body
mode below the frequency range of interest, as the boundary conditions are free-free. The excitation is
broadband random stationary Gaussian applied vertically at the right wing-tip (Point X, Figure 1) through
an electromechanical shaker (MB Dynamics Modal 50A, max load 225 N). The vertical acceleration
responses at Points Y1–Y3 (Figure 1) are measured via lightweight accelerometers (PCB 352A10). The
acceleration signals are driven through a conditioning charge amplifier (PCB 481A02) into the data
acquisition system based on SigLab 20–42 modules. Five damage types (designated as A, B,. . . , E) are
presently considered (Table 1), each one corresponding to the complete loosening of one or more bolts
at different joints of the structure.

1600 experiments per structural state are undertaken, 100 of which from each structural state are em-
ployed in the baseline phase – the rest are used in the inspection phase (assessment); see Table 1). In
each experiment vibration measurements are collected at Points Y1, Y2, Y3 (Figure 1). Further ex-
perimental details are provided in Table 1 – worth noting is the very low/limited bandwidth used. The
sample mean is subtracted from each signal and scaling by the signal’s sample standard deviation is
implemented.

Table 1 The considered damage types, number of experiments, and vibration signal details.
Structural State Description Total Number of Experiments
Healthy — 1600 (100 baseline )
Damage type A loosening of bolts A1, A4, Z1, and Z2 1600 (100 baseline )
Damage type B loosening of bolts D2 and D3 1600 (100 baseline )
Damage type C loosening of bolts D1, D2, and D3 1600 (100 baseline )
Damage type D loosening of bolt K1 1600 (100 baseline )
Damage type E loosening of bolt K1 and K2 1600 (100 baseline )
Sampling frequency: fs = 512 Hz, Signal bandwidth: [0.5− 200] Hz
Signal length N in samples (s): Non-parametric analysis: N = 46 080 (90 s)

Parametric analysis: N = 1 000 (1.95 s)
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Figure 2 Healthy structure: (a) Operating Characteristic (OC) and (b) Average Sample Number (ASN) functions
for various residual standard deviation ratios q = σ1/σo and constant strength (α, β) = (0.05, 0.01). The vertical
colored dashed lines designate the σ1 values for the corresponding ratios q. The dashed vertical cyan lines represent
the residual standard deviation values for each of the 100 baseline healthy data sets.

4. DAMAGE DETECTION AND IDENTIFICATION RESULTS

4.1. Baseline phase: structural identification under the healthy structural state

Parametric AR identification of the structural dynamics is based on N = 10 000 (≈ 19.5 s) sample-long
single response signals (MATLAB function arx.m). The modeling strategy consists of the successive
fitting of AR(n) models (with n designating the AR order) until a suitable model is selected. Model
parameter estimation is based on a Least Squares (LS) estimator [13, p. 206] and model order selection
on the BIC and RSS/SSS (Residual Sum of Squares / Signal Sum of Squares) criteria and frequency
stabilization diagrams [13]. The selected AR model characteristics are summarized in Table 2 (SPP
refers to signal samples per estimated parameter). Note that the identification procedure generally leads
to different AR models (including different model orders) for each vibration measurement position.

4.2. Inspection Phase

Prior to implementing the SPRT, an appropriate sampling plan should be selected. The selection of
the sampling plan involves the determination of the following three aspects: (i) the nominal residual
standard deviation σo under which the structure is considered to be in its healthy state, (ii) the standard
deviation ratio q = σ1/σo, which constitutes the standard deviation increase under which the structure is
determined to be damaged, and (iii) the SPRT strength (α, β),

The determination of the residual standard deviation σo under which the structure is considered healthy
is based on the available 100 baseline data records obtained from the healthy structure (Table 1). The
value σo is chosen in order for the probability of σ ≤ σo to be equal to 95% (P (σ ≤ σo) = 0.95).
The determination of the residual standard deviation ratio q may be based on the OC and ASN functions
of the SPRT [8] for various q ratios, along with the use of the baseline data records. Figures 2a and
2b present, for vibration response Y1, the OC and ASN functions, respectively, for various candidate
ratios q and constant SPRT strength (α, β) = (0.05, 0.01). In both figures, the σo value is shown as gray
vertical dashed line, while the σ1 values corresponding to the considered q = σ1/σo ratios are shown
in colored vertical dashed lines. Along with the OC and ASN function curves, the standard deviation
values obtained from the 100 baseline residual sequences are depicted in vertical cyan dashed lines.

Table 2 Selected models and estimation details.
Response Selected Model No of estimated parameters SPP BIC RSS/SSS (%)

Y1 AR(124) 124 parameters 80.6 −2.82 5.26
Y2 AR(142) 142 parameters 70.4 −5.82 0.25
Y3 AR(111) 111 parameters 90.1 −5.78 0.27
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Figure 3 Indicative damage detection results (response Y1) at the (α, β) = (0.05, 0.01) risk levels (q = σ1/σo =
1.08). The actual structural state is shown above each plot.

In Figure 2a the intersections of the dashed vertical lines, belonging to the residual standard deviation
values, with the OC function curves for the various q ratios correspond to the probabilities of acceptance
of the null hypothesis Ho (healthy structure) for each ratio, while in Figure 2b correspond to the expected
number of residual samples required to reach a decision. The OC function (Figure 2a) is considered more
favorable the higher the value of L(σ) for σ consistent with Ho and the lower the value of L(σ) for σ not
consistent with Ho. Thus, by plotting the OC and ASN functions, not only one may have an indication
of the probability of acceptance for various residual standard deviations σ, but one may also obtain an
approximation of the number of residual samples that are required for reaching a terminal decision.

Damage detection results. Indicative damage detection results for Point Y1 are presented in Figure 3. A
damage is detected when the test statistic (vertical axis) exceeds the upper critical point (dashed horizon-
tal lines), while the structure is determined as being in its healthy state when the test statistic exceeds the
lower critical point. After a critical point is exceeded a decision is made, while the test statistic is reset
to zero and the test continues. Hence, during testing multiple decisions may be made. Evidently, correct
detection is obtained in each test case, as the test statistic is shown to exceed multiple times (multiple
correct decisions) the lower critical point in the healthy case, while it also exceeds multiple times the
upper critical point (multiple correct damage detections) in the damage test cases.

The summarized damage detection results are presented in Table 3. The correct detections and false
alarm percentages are based on 1600 inspection experiments. The false alarm rates are extremely low,

Table 3 Damage detection summary results for the three vibration responses (Y1, Y2, and Y3).
Damage Detection

Response Correct False Missed damage (%)
detections (%) alarms (%) damage A damage B damage C damage D damage E

Y1 98.7 0.06 0 8 0.12 0 0
Y2 98 0 0 20 0 0 0
Y3 97.2 0.18 0 0 0 0 0

Test strength (α, β) = (0.05, 0.01); Residual standard deviation ratio q = σ1/σo = 1.08.
Correct detection and false alarm rates based on 1600 healthy experiments (signal length N = 1 000 samples).
Missed damage rates based on 1600 damage experiments (signal length N = 1 000 samples).
Note that the correct detection and false alarm rates do not sum to 100% as in certain cases no decision is made.
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Figure 4 Indicative damage identification results for response Y1 at the αij = 0.001 error probabilities level, with
the actual damage being of type A. The hypothesized structural state is shown above each plot.

as well as the mean missed damage rates which are zero, except for damage type B which exhibits an
increased number of missed damage rate when the response Y2 is used.

Damage identification (classification) results. Indicative damage identification results based on the
multihypothesis SPRT at the αij = 0.001 error probabilities level are presented in Figure 4 for vibration
response Y1. As it may be observed the method is capable of accurately identifying the actual damage
type. Summary damage identification results are presented in Table 4. As it may be observed the obtained
damage classification results are very accurate for damage types A, B, D and E for at least two vibration
measurement positions, as the rates of correct classification are very high. Nevertheless, difficulties are
faced in conjunction with damage type C when either the response point Y1 or Y3 is used.

Finally, Table 5 presents damage detection and identification summary results for the non-parametric
PSD based method using 46 080 samples (90 s). It is evident (Tables 3 and 4) that the sequential method
is able to improve the early damage detection and identification capability by using at maximum 1 000
samples (1.95 s).

5. CONCLUDING REMARKS
A model residual based SPRT framework for structural damage diagnosis was introduced. In this frame-
work damage detection and identification were effectively tackled, achieving high performance with
practically zero false alarms and missed damage rates. An optimal sampling plan was determined a priori
via the use of the Operating Characteristic (OC) and Average Sample Number (ASN) functions, selected
type I (false alarm) and II (missed damage) error probabilities, and available baseline data records of the
structure under various potential states. Early (needing at maximum 1.95 s) and robust damage detec-
tion were achieved, and “local” and “remote” damage with respect to the sensor position was detected.
The multihypothesis test based damage identification procedure faced some difficulties in classifying
one damage type, an issue that may be tackled via the baseline modeling of the specific damage type
followed by sequential binary hypothesis testing.

Table 4 Damage identification summary results for the three vibration responses (Y1, Y2, and Y3).
Damage Identification (classification; αij = 10−3)

Actual Acceptance rate for each damage hypothesis when the actual damage is as indicated on the left column
damage damage A damage B damage C damage D damage E

hypothesis hypothesis hypothesis hypothesis hypothesis
Type A 99.06/50.75/92.18 0/0/0 0/0.62/4.18 0/0/0 0.68/0/0.62
Type B 0/0/0 94.37/99.87/99.56 4.062/0/0 0/0/0.31 0/0/0
Type C 0/3.06/31.56 1.12/0/0.12 47.37/96.43/18.06 14.93/0/52.25 0/0/12.75
Type D 0/0/0 0/0/0 8.37/0/0 32.43/100/100 13.250/0/0
Type E 0.31/20.68/0.12 0/0/0 0/0/0 1.68/0/0 94.06/71.75/99.88
Acceptance rates for each one of Y1/Y2/Y3 based on 1600 experiments (signal length N = 1 000 samples).
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Table 5 PSD method – damage detection and identification summary results (responses Y1, Y2 and Y3).
Damage Detection (α = 10−5)

False Missed damage (%)
alarms (%) damage A damage B damage C damage D damage E

0/0/0 0/0/0 47.5/0/0 0/0/0 0/0/0 0/0/0
Damage Identification (α = 10−5)

Damage classification success rate (%)

damage A damage B damage C damage D damage E
100/87.5/95 97.5/100/97.5 100/75/47.5 97.5/97.5/97.5 100/97.5/100
False alarm, missed damage and damage misclassification rates for each measurement
point (Y1/Y2/Y3) based on 40 experiments (signal length N = 46 080 samples).
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