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Abstract Statistical time series methods for vibration based struc-
tural health monitoring utilize random excitation and/or vibration
response signals, statistical model building, and statistical decision
making for inferring the health state of a structure. This includes
damage detection, identification (including localization) and quan-
tification. The principles and operation of methods that utilize the
time or frequency domains are explained, and they are classified into
various categories under the broad non-parametric and parametric
classes. Representative methods from each category are outlined
and their use is illustrated via their application to a laboratory
truss structure.

1 Introduction

Structural Health Monitoring (SHM) involves the continual or continuous

over time monitoring of a structure based on proper sensors which provide
dynamic structural responses and other related data (such as environmental
conditions), signal/data processing and analysis, as well as proper decision
making for inferring the current health state of the structure. Once set up,
an SHM procedure is ideally intended to be global (in the sense of covering
the whole structure or a large part of it), automated, without necessitating
human interaction, cost-effective, and capable of effectively treating the
level I, II and III subproblems (Rytter, 1993), that is damage detection

(simply detecting damage presence), damage identification (identifying the
damage type/nature and location) and damage quantification (estimating
the damage extent) – see section 2.2 for details.

Historically, SHM may be thought of as an evolution of classical Non-
Destructive Testing (NDT) procedures (commonly based on ultrasound,
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acoustic, radiography, eddy current, and thermal field principles – Doherty
1987; Doebling et al. 1996, 1998; Farrar et al. 2001; Balageas et al. 2006).
NDT is however different, in that it is exercised on demand – usually on
a periodic basis – without permanent sensors mounted on the structure
and not necessarily in an automated fashion. NDT typically works locally,
requiring access to the vicinity of the suspected damage location, while the
procedure is often time consuming and costly. On the other hand, the SHM
philosophy and principles are much closer to the general theory of fault
diagnosis (see Basseville and Nikiforov 1993; Rytter 1993; Doebling et al.
1996, 1998; Natke and Cempel 1997; Salawu 1997; Farrar et al. 2001).

Vibration based SHM is quite popular, as vibration is naturally available
for many structures (aircraft, railway vehicles, bridges, and so on), while
the technology for the precise measurement and processing of vibration
signals has been available for a long time. For overviews of general vibration
based methods see Doebling et al. (1996, 1998); Salawu (1997); Zou et al.
(2000); Farrar et al. (2001); Sohn et al. (2003b); DeRoeck (2003); Carden
and Fanning (2004); Montalvão et al. (2006). Also see Staszewski et al.
(2004); Inman et al. (2005); Balageas et al. (2006); Fritzen (2006); Adams
(2007).

Statistical time series SHM methods form an important and rapidly
evolving class within the broader context of vibration based SHM. Their
three main elements are: (i) random excitation and/or vibration response
signals (referred to as time series), (ii) statistical model building, and (iii)
statistical decision making for inferring the health state of a structure. As
with all vibration based methods, the fundamental principle upon which
they are founded is that small changes (damage) in a structure causes cor-
responding changes in the structural dynamics. These changes are reflected
– though often in a very subtle form – in the measured vibration responses.
Hence, the main idea is on the use of measured vibration signals in order to
detect, identify, and quantify changes in the underlying structural dynam-

ics which are attributed to damage. It could be argued that the effects of
damage might be evident simply on the vibration response level, without
the need for elaborate analysis. This was indeed used in the early days, and
it might still be adequate in certain applications. The drawback of such a
simple approach however is that the increased vibration level may be due
to alternative reasons, such as increased excitation. Furthermore, modern
SHM methods which are based on the dynamics aim at detecting damage at
an early stage, well before increases in the vibration level are noticed. Sta-
tistical time series SHM methods are discussed in references such as Natke
and Cempel (1997); Basseville et al. (2000); Sohn and Farrar (2000); Fugate
et al. (2001); Yan et al. (2004); Carden and Brownjohn (2008) – see Fassois
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and Sakellariou (2007, 2009) for recent overviews.
From an operational viewpoint, statistical time series SHM methods in-

volve two distinct phases: In an initial baseline (training) phase, the meth-
ods employ random excitation and/or vibration response (displacement, ve-
locity or acceleration) signals obtained from the structure under its healthy
state, as well as from a number of potential damage states, for identifying
suitable non-parametric or parametric statistical time series models that de-
scribe the structural dynamics in each considered state. A statistical quan-
tity, referred to as characteristic quantity and characterizing each structural
state, is then extracted.

In the continually or continuously implemented inspection phase, the
procedure is repeated under the current conditions using freshly measured
signals. The current characteristic quantity is obtained, and damage detec-
tion, identification (including localization) and quantification (magnitude
estimation) are accomplished via statistical decision making procedures con-
sisting of “comparing”, in a statistical sense, the current characteristic quan-
tity with that of each potential structural state determined in the baseline
phase.

Statistical time series SHM methods thus involve inverse type proce-
dures, as the models employed are data based rather than physics based.
In addition to the features of the general vibration based methods, statis-
tical time series methods offer further unique advantages such as (Fassois
and Sakellariou, 2007, 2009; Basseville et al., 2004; Sakellariou and Fassois,
2008; Kopsaftopoulos and Fassois, 2010):
(i) No need for physics based or analytical, such as Finite Element (FE),

models.

(ii) No need for complete structural models. In fact models describing only
part of the dynamics and based on a very limited number (even a single
pair) of excitation and/or vibration response signals are sometimes
adequate.

(iii) Inherent accounting for uncertainties (measurement, environmental,
operational and so on) through statistical tools.

(iv) Statistical decision making with specified performance characteristics.

(v) Effective operation even in the “low” frequency range.

(iv) Effective use of naturally obtained random vibration signals. This is
very important as it implies that there is no need for interrupting the
normal operation of the structure.

Of course, like with any other family, statistical time series SHMmethods
have their limitations. Since only partial structural models are employed,
they may identify (locate) damage only to the extent allowed by the type
of model used. In addition, adequate “training” in the baseline phase is
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needed in order to tackle the damage identification and magnitude estima-
tion subproblems, and sufficient user expertise is required.

The goal of this chapter is to provide an overview of the principles and
main classes of statistical time series SHM methods. Simple non-parametric,
as well as more advanced parametric methods are reviewed, while both the
response-only and excitation-response measurement cases are considered.
The methods are mainly presented for continual (periodic) inspection, al-
though extensions to continuous (on-line) monitoring are possible (for in-
stance through the use of a time window sliding over the measured signals).

For purposes of simplicity, the presentation is limited to the single (scalar)
vibration signal case – extensions to the multiple (vector) signal case are
available, and pertinent references are provided in the bibliographical re-
marks. Likewise, the presentation focuses on time-invariant (stationary)

and linear structural dynamics in a Gaussian context, although – with
proper modifications – the concepts may extend to the time-varying and
non-linear cases. One important aspect, which due to space limitations is
not covered in the chapter, is environmental effects or in broader terms
the effects of varying operating conditions. These can be very important
and – if not properly accounted for – they may have an adverse effect on
SHM operation (Doebling et al., 1996; Sohn, 2007; Deraemaeker et al., 2008;
Figueiredo et al., 2011).

The rest of this chapter is organized as follows: The general framework of
the methods is presented in section 2. Non-parametric and parametric time
series models for representing the structural dynamics are presented in sec-
tion 3. Selected non-parametric and parametric time series SHM methods
are presented in sections 4 and 5, respectively. The application of selected
methods to damage diagnosis for a laboratory truss structure is presented
in section 6. Concluding remarks are finally summarized in section 7.

2 The General Workframe

2.1 The Structural States and the Data Sets

Let So designate the structure under consideration in its nominal (healthy)
state and Su the structure in an unknown, to be determined, state. Further-
more, let SA, SB, . . . designate the structure under damage of type A,B, . . .,
respectively. Each damage type includes a continuum of damages of com-
mon nature or location but of any admissible damage magnitude.

Statistical time series SHM methods are typically based on discretized
excitation x[t] and/or response y[t] (for t = 1, 2, . . . , N) random vibration
data records. The discrete time t corresponds to the actual time (t − 1) ·
Ts, with Ts designating sampling period. Let the complete excitation and
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Table 1. Workframe setup: structural state, vibration signals used, and
the characteristic quantity.

Baseline Phase

Structural state So (healthy structure) SA (damage type A)† . . .

Vibration signals zo[t] = (xo[t], yo[t]) zA[t] = (xA[t], yA[t]) . . .

Zo = (Xo, Yo) ZA = (XA, YA) . . .

Characteristic quantity Qo QA . . .

Inspection Phase

Structural state Su (current structure in unknown state)

Vibration signals zu[t] = (xu[t], yu[t])

Zu = (Xu, Yu)

Characteristic quantity Qu

†Various damage magnitudes may be considered within each damage type.

response signals be designated as X and Y, respectively, or, collectively as
Z = (X,Y ). The subscript (o,A,B, . . . , u) is used for designating the state
of the structure that provided the signals.

All signals measured under the various structural states need to be suit-
ably preprocessed (Doebling et al., 1996; Ljung, 1999; Fassois, 2001; Sohn,
2007). This may include low or bandpass filtering within the frequency range
of interest, signal subsampling (in case the original sampling frequency is
too high) and normalization, which includes sample mean subtraction and
division by its sample standard deviation. Normalization is used in the
linear case only, for improving numerical accuracy, but also counteracting
different operating or environmental conditions or excitation levels.

2.2 The Baseline and Inspection Phases

As indicated, the methods consist of an initial baseline phase, while
normal operation takes place under the continually or continuously imple-
mented inspection phase (see Table 1). In the baseline (training) phase

the data records Zo, ZA, ZB, . . . are obtained and analyzed, while the data
record Zu, corresponding to an unknown (to be determined) structural
state, is obtained and analyzed in the inspection phase. Based on each
data record a non-parametric or parametric time series model representing
part of the structural dynamics is identified and validated. From each esti-
mated model, the corresponding estimate1 of a characteristic quantity Q is
extracted (Q̂o, Q̂A, Q̂B, . . . in the baseline phase, and Q̂u in the inspection
phase).

1Estimators/estimates are designated by a hat.
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Table 2. The damage detection, identification, and estimation subprob-
lems.

Damage detection

Ho : Qu ∼ Qo Null hypothesis (healthy structure)

H1 : Qu ≁ Qo Alternative hypothesis (damaged structure)

Damage identification

HA : Qu ∼ QA Hypothesis A (damage type A)

HB : Qu ∼ QB Hypothesis B (damage type B)
...

...

Damage estimation

Estimate the damage magnitude given the damage type.

∼ indicates a proper relationship, such as equality, inequality and so on.

Damage detection, identification and quantification. Damage de-

tection is then based on proper comparison of the true (but not precisely
known) current characteristic quantity Qu to the true (but also not pre-
cisely known) characteristic quantity Qo of the healthy structure (Table 2).
This is accomplished via a binary composite statistical hypothesis test that
employs the corresponding estimates Q̂u and Q̂o .

Damage identification is similarly based on proper comparison of the
current characteristic quantity Qu to each of QA, QB, . . . (Table 2) via sta-
tistical hypothesis testing that also employs the corresponding estimates.
Damage estimation (quantification) generally is a more complicated task
that requires proper formulation and the use of interval estimation tech-
niques (Table 2). The workframe of a general statistical time series SHM
method is presented in Figure 1.

The design of a binary statistical hypothesis test is generally based on
two error probabilities:

(i) The type I error or false alarm probability, designated as α, which is
the probability of rejecting the null hypothesis Ho when it is true.

(ii) The type II error ormissed damage probability, designated as β, which
is the probability of accepting the null hypothesis Ho when it is not
true.

The majority of the designs presented herein are based on the type I
error probability α. In selecting α it should be noted that as it decreases
(resp. increases), β increases (resp. decreases). The reader is referred to
Lehmann and Romano (2008), Basseville and Nikiforov (1993, section 4.2),
and Montgomery (1991, section 3.3) for details on statistical hypothesis
testing.
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Figure 1. Workframe for statistical time series SHM methods.

2.3 Classes of Statistical Time Series SHM Methods

An important classification of the methods follows the precise nature of
the problem in terms of the available signals. Response-only methods are
based on response signals only, and tackle a generally more difficult prob-
lem, while excitation-response methods are based on both types of signals.
Response-only and excitation-response methods are both treated in sections
4 and 5.

An additional important classification follows the non-parametric or
parametric nature of the statistical time series model used, on which the
characteristic quantity Q is based. Non-parametric methods are thus based
on corresponding models (see section 3.1), such as non-parametric Power
Spectral Density (PSD) or Frequency Response Function (FRF) representa-
tions (Söderström and Stoica, 1989; Ljung, 1999; Bendat and Piersol, 2000),
and have received limited attention in the literature (Fassois and Sakellariou,
2007, 2009; Kopsaftopoulos and Fassois, 2010, 2011; Benedetti et al., 2011).
Parametric methods are likewise based on corresponding models (see section
3.2), such as AutoRegressive Moving Average (ARMA) or State Space (SS)
representations (Söderström and Stoica, 1989; Ljung, 1999; Fassois, 2001).
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Figure 2. Excitation-response representation of linear time-invariant struc-
tural dynamics with additive response noise.

This type of methods has attracted considerable attention and their princi-
ples have been used in a number of studies (Fassois and Sakellariou, 2007,
2009; Kopsaftopoulos and Fassois, 2010, 2011). Non-parametric methods
offer simplicity and the computational efficiency – selected non-parametric
methods are presented in section 4. Parametric methods typically are more
elaborate and are characterized by higher computational complexity, but
are generally capable of achieving better performance – selected parametric
methods are presented in section 5.

Various other classifications are possible, for instance scalar (univari-

ate) versus vector (multivariate) methods, time-invariant (stationary) ver-
sus time-varying (non-stationary) methods, linear dynamics versus non-

linear dynamics methods, and so forth. Due to space limitations only the
scalar, time-invariant and linear dynamics case is treated in this chapter.

3 Statistical Time Series Models of the Structural
Dynamics

Statistical time series models for the representation of linear and time-
invariant structural dynamics are presented in this section for the univariate
(scalar) case. Let h[t] designate the time-discretized impulse response func-
tion describing the causality relation between an excitation and vibration
response signal, as illustrated in Figure 2. Let x[t] represent the excitation
and y[t] the noise-corrupted response signal, with the additive noise n[t]
being a stationary Gaussian process, mutually uncorrelated with the exci-
tation, and with zero mean but unknown autocovariance (and thus auto
power spectral density).

The excitation and response signals are related through the convolution
summation plus noise expression:

y[t] = h[t] ∗ x[t] + n[t] =
∞∑

τ=0

h[τ ] · x[t− τ ] + n[t] (1)

with ∗ designating discrete convolution. Alternatively, using the backshift
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operator B (defined such that2 Bi·y[t] = y[t−i]), the above may be expressed
as:

y[t] = H(B) · x[t] + n[t], with H(B) =
∞∑

τ=0

h[τ ] · Bτ (2)

where H(B) stands for the discrete-time structural dynamics transfer func-
tion.

3.1 Non-Parametric Models

Assuming that x[t] is a random stationary excitation, then the response
y[t] will also be stationary in the steady state. Furthermore, y[t] will be
Gaussian if x[t] and n[t] are jointly Gaussian. In this case each signal is fully
characterized by its first two moments, mean and AutoCovariance Function

(ACF). Instead of the autocovariance function γyy[τ ] (or its normalized ver-
sion ρyy[τ ]), its Fourier transform which is the auto Power Spectral Density

(PSD) Syy(ω) (Kay 1988, p. 3, Box et al. 1994, pp. 39–40) may be em-
ployed. Thus:

µy = E{y[t]} (3)

γyy[τ ] = E{ỹ[t] · ỹ[t− τ ]} (4)

ρyy[τ ] =
γyy[τ ]

γyy[0]
∈ [−1, 1] (5)

Syy(ω) =

∞∑

τ=−∞
γyy[τ ] · e−jωτTs . (6)

In these expressions E{·} designates statistical expectation, j the imaginary
unit, τ time lag, ω ∈ [0, 2π/Ts] frequency (rad/s), Ts the sampling period,
and ỹ[t] = y[t]− µy. Moreover, note that γyy[0] is equal to the variance σ2

y

of the response y[t]. The first order moment, along with any suitable form
of the second order moment, constitute a response-only time series model
(summary in Table 3).

In the excitation-response case, a complete joint description of the ex-
citation and response signals is given in terms of the means µx and µy,
and the ACFs γxx[τ ], γyy[τ ] and Cross Covariance Function (CCF) γyx[τ ]
(or their normalized equivalents). An equivalent representation may be ob-
tained by using the auto PSDs Sxx(ω), Syy(ω) and Cross Spectral Density

(CSD) Syx(jω).

2The backshift operator is alternatively designated as q−1, or as z−1 in the z domain –

yet the designation B is exclusively used in this chapter.
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Table 3. The elements of non-parametric response-only models.

Mean: µy = E{y[t]}

ACF: γyy[τ ] = E{ỹ[t] · ỹ[t − τ ]}

normalized ACF: ρyy[τ ] = γyy[τ ]/γyy[0] ∈ [−1, 1]

auto PSD: Syy(ω) =
∑∞

τ=−∞ γyy[τ ] · e
−jωτTs

ỹ[t] = y[t]− µy

The response characteristics are related to those of the excitation and
the noise through the expressions (Box et al., 1994, pp. 455–456):

µy = H(jω)|ω=0 · µx (7a)

γyx[τ ] = γxx[τ ] ∗ h[τ ] (7b)

γyy[τ ] = γyx[τ ] ∗ h[−τ ] + γnn[τ ] (7c)

Syx(jω) = H(jω) · Sxx(ω) (8a)

Syy(ω) = H⋆(jω) · Syx(jω) + Snn(ω) = |H(jω)|2 · Sxx(ω) + Snn(ω) (8b)

with ∗ designating discrete convolution, the superscript ⋆ complex conju-
gation, and | · | complex magnitude. H(jω) = H(B)|B=e−jωTs designates
the structural Frequency Response Function (FRF), Snn(ω) the noise auto
PSD, and Syx(jω) the CSD between the designated signals defined as the
Fourier transform of the corresponding CCF.

In addition, the squared coherence function is defined as (Bendat and
Piersol, 2000, p. 196):

γ2(ω) =
|Syx(jω)|2

Sxx(ω) · Syy(ω)
=

1

1 + Snn(ω)

|H(jω)|2·Sxx(ω)

∈ [0, 1]. (9)

The elements of non-parametric excitation-response time series models are
summarized in Table 4.

3.2 Parametric Models

Parametric time series models may be obtained via proper parametriza-
tions of Equation (1). In the response-only case it is assumed, without loss
of generality, that the excitation is white (uncorrelated), that is γxx[τ ] = 0
for τ �= 0, in which case the signal is often designated as w[t], while n[t] ≡ 0.
Moreover, the signals are assumed zero mean, thus ỹ[t] = y[t]− µy is typi-
cally used.
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Table 4. The elements of non-parametric excitation-response models.

Means: µx µy

ACFs: γxx[τ ] γyy[τ ]

normalized ACFs: ρxx[τ ] ρyy[τ ]

CCF: γyx[τ ] = E{ỹ[t] · x̃[t− τ ]}

normalized CCF: ρyx[τ ] = γyx[τ ]/
√

γxx[0] · γyy[0] ∈ [−1, 1]

auto PSDs: Sxx(ω) Syy(ω)

CSD: Syx(jω) =
∑∞

τ=−∞
γyx[τ ] · e

−jωτTs

x̃[t] = x[t]− µx, ỹ[t] = y[t]− µy

The parametrization of Equation (1) in the response-only case leads to
the celebrated AutoRegressive Moving Average (ARMA) model (Box et al.,
1994, pp. 52–53):

y[t] +

na∑

i=1

ai · y[t− i] = w[t] +

nc∑

i=1

ci · w[t− i] (10a)

which, using the backshift operator, is also written as:

(

1 +
na∑

i=1

ai · Bi

)

· y[t] =
(

1 +
nc∑

i=1

ci · Bi

)

· w[t] ⇐⇒

⇐⇒ A(B) · y[t] = C(B) · w[t], w[t] ∼ iid N (0, σ2
w) (10b)

with ai, ci, A(B), and C(B) designating the AR and MA parameters and
corresponding polynomials, respectively, iid stands for identically indepen-
dently distributed, N (·, ·) designates normal distribution with the indicated
mean and variance, while na, nc are the model’s AR, MA orders, respec-
tively. The model parameter vector is θ = [coef(A) coef(B)]T . It should
be noted that w[t] coincides with the one-step-ahead-prediction error and is
also referred to as the model residual or innovations (Box et al. 1994, p. 134,
Ljung 1999, p. 70). Corresponding Vector AutoRegressive Moving Average

(VARMA) models are available for the multivariate case (see Söderström
and Stoica, 1989; Lütkepohl, 2005).

The ARMA representation of Equations (10a) – (10b) may be equiva-
lently set into State Space (SS) form, consisting of a first order state equation
plus an output equation (Söderström and Stoica 1989, p. 157, Box et al.
1994, pp. 163–164):

ψ[t+ 1] = A · ψ[t] +K · v[t], v[t] ∼ iid N (0,Σv) (11a)

y[t] = C ·ψ[t] + v[t] (11b)
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Table 5. Parametric response-only models.

ARMA: A(B) · y[t] = C(B) · w[t] A(B) = 1 +
∑na

i=1
aiB

i

C(B) = 1 +
∑nc

i=1
ciB

i

w[t] ∼ iid N (0, σ2
w) na, nc : AR, MA orders

State Space (SS): ψ[t+ 1] = A ·ψ[t] +K · v[t] ψ[t] : state vector

y[t] = C ·ψ[t] + v[t] v[t] ∼ iid N (0,Σv)

A: system matrix

C: output matrix

K: Kalman gain matrix

with ψ[t] designating the model’s state vector and v[t] a zero mean uncor-
related (white) vector sequence with covariance Σv. A, C, K designate
proper matrices and the parameter vector is θ = [vec(A) vec(C) vec(K)],
with vec(·) designating the column vector operator. These parametric response-
only time series models are summarized in Table 5.

In the excitation-response case different parametrizations of Equation
(1) lead to different models. The simplest one is the AutoRegressive with

eXogenous excitation (ARX) model (Söderström and Stoica 1989, pp. 149–
151, Ljung 1999, p. 81, Fassois 2001):

y[t] +

na∑

i=1

ai · y[t− i] =

nb∑

i=0

bi · x[t− i] + w[t] (12a)

or using the backshift operator:

A(B) · y[t] = B(B) · x[t] + w[t] ⇐⇒

⇐⇒ y[t] =
B(B)
A(B)

· x[t] +
1

A(B)
· w[t], w[t] ∼ iid N (0, σ2

w) (12b)

with A(B) and B(B) designating the AR and X polynomials, respectively,
and na, nb the corresponding orders. The parameter vector is defined as
θ = [coef(A) coef(B)]T , while w[t] is a zero mean, uncorrelated (white) sig-
nal, which coincides with the model based one-step-ahead prediction error.
In the special case of na = 0, a Finite Impulse Response (FIR) model is
obtained. The ARX model block diagram is depicted in Figure 3.

A more general and flexible representation is the AutoRegressive Moving

Average with eXogenous excitation (ARMAX), which additionally involves
a Moving Average (MA) polynomial C(B) for describing the noise dynamics
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Figure 3. The ARX model structure.

Figure 4. The Output Error (OE) model structure.

(Söderström and Stoica 1989, pp. 149–151, Ljung 1999, p. 83, Fassois 2001):

y[t] +

na∑

i=1

ai · y[t− i] =

nb∑

i=0

bi · x[t− i] + w[t] +

nc∑

i=1

ci · w[t− i] (13a)

or using the backshift operator:

A(B) · y[t] = B(B) · x[t] + C(B) · w[t] ⇐⇒

⇐⇒ y[t] =
B(B)
A(B)

· x[t] +
C(B)
A(B)

· w[t], w[t] ∼ iid N (0, σ2
w) (13b)

with nc designating the MA order. The parameter vector is defined as
θ = [coef(A) coef(B) coef(C)]T .

The Output Error (OE) representation models the excitation-response
dynamics while avoiding noise modelling (Söderström and Stoica 1989, p.
153, Ljung 1999, p. 85, Fassois 2001):

y[t] =
B(B)
A(B)

· x[t] + n[t]. (14)

The parameter vector in this case is θ = [coef(A) coef(B)]T and the model’s
block diagram is depicted in Figure 4.
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Table 6. Parametric excitation-response models.

ARX: A(B) · y[t] = B(B) · x[t] + w[t] na, nb : AR, X orders

A(B) = 1 +
∑na

i=1
aiB

i

B(B) = b0 +
∑nb

i=1
biB

i

ARMAX: A(B) · y[t] = B(B) · x[t] + C(B) · w[t] nc : MA order

C(B) = 1 +
∑nc

i=1
ciB

i

Output Error: y[t] = B(B)

A(B)
· x[t] + n[t] n[t] : autocorrelated

zero mean

Box-Jenkins: y[t] = B(B)

A(B)
· x[t] + C(B)

D(B)
· w[t] D(B) = 1 +

∑nd

i=1
diB

i

State Space: ψ[t+ 1] = A ·ψ[t] +B · x[t] +K · v[t] ψ[t]: state vector

y[t] = C ·ψ[t] +D · x[t] + v[t] v[t] ∼ iid N (0,Σv)

A: system matrix, B: input matrix, K: Kalman gain matrix

C: output matrix, D: dir. transm. matrix

w[t] ∼ iid N (0, σ2
w)

Alternatively, the Box-Jenkins (BJ) representation independently mod-
els the structural and noise dynamics (Söderström and Stoica 1989, pp.
148–154, Ljung 1999, p. 87):

y[t] =
B(B)
A(B)

· x[t] +
C(B)
D(B)

· w[t], w[t] ∼ iid N (0, σ2
w) (15)

with parameter vector θ = [coef(A) coef(B) coef(C) coef(D)]T .
Finally, a State Space (SS) representation in this case assumes the form

(Ljung, 1999, pp. 97–101)):

ψ[t+ 1] = A · ψ[t] +B · x[t] +K · v[t], v[t] ∼ iid N (0,Σv) (16a)

y[t] = C ·ψ[t] +D · x[t] + v[t] (16b)

with ψ[t] designating the model’s state vector and v[t] a zero mean uncorre-
lated (white) vector sequence with covariance Σv and the model parameter
vector being θ = [vec(A) vec(B) vec(C) vec(D) vec(K)]. The parametric
excitation-response time series models are summarized in Table 6.

3.3 Identification of Time Series Models

Model identification refers to the estimation of statistical time series
models based on excitation x[t] and/or response y[t] random vibration data
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records (for t = 1, 2, . . . , N) that are properly preprocessed and are collec-
tively designated as Z = (X,Y ). This is achieved via estimators, which
operate on the obtained data records to provide estimates of the quantities
of interest.

The estimator of a quantity Q is designated as Q̂ and is a function
of the random data Z, thus Q̂ = g(Z). Viewing each data point as the
realization (observed value) of an underlying random variable, the estimator
is a function of several random variables, and thus a random variable as well
with probability density function (pdf) f

Q̂
. For Gaussian distribution this

is expressed as Q̂ ∼ N (µ
Q̂
, var[Q̂]), with the arguments µ

Q̂
and var[Q̂]

designating the estimator mean and variance, respectively.
Estimators may be characterized by several important properties. One

of them is unbiasedness, implying that its mean µ
Q̂
coincides with the true

value of the quantity being estimated, that is E{Q̂} = Q; when this is true
the estimator is referred to as unbiased. Oftentimes, unbiasedness or other
estimator properties (such as Gaussianity or minimum variance which is
referred to as efficiency) are only valid asymptotically, as the data record
length (in samples) tends to infinity (N → ∞). Some other properties such
as consistency by definition refer to the estimator asymptotic behaviour in
a proper sense (limN→∞ Q̂(N) → Q). Certain properties of non-parametric
statistical time series estimators are summarized in Table 7.

The identification of parametric time series models is divided into two
main tasks: parameter estimation and model structure selection. Typical
methods for parameter estimation include the Least Squares (LS), the Pre-
diction Error (PE), the Maximum Likelihood (ML), and subspace methods
(Söderström and Stoica 1989, Chapters 7–8, Ljung 1999, Chapter 7).

Model structure selection, which refers to the determination of the model
orders, is generally a more complicated procedure and is typically achieved
by identifying increasingly higher order models until no further “improve-
ment” is observed. “Improvement” may be judged via a variety of criteria,
such as the model Residual Sum of Squares (RSS – often normalized by
the Signal Sum of Squares, SSS), or the negative likelihood, or those crite-
ria that include a penalty term for high model dimensionality, such as the
Akaike Information Criterion (AIC) and the Bayesian Information Criterion
(BIC) (Söderström and Stoica 1989, pp. 442–443, Ljung 1999, pp. 505–507,
Fassois 2001). Other “practical” criteria, such as PSD or FRF or modal fre-
quency stabilization diagrams are also used (Fassois, 2001). In all cases it
is advised to simultaneously monitor the Signal Per (estimated) Parameter
(SPP) ratio which must be maintained sufficiently high (say above 15), as
well as the numerical accuracy (for instance by monitoring the condition
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Table 7. Estimation of non-parametric statistical time series model char-
acteristics.

Quantity Power Spectral Density Frequency Response Function

(PSD) (FRF)

Estimator Ŝyy(ω) =
1

K

∑K

i=1
Ŷ i
L(jω)Ŷ

i
L(−jω) Ĥ(jω) = Ŝyx(jω)/Ŝxx(ω)

Ŷ i
L(jω) =

1√
L

∑L

t=1
a[t]ŷi[t]e−jωTs

ŷi[t] = yi[t]− µ̂y

(i-th segment of length L)

Properties 2KŜyy(ω)/Syy(ω) ∼ χ2(2K) E{|Ĥ(jω)|} ≈ |H(jω)|

var[|Ĥ(jω)|] ≈ 1−γ2
(ω)

γ2(ω)2K
|H(jω)|2

Comments Welch method (no overlap)

K : number of data segments For N → ∞, a[t] = 1

a[t] : time window γ2(ω) → 1 or K → ∞

Remarks:

ω ∈ [0, 2π/Ts] stands for frequency (rad/s); j stands for the imaginary unit.

K stands for the number of segments used in Welch spectral estimation.

γ2(ω) stands for the coherence function (Bendat and Piersol, 2000, p. 196).

The FRF magnitude estimator distribution may be approximated as Gaussian

for small relative errors (Bendat and Piersol, 2000, pp. 274–275).

MATLAB functions: pwelch.m for Ŝyy, tfestimate.m for Ĥ.

number of the matrices inverted during estimation).

4 Selected Non-Parametric Time Series SHM
Methods

Non-parametric methods are those in which the characteristic quantity Q is
constructed based on non-parametric time series models (Tables 3 and 4).
A response-only Power Spectral Density (PSD) method and an excitation-
response Frequency Response Function (FRF) method are outlined in the
sequel. For alternative methods that employ a novelty measure see Worden
(1997); Worden et al. (2000); Worden and Manson (2003); Manson et al.
(2003).
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4.1 PSD Based Method

This method tackles damage detection and identification via changes
in the auto Power Spectral Density (PSD) of the measured vibration re-
sponse signal when the excitation is not available (response-only case). The
method’s characteristic quantity thus is Q = Syy(ω) = S(ω). The main idea
is based on the comparison of the current structure’s response PSD, Su(ω),
to that of the healthy structure’s, So(ω) (or, in fact, to that corresponding
to any other structural state). The response signals must be normalized in
order to properly account for potentially different levels of excitation.

Damage detection is based on the following hypothesis testing problem:

Ho : Su(ω) = So(ω) (null hypothesis – healthy structure)
H1 : Su(ω) �= So(ω) (alternative hypothesis – damaged structure).

(17)

As the true PSDs, Su(ω) and So(ω), are unknown, their estimates, Ŝu(ω)

and Ŝo(ω), obtained via the Welch method (with K non-overlapping seg-
ments; refer to Table 7) are used (Kay, 1988, pp. 3 and 76). Then, the
quantity F , below, follows F distribution with (2K, 2K) degrees of freedom
for each frequency ω (as the ratio of two random variables each following a
normalized χ2 distribution with 2K degrees of freedom; see Appendix):

F =
Ŝo(ω)/So(ω)

Ŝu(ω)/Su(ω)
∼ F(2K, 2K). (18)

Under the null hypothesis Ho of a healthy structure, the true PSDs
coincide, Su(ω) = So(ω), thus:

Under Ho : F =
Ŝo(ω)

Ŝu(ω)
∼ F(2K, 2K). (19)

Then F should be in the range [fα/2, f1−α/2] with probability 1 − α, and
decision making is as follows for a selected α (false alarm) risk level – see
Figure 5:

fα

2
(2K, 2K) ≤ F ≤ f1−α

2
(2K, 2K) (∀ ω)

=⇒ Ho is accepted (healthy structure)
Else =⇒ H1 is accepted (damaged structure),

(20)

with fα/2, f1−α/2 designating the F distribution’s α/2 and 1−(α/2) critical
points (fα is defined such that Prob(F ≤ fα) = α).

Damage identification may be achieved by performing hypotheses testing
similar to the above for damages from each potential damage type (see Table
2). Damage quantification may be achieved by possibly associating specific
quantitative changes in the PSD with specific damage magnitudes.
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H1 accepted
(damaged structure)

Ho accepted
(healthy structure)

H1 accepted
(damaged structure)

fF

f1−α/2fα/2

α/2 α/2

1 − α

Figure 5. Statistical hypothesis testing based on an F distributed statistic
(two-tail test).

Bibliographical remarks. Sakellariou et al. (2001) present the applica-
tion of a variant of the PSD based method to fault detection on a railway
vehicle suspension. Liberatore and Carman (2004) present the application
of a simplified version (not using a statistical framework) to a simply sup-
ported aluminum beam. In the non-stationary or non-linear cases, time-
frequency, polyspectra, or wavelet-based models may be used (Farrar and
Doebling, 1997; Staszewski, 1998, 2000; Hou et al., 2000; Hera and Hou,
2004; Peng and Chu, 2004; Staszewski and Robertson, 2007).

4.2 FRF Magnitude Based Method

The FRF magnitude based method is similar to the PSD based method,
but refers to the the excitation-response case and employs the FRF mag-
nitude as the characteristic quantity Q = |H(jω)|. A somewhat similar
approach may be used in case the excitation is unavailable but several re-
sponses are available (Sakellariou and Fassois, 2006; Mao and Todd, 2011).
The main idea is the comparison of the FRF magnitude |Hu(jω)| of the
current state of the structure to that of the healthy structure |Ho(jω)| (or,
in fact, to that corresponding to any other structural state).
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fN

1 − α

µ
α/2α/2

0 Z1−α/2

Ho accepted
(healthy structure)

Zα/2

H1 accepted
(damaged structure)

H1 accepted
(damaged structure)

Figure 6. Statistical hypothesis testing based on a Gaussian distributed
statistic (two-tail test).

Damage detection is based on the following hypothesis testing problem:

Ho : δ|H(jω)| = |Ho(jω)| − |Hu(jω)| = 0
(null hypothesis – healthy structure)
H1 : δ|H(jω)| = |Ho(jω)| − |Hu(jω)| �= 0
(alternative hypothesis – damaged structure).

(21)

As the true FRFs Hu(jω) and Ho(jω) are unknown, their correspond-

ing estimates, Ĥu(jω) and Ĥo(jω), obtained as indicated in Table 7, are
employed. As indicated there, the FRF magnitude estimator may, asymp-
totically (N → ∞), be considered to approximately follow Gaussian dis-
tribution (Bendat and Piersol, 2000, p. 338). As the data records Zu and
Zo are mutually independent, the two FRF magnitude estimators are also
mutually independent, implying that their difference |Ĥo(jω)| − |Ĥu(jω)|
is Gaussian with mean equal to the true magnitude difference and variance
equal to the sum of the two variances.

Under the null hypothesis Ho (healthy structure), the true FRF magni-
tudes coincide (|Hu(jω)| = |Ho(jω)|), hence:

Under Ho : δ|Ĥ(jω)| = |Ĥo(jω)| − |Ĥu(jω)| ∼ N (0, 2σ2
o(ω)). (22)

The variance σ2
o(ω) = var[|Ĥo(jω)|] is generally unknown, but may be es-

timated in the baseline phase (Table 7). Assuming negligible variability of
this estimate (which is true for “large” N), equality of the two FRF mag-
nitudes may be examined at the selected α (false alarm) risk level through
the following statistical test (Figure 6):

Z =
∣
∣δ|Ĥ(jω)|

∣
∣/
√

2σ̂2
o(ω) ≤ Z1−α

2
(∀ ω) =⇒ Ho is accepted

Else =⇒ H1 is accepted,
(23)
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with Z1−α/2 designating the standard normal distribution’s 1−α/2 critical
point.

Damage identification may be similarly achieved by performing hypothe-
ses testing similar to the above for damages from each potential damage
type (see Table 2). Damage quantification may be achieved by possibly as-
sociating specific quantitative changes in the FRF magnitude with specific
damage magnitudes.

Bibliographical remarks. Hwang and Kim (2004) present an FRF based
method (though not in a statistical context), whose effectiveness is numer-
ically demonstrated via simulation examples based on Finite Element (FE)
models of a simple cantilever and a helicopter rotor blade. The method is re-
ported to achieve satisfactory damage diagnosis. Rizos et al. (2008) employ
the method for skin damage detection in stiffened aircraft panels. Changes
in the FRF magnitude estimates due to damage are shown to exceed their
normal variability bounds.

5 Selected Parametric Time Series SHM Methods

Parametric time series methods are those in which the characteristic quan-
tity Q is constructed based on parametric time series representations. The
response-only or excitation-response cases may be dealt with through the
use of corresponding models (Basseville and Nikiforov 1993, section 6.2,
Natke and Cempel 1997, Gertler 1998, section 4.2). Although parametric
methods may operate on either the time or frequency domains, the former
case is more widely used and is in the focus of this section.

Parametric methods may be further classified into three main categories:

(i) Model parameter based methods, which tackle damage detection and
identification via a characteristic quantity Q that is a function of the
estimated model parameters. These methods require that a model is
re-estimated during the inspection phase based on the current signals
Zu.

(ii) Model residual based methods, which tackle damage detection and
identification via characteristic quantities Q that are functions of the
model residuals generated by driving the current signals Zu through
predetermined, in the baseline phase, models corresponding to the
considered structural states. An advantage of these methods is that
no model re-estimation is required in the inspection phase.

(iii) Functional model (FM) based methods constitute a family of advanced
schemes which are capable of properly treating the subproblems of
damage detection, identification (localization) and magnitude estima-



Statistical Time Series Methods 229

tion within a unified framework. Damages characterized by a double

continuum of locations and magnitudes on a structural topology may
be considered. Model estimation is required in the inspection phase.

5.1 Model Parameter Based Methods

These methods perform damage detection and identification based on
a characteristic quantity Q = f(θ), which is a function of the parameter
vector θ of a parametric time series model (Q = θ in the typical case).
Transformed forms of the parameter vector θ may be also used, with the
most common and historically important case being that in which the vector
of the model natural frequencies is employed (Doebling et al., 1996; Salawu,
1997; Sohn et al., 2003a; Uhl and Mendrok, 2004; Rizos et al., 2008; Hios
and Fassois, 2009b).

Let θ̂ designate a proper estimator of the parameter vector θ (Söderström
and Stoica, 1989, pp. 198–199, Ljung, 1999, pp. 212–213). For sufficiently
long signals (“large”N) the estimator is (under mild assumptions) Gaussian
distributed with mean equal to its true value θ and a certain covariance P θ

(Söderström and Stoica, 1989, pp. 205–207, Ljung, 1999, p. 303), that is:

θ̂ ∼ N (θ,P θ). (24)

Damage detection is based on testing for statistically significant changes
in θ between the nominal and current structural states through the hypoth-
esis testing problem:

Ho : δθ = θo − θu = 0
(null hypothesis – healthy structure)
H1 : δθ = θo − θu �= 0
(alternative hypothesis – damaged structure).

(25)

Due to the mutual independence of the Zu and Zo data records, the dif-
ference between the two parameter vector estimators also follows Gaussian
distribution:

δθ̂ = θ̂o − θ̂u ∼ N (δθ, δP ) (26)

with

δθ = θo − θu, δP = P o + P u, (27)

where P o,P u designate the corresponding covariance matrices.
Under the null (Ho) hypothesis, δθ̂ = θ̂o − θ̂u ∼ N (0, 2P o) and the

quantity χ2
θ
, below, follows χ2 distribution with d (parameter vector di-

mensionality) degrees of freedom (as the sum of squares of independent
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standardized Gaussian variables – see Ljung 1999, p. 558 and Appendix):

Under Ho : χ2
θ = δθ̂

T
· δP−1 · δθ̂ ∼ χ2(d) (28)

with δP = 2P o.
As the covariance matrix P o corresponding to the healthy structure is

unavailable, the estimated covariance P̂ o is used. Treating this as a quantity
characterized by negligible variability (reasonable for large N), leads to the
following test constructed at the α (false alarm) risk level (Figure 7):

χ2
θ
≤ χ2

1−α(d) =⇒ Ho is accepted (healthy structure)
Else =⇒ H1 is accepted (damaged structure),

(29)

with χ2
1−α(d) designating the χ2 distribution’s 1 − α critical point. See

Ljung 1999, p. 559 for an alternative approach based on the F distribution.
Damage identification may be based on the multiple hypotheses testing

problem of Table 2 comparing the parameter vector θ̂u belonging to the
current state of the structure to those corresponding to different damage
types θ̂A, θ̂B, . . .. Nevertheless, this is expected to work only for damages
of specific magnitudes and cannot generally account for the continuum of
damage magnitudes within each damage type. A geometric method aiming
at circumventing this difficulty and also being suitable for damage estima-
tion is presented in Sakellariou and Fassois (2006). Essentially this is a
predecessor of Functional Model (FM) based methods and the reader is
directed to subsection 5.3.

Bibliographical remarks. The principles of the model parameter based
methods have been used in a number of studies. Sohn and Farrar (2000)
use the parameters of an AR model and statistical process control charts for
damage detection in a concrete bridge column, as it is progressively dam-
aged. Adams and Farrar (2002) use frequency domain ARX models for dam-
age detection in a simulated structural system and a three-story building
model. Nair et al. (2006) employ the first three autoregressive parameters
of an ARMA model to tackle damage detection. The postulated method
is applied to analytical and experimental data from the ASCE benchmark
structure. Sakellariou and Fassois (2006) employ the parameter vector of an
Output Error (OE) model and statistical hypothesis testing procedures in
order to tackle damage diagnosis in a six-story building model under earth-
quake excitation. Nair and Kiremidjian (2007) employ Gaussian mixture
modelling of the parameter vector of an ARMA model to tackle damage
detection on the ASCE benchmark structure. Zheng and Mita (2007) apply
a two-stage damage diagnosis method (though not in a statistical context)
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fχ2

α

1 − α

χ2
1−α0

H1 accepted
(damaged structure)

Ho accepted
(healthy structure)

Figure 7. Statistical hypothesis testing based on a χ2 distributed statistic
(one-tail test).

on a five-storey steel structure. Damage detection is achieved in the first
stage using the distance between two ARMA models, while damage local-
ization is achieved in the second stage via pre-whitening filters. Carden and
Brownjohn (2008) use ARMA model parameters for damage detection and
identification in the IASC-ASCE benchmark four-story frame structure, in
the Z24 bridge, and in the Malaysia-Singapore Second Link bridge. Hios and
Fassois (2009b) employ the model parameter vector, or, alternatively, the
modal parameters, of a global Functionally Pooled VAR model for damage
detection in a smart composite beam under varying temperature. Mosavi
et al. (2012) employ the distances between the parameters of Vector AR
(VAR) models in order to detect and localize damage in a two-span con-
tinuous steel beam subject to ambient vibrations. In the non-linear model
case Wei et al. (2005) use Non-linear AutoRegressive Moving Average with
eXogenous excitation (NARMAX) models for fault detection and identifica-
tion in carbon fiber-reinforced epoxy plates based on a deterministic index,
which mirrors changes incurred in the modal parameters.

5.2 Model Residual Based Methods

Model residual based methods tackle damage detection and identifica-
tion using characteristic quantities that are functions of the residual se-
quences obtained by driving the current signal(s) Zu through suitable and
predetermined (in the baseline phase) models Mo,MA,MB, . . ., each one
corresponding to a particular structural state. The general idea is that
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Figure 8. Schematic representation of a “general” residual based statistical
time series SHM method (the operations associated with the baseline phase
are within the dashed boxes).

the residual sequence obtained by a model that truly reflects the current
structural state possesses certain distinct properties, and is thus possible to
distinguish. An advantage of the methods is that no model re-identification
is required in the inspection phase. The methods have a long history of
development and application, mainly within the more general context of
engineering systems (Basseville and Nikiforov, 1993; Natke and Cempel,
1997; Gertler, 1998).

Let MV designate the model representing the structure in its V state
(V = o or V = A,B, . . .). The residual series obtained by driving the
current signal(s) Zu through each one of the aforementioned models are
designated as eou[t], eAu[t], eBu[t], . . . and are characterized by variances
σ2
ou, σ

2
Au, σ

2
Bu, . . ., respectively. Notice that the first subscript designates

the model employed, while the second the structural state corresponding to
the currently used excitation and/or response signal(s). The characteristic
quantities obtained from the corresponding residual series are designated
as Qou, QAu, QBu, . . .. On the other hand, the characteristic quantities ob-
tained using the baseline data records are designated as QV V (V = o or
V = A,B, . . .). A schematic representation for a “general” (generic) resid-
ual based SHM method is illustrated in Figure 8.

A residual variance based method. In this case the characteristic
quantity is the variance of the model residual sequence. Damage detec-
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tion is based on the fact that the residual series eou[t], obtained by driving
the current signals Zu through the model Mo corresponding to the nominal
(healthy) structure, should be characterized by variance σ2

ou = σ2
oo which

becomes minimal if and only if the current structure is healthy (Su = So).
Damage detection is thus based on the following hypothesis testing prob-

lem:

Ho : σ2
ou ≤ σ2

oo (null hypothesis – healthy structure)
H1 : σ2

ou > σ2
oo (alternative hypothesis – damaged structure).

(30)

Under the null (Ho) hypothesis, the residuals eou[t] are (just like the
residuals eoo[t]) iid Gaussian with zero mean and variance σ2

oo. Hence the
quantities Nuσ̂

2
ou/σ

2
oo and (No − d)σ̂2

oo/σ
2
oo follow central χ2 distributions

with Nu and No − d degrees of freedom, respectively (as sums of squares of
independent standardized Gaussian random variables; see Appendix). Note
that No and Nu designate the number of samples used in estimating the
residual variance in the healthy and current cases, respectively (typically
No = Nu = N), and d designates the dimensionality of the estimated model
parameter vector. Nu and No should be adjusted to Nu − 1 and No − 1,
respectively, in case each estimated mean is subtracted from each resid-
ual sequence. Consequently, the following statistic follows F distribution
with (Nu, No − d) degrees of freedom (as the ratio of two independent and
normalized χ2 random variables; see Appendix):

Under Ho : F =

Nuσ̂
2
ou

σ2
oo

Nu

(No−d)σ̂2
oo

σ2
oo

(No−d)

=
σ̂2
ou

σ̂2
oo

∼ F(Nu, No − d). (31)

The following test is thus constructed at the α (false alarm) risk level
(Figure 9):

F ≤ f1−α(Nu, No − d) =⇒ Ho is accepted (healthy structure)
Else =⇒ H1 is accepted (damaged structure)

(32)

with f1−α(Nu, No−d) designating the corresponding F distribution’s 1−α
critical point.

Damage identification may be similarly achieved via pairwise tests of the
form:

Ho : σ2
Xu ≤ σ2

XX (structure under damage type X)
H1 : σ2

Xu > σ2
XX (structure not under damage type X).

(33)

An alternative possibility could be based on obtaining the residual series
eAu[t], eBu[t], . . .. Then, the current damage type is determined as that
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fF

1 − α

α

f1−α

H1 accepted
(damaged structure)

Ho accepted
(healthy structure)

Figure 9. Statistical hypothesis testing based on an F distributed statistic
(one-tail test).

one for which the residual series is characterized by minimal variance – no-
tice that by including the residual sequence eou[t] in the test, both damage
detection and identification may be achieved. On the other hand, damage
quantification may be possibly achieved in the limited case of a single dam-
age type by associating specific values of the residual variance with specific
damage magnitudes.

Bibliographical remarks. Sohn et al. (2001) use the prediction errors
of a so-called AutoRegressive and AutoRegressive with eXogenous inputs
(AR-ARX) model. The method is assessed via numerical simulations and its
application to an eight degree-of-freedommass-spring system, data obtained
from a patrol boat, and a three-storey building model. In a related work,
Sohn and Farrar (2001) employ the standard deviation ratio of the residuals
of a AR-ARX model as the damage sensitive feature to infer the structural
health state of an eight degree-of-freedom mass-spring system.

Fugate et al. (2001) use the AR model residuals, along with statistical
process control methods, to monitor their mean and variance in order to
detect damage on a concrete bridge column. Basseville et al. (2004) present
a method based on subspace identification and state space model residuals
in order to treat damage detection and localization. Yan et al. (2004) use an
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X-bar control chart on state space model residuals for damage detection and
identification in an aircraft skeleton and the Z24 bridge benchmark. Lu and
Gao (2005) use an ARX model and the standard deviation of its residuals
to treat damage detection and localization in a two and eight degree-of-
freedom simulated mass-spring system. Sohn et al. (2005) explore the use
of extreme value statistics on model residuals in order to classify damage.

An estimate of the standard deviation along with higher-order moments
of the residuals obtained from vector AR models are used to detect damage
by Mattson and Pandit (2006). A damage detection threshold level is iden-
tified from available training data, while the method is assessed via data
obtained from an eight degree-of-freedom test bed. Zhang (2007) explores
data normalization procedures and a probability based measure expressing
changes in the ARX residual variance for damage detection and identifica-
tion in a three-span continuous girder bridge simulation model. Gao and Lu
(2009) present a formulation that enables the construction of residual gen-
erators via state-space representations. Damage detection is demonstrated
via numerical results and experimental examples on a laboratory test frame.
Rao and Ratnam (2012) employ the AR model residuals along with She-
whart and weighted moving average control charts for damage detection
and identification in welded structures.

In the time-varying (non-stationary) case Poulimenos and Fassois (2004)
employ a Time-varying AutoRegressive with eXogenous excitation (TARX)
model along with statistical hypothesis testing employing its residual vari-
ance in order to detect faults in a bridge-like structure with moving mass.
Spiridonakos and Fassois (2009) tackle fault detection in a time-varying
extendable prismatic link structure via Functional Series Vector Time De-
pendent AutoRegressive (FS-VTAR) model residuals.

Methods employing Neural Network (NN) type non-linear models and
deterministic decision making based on the response error (residual) are
presented in Masri et al. (2000) and Huang et al. (2003).

A likelihood based method. In this case damage detection is based on
the likelihood function under the null hypothesis Ho of a healthy structure
(Gertler, 1998, pp. 119–120). The hypothesis testing problem thus is:

Ho : θo = θu (null hypothesis – healthy structure)
H1 : θo �= θu (alternative hypothesis – damaged structure),

(34)

with θo, θu designating the parameter vectors corresponding to the healthy
and current structure, respectively. Assuming serial independence of the
residual sequence, the Gaussian likelihood function Ly(Y, θ/X) for the data
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Y given X is obtained as (Box et al., 1994, p. 226):

Ly(Y, θ/X) =
1

(√
2πσ2

)N
· exp

{

−
1

2σ2

N∑

t=1

e2[t, θ]

}

(35)

with e[t, θ] designating the model residual (one-step-ahead prediction error)
characterized by zero mean and variance σ2.

Under the null (Ho) hypothesis, the residual series eou[t] generated by
driving the current signal(s) through the nominal model is (just like eoo[t])
iid Gaussian with zero mean and variance σ2

oo. Damage detection is then
based on the likelihood function under Ho evaluated for the current data,
by requiring it to be larger or equal to a (properly selected) threshold l in
order for the null (Ho) hypothesis to be accepted:

Ly(Y, θo/X) ≥ l =⇒ Ho is accepted (healthy structure)
Else =⇒ H1 is accepted (damaged structure).

(36)

Obviously, the evaluation of Ly(Y, θo/X) requires knowledge of the true
innovations variance σ2

oo. This is typically a-priori unknown, but it may be
estimated quite accurately for long data records (“large” N), in which case
its variability may be also neglected. Then, under the null (Ho) hypothesis
the statistic Nσ̂2

ou/σ̂
2
oo follows χ2 distribution with N degrees of freedom

(as the sum of squares of mutually independent standardized Gaussian vari-
ables; see Appendix). This leads to the re-expression of the previous decision
making rule as:

χ2
N =

Nσ̂2
ou

σ̂2
oo

≤ χ2
1−α(N) =⇒ Ho is accepted (healthy structure)

Else =⇒ H1 is accepted (damaged structure),
(37)

with χ2
1−α(N) designating the χ2 distribution’s 1 − α critical point. Note

that N should be adjusted to N−1 in case the estimated mean is subtracted
from the residual series eou[t].

Damage identification may be achieved by computing the likelihood func-
tion for the current signal(s) for the various values of θ (θA, θB, . . .) and
accepting the hypothesis that corresponds to the maximum value of the
likelihood:

max
V

Ly(Y, θV /X) =⇒ HV is accepted (damage type V ). (38)

It should be mentioned that damage detection may be also achieved by
including θo in the hypothesis testing procedure. Damage quantification
may be possibly achieved in the limited case of a single type of damage, by
associating specific values of the likelihood with specific damage magnitudes.
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A residual uncorrelatedness based method. This method is based
on the fact that the residual sequence eou[t] obtained by driving the current
signal(s) Zu through the nominal model Mo (resp. MV ) is uncorrelated

(white) if and only if the current structure is in its nominal (healthy) So

(resp. SV ). Damage detection may be then based on the following hypoth-
esis testing problem:

Ho : ρ[τ ] = 0 τ = 1, 2, . . . , r
(null hypothesis – healthy structure)
H1 : ρ[τ ] �= 0 for some τ
(alternative hypothesis – damaged structure)

(39)

with ρ[τ ] being the normalized autocovariance (ACF) function (see Table 7)
of the eou[t] residual sequence. Thus, the method’s characteristic quantity

is Q =
[
ρ[1] ρ[2] . . . ρ[τ ]

]T
, with r being a design variable.

Under the null (Ho) hypothesis, the residual sequence eou[t] is iid Gaus-
sian with zero mean, and the statistic χ2

ρ, below, follows χ2 distribution
with r degrees of freedom (Box et al., 1994, p. 314):

Under Ho : χ2
ρ = N(N + 2) ·

r∑

τ=1

(N − τ)−1 · ρ̂2[τ ] ∼ χ2(r) (40)

with ρ̂[τ ] designating the estimator of ρ[τ ].
Decision making is then based on the following test at the α (false alarm)

risk level:

χ2
ρ ≤ χ2

1−α(r) =⇒ Ho is accepted (healthy structure)
Else =⇒ H1 is accepted (damaged structure)

(41)

with χ2
1−α(r) designating the χ2 distribution’s 1− α critical point.

Damage identification may be achieved by similarly examining which
one of the eV u[t] (for V = A,B, . . .) residual series is uncorrelated. As with
the previous methods, only damages of specific magnitudes (but not the
continuum of damage magnitudes) may be considered.

A Sequential Probability Ratio Test (SPRT) based method. This
method employs the Sequential Probability Ratio Test (SPRT – Wald 1947;
Ghosh and Sen 1991) in order to detect a change in the standard deviation
σou of the model residual sequence eou[t]. The SPRT based method employs
both α (false alarm) and β (missed damage) error probabilities in its design.
Damage detection is based on the SPRT of strength (α, β) for the following
hypothesis testing problem:

Ho : σou ≤ σo (null hypothesis – healthy structure)
H1 : σou ≥ σ1 (alternative hypothesis – damaged structure),

(42)



238 S. D. Fassois and F. P. Kopsaftopoulos

with σou designating the standard deviation of the residual signal eou[t] ob-
tained by driving the current signal(s) through the healthy structural model,
and σo, σ1 user defined values. The basis of the SPRT is the logarithm of
the likelihood ratio function based on n (n ≤ N) samples:

L(n) =
n∑

t=1

ln
f(eou[t]|H1)

f(eou[t]|Ho)
= n · ln

σo

σ1

+
σ2
1 − σ2

o

2σ2
oσ

2
1

·
n∑

t=1

e2ou[t] (43)

with f(eou[t]|Hi) designating the probability density function of the residual
sequence under hypothesis Hi (i = 0, 1).

Decision making is then based on the following test at the (α, β) risk
levels:

L(n) ≤ B =⇒ Ho is accepted (healthy structure)
L(n) ≥ A =⇒ H1 is accepted (damaged structure)

B < L(n) < A =⇒ no decision is made (continue the test)
(44)

with:

A = ln
1− β

α
and B = ln

β

1− α
. (45)

Following a decision at a stopping time n̂, it is possible to continue the
test by resetting L(n̂+ 1) to zero and using additional residual samples.

Damage identification may be achieved by performing SPRTs similar to
the above separately for damages of each potential type.

Bibliographical remarks. Sohn et al. (2003a) combine the SPRT with
extreme value statistics for treating statistical damage classification in a
laboratory three-story building model, while Oh and Sohn (2009) use the
SPRT to tackle damage diagnosis under environmental and operational vari-
ations. Kopsaftopoulos and Fassois (2011) use the SPRT in order to detect
and identify damage in a scale aircraft skeleton structure.

5.3 Functional Model (FM) Based SHM Methods

The Functional Model (FM) based methods provide a unified framework

for the combined treatment of the damage detection, identification (localiza-
tion), and quantification (magnitude estimation) subproblems. An impor-
tant asset of the methods is overcoming the limitation of treating damages
occurring only at specific and pre-specified locations and of specific mag-

nitudes. Indeed, FM methods allow for the full and complete treatment
of damages, achieving precise localization over continuous topologies on a
structure and over the continuum of all damage magnitudes.
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The cornerstone of the methods is the new class of Functional Models

(FMs), which allows for the analytical inclusion of both damage location and
magnitude information (Kopsaftopoulos and Fassois, 2006; Sakellariou and
Fassois, 2007; Hios and Fassois, 2009a,c). FM models essentially permit the
extension of the notion of damage mode to include damage not only of all
possible magnitudes, but also of all possible locations on a specific (continu-
ous) topology on a structure. FMs are based on the pooling of multiple data
records, thus they are also referred to as Functionally Pooled (FP) models,
and are explicitly parametrized in terms of both damage location and mag-
nitude. In the simple, special, case where only a finite number (instead of a
continuum) of damage locations is considered, the parametrization may be
limited to damage magnitude alone (Sakellariou and Fassois, 2008). This
case is treated in the sequel for the sake of simplicity and clarity. Informa-
tion on the more general case is provided in the bibliographical remarks.

Let the damage magnitude, within a specific damage mode (type) V ,
be represented by a scalar variable k ∈ R. The healthy structure typically
corresponds to k = 0. Then, a simple model capable of representing the
structural dynamics under mode V is the Functionally Pooled AutoRegres-

sive with eXogenous excitation (FP-ARX) model:

yk[t] +

na∑

i=1

ai(k) · yk[t− i] =

nb∑

i=0

bi(k) · xk[t− i] + wk[t] (46a)

wk[t] ∼ iid N
(
0, σ2

w(k)
)
, k ∈ R (46b)

ai(k) =

p
∑

j=1

ai,j ·Gj(k), bi(k) =

p
∑

j=1

bi,j ·Gj(k). (46c)

In this expression xk[t], yk[t], and wk[t] designate the excitation, re-
sponse, and innovations (residual) signals, respectively, corresponding to a
specific damage magnitude k. The form of the model resembles that of a
conventional ARX. Yet, its AR and X parameters, as well as its innovations
variance, are explicit functions of the damage magnitude k, belonging to
p-dimensional functional subspaces spanned by the mutually independent
basis functions G1(k), G2(k), . . ., Gp(k) (functional basis). The constants
ai,j and bi,j designate the AR and X, respectively, coefficients of projec-
tion. The parameter vector to be estimated from the measured signals is

θ = [αi,j

... bi,j]
T .

In the baseline phase, a suitable FP model, corresponding to each con-
sidered damage mode, is estimated using signals obtained under various
damage magnitudes k. In the inspection phase, given the current signal(s)
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Zu, damage detection is based on the FP-ARX model of damage mode V
(or in fact any other). This is now re-parametrized in terms of the currently
unknown damage magnitude k and the innovations variance σ2

eu
(eu[t] desig-

nates the re-parametrized model’s innovations), by replacing the coefficients
of projection by their corresponding estimates available from the baseline
phase:

MV (k, σ
2
eu
) : yu[t] +

na∑

i=1

ai(k) · yu[t− i] =

nb∑

i=0

bi(k) · xu[t− i] + eu[t]. (47)

Damage detection is based on the following hypothesis testing problem:

Ho : k = 0 (null hypothesis – healthy structure)
H1 : k �= 0 (alternative hypothesis – damaged structure).

(48)

Estimates of k and σ2
eu

are obtained based on the current data Zu and
the Nonlinear Least Squares (NLLS) estimator (refer to Ljung 1999, pp.
327–329 for details on NLLS estimation):

k̂ = argmin
k

N∑

t=1

e2u[t], σ̂2
eu

=
1

N

N∑

t=1

ê2u[t]. (49)

Assuming that the structure is indeed under a damage belonging to mode
V (or in healthy condition which simply corresponds to k = 0), the above
estimator may be shown to be asymptotically (N → ∞) Gaussian, with
mean equal to its true value k and variance σ2

k provided by the Cramer-Rao
lower bound (Sakellariou and Fassois, 2008):

k̂ ∼ N (k, σ2
k). (50)

Under the null hypothesisHo, the t statistic, below, follows t distribution
with N−1 degrees of freedom (to be adjusted to N−2 in case the estimated
mean is subtracted from the residuals in the evaluation of σ̂k; see Appendix):

t = k̂/σ̂k ∼ t(N − 1) (51)

which leads to the following test at the α (false alarm) risk level:

tα

2
(N − 1) ≤ t ≤ t1−α

2
(N − 1)=⇒ Ho is accepted (healthy structure)

Else =⇒ H1 is accepted (damaged structure)
(52)

with tα designating the t distribution’s α critical point.
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Once damage is detected, damage mode identification is achieved through
successive estimation and validation of the re-parametrizedmodelMV (k, σ

2
eu
)

of Equation (47) of each damage mode (V = A,B, . . .) using the current
signal(s) Zu. The procedure terminates as soon as a particular model is
successfully validated, with the corresponding damage mode identified as
current. Model validation may be based on statistical tests examining the
hypothesis of residual uncorrelatedness (see section 5.2).

Following this, an interval estimate (at the α risk level) of the damage

magnitude k is then obtained based on the point estimates k̂ and σ̂k:

k interval estimate:
[

k̂ + tα

2
(N − 1) · σ̂k, k̂ + t1−α

2
(N − 1) · σ̂k

]

. (53)

Bibliographical remarks. Sakellariou et al. (2002) and Sakellariou and
Fassois (2008) present the application of an FM based method which consid-
ers a finite number of fault locations for on-board fault detection in railway
vehicle systems, and damage detection, localization and magnitude estima-
tion in a scale aircraft skeleton structure, respectively. Kopsaftopoulos and
Fassois (2007, 2012) postulate the generalization of the FM based method
in order to include damage not only of all possible magnitudes, but also of
all possible locations on continuous topologies on a structure. The method’s
effectiveness is assessed via its application to damage detection, precise lo-
calization and magnitude estimation on a scale aircraft skeleton structure.

6 Application of the Methods to a Laboratory Truss
Structure

6.1 The Laboratory Truss Structure and Problem Definition

The use of various methods is now illustrated through their application
to damage diagnosis on a laboratory truss structure. The structure and
part of the experimental set-up are shown in Figure 10. It consists of twenty
eight elements with rectangular cross sections (15×15 mm) jointed together
via steel elbow plates and bolts. All parts are constructed from standard
aluminium with the overall dimensions being 1400× 700× 800× 700 mm.

The damages considered correspond to complete loosening of various
bolts at different joints of the structure. Five distinct types, each cor-
responding to the loosening of bolts joining together various horizontal,
vertical and diagonal elements, are considered (Table 8 and Figure 10).

The structure is suspended through a set of cords and is excited vertically
at Point X through an electromechanical shaker (MB Dynamics Modal 50A,
max load 225 N) equipped with a stinger (Figure 10). The force excitation is
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Figure 10. The aluminum truss structure and the experimental set-up: The
force excitation (Point X), the vibration measurement positions (Points Y1,
Y2, Y3), and the considered damage types (A, B, C, D, and E).

Table 8. The considered damage types and experimental details.

Structural State Description No of Experiments

Healthy — 40 (1 baseline)
Damage type A loosening of bolt A1 32 (1 baseline)
Damage type B loosening of bolts A1 and B1 32 (1 baseline)
Damage type C loosening of bolts C1 and C2 32 (1 baseline)
Damage type D loosening of bolt D1 32 (1 baseline)
Damage type E loosening of bolt E1 32 (1 baseline)

Sampling frequency: fs = 256 Hz, Signal bandwidth: [0.5− 100] Hz

Signal length N in samples (s): Non-parametric methods: N = 30 720 (120 s)

Parametric methods: N = 10 000 (39 s)

a random Gaussian signal measured via an impedance head (PCB 288D01,
sensitivity 98.41 mV/lb), while the resulting strain responses are measured
at different points via dynamic strain gauges (PCB ICP 740B02, 0.005−100
kHz, 50 mV/µε). The analysis bandwidth is 0.5− 100 Hz and the sampling
frequency fs = 256 Hz. The measured signals are driven through a signal
conditioning device (PCB 481A02) into the data acquisition system (SigLab
20–42). In this study damage detection and identification is based on one
of the three vibration response signals (Points Y1, Y2 and Y3 – Figure 10)
at a time, so that scalar (univariate) versions of the methods are used.

Experimental details and the number of experiments for each damage
type are presented in Table 8. One experiment per damage type is executed
in the baseline phase, while several are executed in the inspection phase.
The excitation and response signals are in all cases pre-processed, so that
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the sample mean is subtracted and each signal is normalized by its sample
standard deviation.

Both response-only and excitation-response methods are used. In all
cases, the fact that only a single response is used and also in a very limited
bandwidth, renders the damage diagnosis problem challenging. This allows
for the exploration of the capabilities and limitations of the methods when
very limited information is available.

6.2 Baseline Phase: Structural Identification

Non-parametric identification. Non-parametric identification is based
on N = 30 720 (≈ 120 s) sample-long excitation and/or response signals.

Sample response PSD and FRF magnitude estimates for the healthy
and various damage states of the structure are depicted in Figure 11 for
response Y3 (MATLAB functions pwelch.m and tfestimate.m, respectively
– details in Table 9). It is evident that the healthy and damage estimates
are quite similar in the 0.5 − 30 Hz range, where the first twelve modes
are included. Significant discrepancies between the healthy and damage
type C, D and E curves are observed in the 30 − 58 Hz range, where the
next three modes are included. These discrepancies become even more
evident for damage types C and E in the 58 − 100 Hz range, where the
next eight modes are included. Figure 12 depicts the Welch based FRF
magnitude estimates for the healthy and damage type A structural states,
along with their corresponding 95% confidence intervals (refer to Table 7).
Although both FRF magnitude curves are quite similar, small discrepancies
are evident at specific frequencies. Yet the statistical significance of these
discrepancies has to be confirmed.

Parametric identification. In the parametric case only excitation-response
representations are presently employed. Estimation is based on N = 10 000
(≈ 39 s) sample-long excitation and response signals which are used for es-
timating AutoRegressive with eXogenous excitation (ARX) models (MAT-

Table 9. Non-parametric estimation details.

Data length N = 30 720 samples (≈ 120 s)
Method Welch, zero overlap
Segment length (samples) L = 2 048 samples
No of non-overlapping segments K = 15 segments
Window type Hamming
Frequency resolution ∆f = 0.125 Hz
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Figure 11. Indicative non-parametric (Welch based) estimates for the
healthy and damaged structural states (response Y3): (a) Power Spectral
Density (PSD) and (b) Frequency Response Function (FRF) magnitude
estimates.
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Figure 12. Non-Parametric (Welch based) FRF magnitude estimates for
the healthy and damage type A structural states along with their 95% con-
fidence intervals (response Y3).

LAB function arx.m). The modelling strategy consists of the successive
fitting of ARX(na, nb) models (na = nb = n is presently used) until a
suitable model is selected. Model parameter estimation is based on mini-
mization of a quadratic Prediction Error (PE) criterion leading to a Least
Squares (LS) estimator (Ljung 1999, p. 206, Fassois 2001). Model order
selection, which is crucial for successful identification, is based on a combi-
nation of tools, including the Bayesian Information Criterion (BIC – Figure
13a), the RSS/SSS (Residual Sum of Squares over Signal Sum of Squares –
Figure 13b), residual series whiteness, and “stabilization diagrams”.
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Figure 13. Order selection criteria for ARX(n, n) type parametric models
in the healthy case (response Y3): (a) BIC and (b) RSS/SSS.

Table 10. Selected models and estimation details.

Response Selected Model No parameters SPP BIC RSS/SSS (%)

Y1 ARX(112, 112) 225 parameters 44.4 −5.19 0.43

Y2 ARX(136, 136) 273 parameters 36.6 −5.83 0.22

Y3 ARX(103, 103) 207 parameters 48.3 −4.31 1.07

Parameter estimation method: Weighted Least Squares (WLS)

Signal length: N = 10 000 samples (≈ 39 s)

The identification procedure leads to the selection of an ARX(112, 112),
an ARX(136, 136) and an ARX(103, 103) model for vibration responses Y1,
Y2 and Y3, respectively. The selected ARX models, as well as their esti-
mation details, numbers of estimated parameters, signal Samples Per Pa-
rameter (SPP), BIC, and RSS/SSS values are summarized in Table 10.
Figure 14 presents a comparison between the parametric (response Y3 –
ARX(103, 103) based) FRF magnitude estimate and its non-parametric
(Welch based) counterpart; the agreement is excellent.

6.3 Inspection Phase: SHM via Selected Non-Parametric Meth-
ods

PSD based method. Typical PSD based damage detection results are
presented in Figure 15 based on response Y3. Evidently, correct detection at
the α = 10−4 risk level is achieved in each case, as the test statistic is shown
not to exceed the critical points (dashed horizontal lines) in the healthy case,
while it exceeds them in each damage case. In each case the sensor location
with respect to the damage location is characterized as “local” or “remote”.
Observe that damage type C (two bolts loosened) is the easiest to detect
(note the logarithmic scale on the vertical axis of Figure 15), while damage
type A (one bolt loosened) is the hardest (the test statistic is within the
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Figure 15. PSD based damage detection (response Y3): Indicative results
at the α = 10−4 risk level. “Local” and “remote” damages are considered
with the actual structural state indicated above each plot box. A damage
is detected if the test statistic exceeds the critical points (dashed horizontal
lines).

critical points for most frequencies).
Representative damage identification results are, at the α = 10−4 risk

level, presented in Figure 16 based on response Y1. The actual damage is
of type A. When testing the hypothesis of damage type A, the test statis-
tic does not exceed the critical points, while it clearly exceeds them when
testing any other hypothesis.

FRF based method. Figure 17 presents typical FRF based damage de-
tection results based on response Y2. In each case the sensor location with



Statistical Time Series Methods 247

20 40 60 80 100
0

1

2

3

4

5

6

7
Damage A

F 
st

at
is

tic

20 40 60 80 100
0

2

4

6

8

10
Damage B

20 40 60 80 100
10−4

10−2

100

102

104
Damage C

F 
st

at
is

tic

Frequency (Hz)
20 40 60 80 100

0

5

10

15

20

25

30
Damage D

Frequency (Hz)
20 40 60 80 100

0

10

20

30

40

50
Damage E

Frequency (Hz)

Figure 16. PSD based damage identification (response Y1): Indicative
results at the α = 10−4 risk level, with the actual damage being of type
A (“remote” to the sensor location). Each considered hypothesis is shown
above each plot box. A hypothesis is accepted as true if the corresponding
test statistic does not exceed the critical points (dashed horizontal lines).

respect to the damage location is characterized as “local” or “remote”. Cor-
rect detection at the α = 10−5 risk level is achieved in each case, as the test
statistic is shown not to exceed the critical points (dashed horizontal lines)
in the healthy case, while it exceeds them in each damage case. Like before,
damage type C is the easiest to detect, while damage types A and B are the
hardest.

Indicative damage identification results at the α = 10−5 risk level are
presented in Figure 18 based on response Y1. The actual damage is of
type C. When testing the damage type C hypothesis the statistic does not
exceed the critical points, while it clearly does so when testing any other
hypothesis.

6.4 Inspection Phase: SHM via Selected Parametric Methods

Model parameter based method. The model parameter based method
(excitation-response case) is based on the ARX models (Table 10) obtained
in the baseline phase, as well as on their counterparts obtained in the in-
spection phase using the current data records Zu.

Figure 19 presents typical parametric damage detection results based
on the excitation–Y2 response pair. Correct detection is achieved at the
α = 10−12 risk level, as the test statistic does not exceed the critical point
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Figure 17. FRF based damage detection (response Y2): Indicative results
at the α = 10−5 risk level. “Local” and “remote” damages are considered
with the actual structural state indicated above each plot box. A damage
is detected if the test statistic exceeds the critical point (dashed horizontal
line).
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Figure 18. FRF based damage identification (response Y1): Indicative
results at the α = 10−5 risk level, with the actual damage being of type C
(“local” to the sensor location). Each considered hypothesis is shown above
each plot box. A hypothesis is accepted as true if the corresponding test
statistic does not exceed the critical point (dashed horizontal line).
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Figure 19. Model parameter based damage detection (excitation–Y2 re-
sponse): Indicative results at the α = 10−12 risk level. “Local” and “re-
mote” damages are considered and characterized above each bar. A damage
is detected if the test statistic (bar) exceeds the critical point (dashed hor-
izontal line).

in the healthy case, while it exceeds it in each damage case. Note the
logarithmic scale on the vertical axis, indicating significant differences in
the statistic between the healthy and the damage cases. The ability of the
method to properly identify the damage type is demonstrated in Figure 20
at the α = 10−12 risk level using the excitation–Y3 response pair (two test
cases are shown).

Residual likelihood based method. This method is based on the ARX
models identified in the baseline phase (Table 10). No identification is
required in the inspection phase.

Typical damage detection results are presented in Figure 21 based on the
excitation–Y1 response pair. Correct detection is achieved at the α = 10−12

risk level as the test statistic does not exceed the critical point in the healthy
case while exceeding it in each damage case. Damage identification results
(two test cases) are presented in Figure 22 based on the excitation–Y3
response pair. In each test case correct identification is achieved at the
α = 10−12 risk level – it is worth noting the logarithmic scale on the vertical
axis.

SPRT based method. Like in the previous method the ARX models
identified in the baseline phase (Table 10) are used, with no identification
required in the inspection phase.

Typical damage detection results are presented in Figure 23 based on
the excitation–Y2 response pair. The characterization of each damage as
“local” or “remote” to the response sensor is indicated in each subplot. A
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Figure 20. Model parameter based damage identification (excitation–Y3
response): Two indicative test cases at the α = 10−12 risk level. The actual
damage is indicated in each test case (subplot). A hypothesis is accepted
as true if the corresponding test statistic (bar) does not exceed the critical
point (dashed horizontal line).
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Figure 21. Residual likelihood based damage detection (excitation–Y1 re-
sponse): Indicative results at the α = 10−12 risk level. “Local” and “re-
mote” damages are considered above each bar. A damage is detected if the
test statistic (bar) exceeds the critical point (dashed horizontal line).

damage is detected when the test statistic exceeds the upper critical point
(upper dashed line), while the structure is detected as healthy when the test
statistic exceeds the lower critical point (lower dashed line). After a critical
point is exceeded and a decision is made, the test statistic is reset to zero
and the test continues. Evidently, correct detection, at the α = β = 0.01
risk levels (q = 1.1), is obtained in each test case, as the test statistic is
shown to exceed multiple times the lower critical point in the healthy case,
while it repeatedly exceeds the upper critical point in each damage test case.
Observe that damage type A appears harder to detect, as the number of
detections in this case is lowest among those of the various damage types,
while damage types C and E appear easiest to detect. This is in agreement
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Figure 22. Residual likelihood based damage identification (excitation–Y3
response): Two indicative results at the α = 10−12 risk level. The actual
damage is indicated in each case (subplot). A hypothesis is accepted as true
if the corresponding test statistic (bar) does not exceed the critical point
(dashed horizontal line).

with the remarks made in subsection 6.2 and Figure 11.
The ability of the method to identify damage is demonstrated via the

test case of Figure 24 based on the excitation–Y3 response pair. The actual
damage type (type B) is properly identified as the test statistic exceeds (for
the corresponding hypothesis) the lower critical point.

6.5 Discussion

Summary results for all test cases considered and for each one of the three
vibration responses (Y1, Y2 and Y3) are presented in Table 11. Evidently,
both non-parametric and parametric methods achieve accurate damage de-
tection with mostly zero false alarms at the selected risk levels. Only the
FRF based method exhibits one and two false alarms for the vibration re-
sponses Y1 and Y3, respectively. The ability of the methods to effectively
detect damage is demonstrated by the fact that no missed damage cases
are observed. The damage identification results confirm the ability of the
methods to accurately identify the damage type. No damage misclassifica-
tions are observed, except for the FRF based method where misclassification
errors occur for damage type A (Table 11).

It is important to emphasize that these results are achieved using a sin-

gle vibration response signal, or a single excitation-response pair, and also
a particularly low frequency range (0.5 − 100 Hz). It is well known that
the problem is more challenging in a “low” frequency range, yet the re-
sults demonstrate that it is properly handled without the need for higher
frequency ranges. The fact that the methods are capable of detecting and
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Figure 23. SPRT based damage detection (excitation–Y2 response): In-
dicative results at the α = β = 0.01 risk levels (q = 1.1). “Local” and
“remote” damages are considered with the actual structural state indicated
above each plot box. A damage is detected if the test statistic exceeds the
upper critical point (upper dashed line), while the structure is in its healthy
state when the test statistic exceeds the lower critical point (lower dashed
line).

identifying damage using response sensors that are relatively close (“local”)
or far (“remote”) from the actual damage location should be also empha-
sized. Of course, performance is somewhat affected by distance; this is
demonstrated for the damage type A case in conjunction with the FRF
magnitude based method where the lowest misclassification rate occurs for
sensor Y2 (Table 11) which is closest to the damage location. Yet, the abil-
ity of the methods in this respect is remarkable and underscores the fact
that a few (or even a single) vibration response sensors may be adequate
for proper detection and identification.

Nevertheless, in using statistical time series SHM methods, a number of
issues require attention on part of the user. First, careful model identifi-
cation, especially in the parametric case, is crucial for successful damage
diagnosis. Parametric models require accurate parameter estimation and
model structure selection in order to properly represent the structural dy-
namics and be effectively used for damage diagnosis. Therefore parametric
methods require adequate user expertise and are somewhat more elaborate
than their non-parametric counterparts.

Another issue of primary importance is the proper selection of the α
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Figure 24. SPRT based damage identification (excitation–Y3 response):
Indicative results at the α = β = 0.01 risk levels (q = 1.1), with the actual
damage being of type B (“local” to the sensor location). Each considered
hypothesis is indicated above each plot box. A hypothesis is accepted as
true if the corresponding test statistic exceeds the lower critical point (lower
dashed line).

(false alarm) risk level. If not properly adjusted, false alarm, missed dam-
age, and damage misclassification cases may occur. The user is advised to
make an initial investigation on false alarm rates for different α levels using
several healthy data sets. Afterwards, potential missed damage cases may
be checked with data corresponding to various damaged structural states.
When applying the model residual uncorrelatedness based method, the user
should be aware of the fact that the selected max lag r value may affect
performance. Thus, a tentative inquiry on this affects the false alarm rate
should be undertaken.

Moreover, in order for most parametric methods to work effectively, a
very small value of α is very often required. This is due to the fact that the
current time series models are incapable of fully capturing the experimental,
operational and environmental uncertainties based on just a single data
record (Hios and Fassois, 2009a; Michaelides and Fassois, 2008). For this
reason, a very small α is often selected in order to compensate for the lack
of proper uncertainty modelling. This is the subject of on-going research
efforts.

It should be noted that only detection is possible for damage types not
modeled in the baseline phase, while essentially no work is reported on mul-
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Table 11. Summary damage detection and identification results.

Damage Detection

Method False Missed damage cases

alarms dam A dam B dam C dam D dam E

PSD 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

FRF 1/0/2 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

Mod. parameter† 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

Res. variance† 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

Res. likelihood† 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

Res. uncorrelatedness† 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

SPRT 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

Damage Identification

Method Damage misclassification cases

dam A dam B dam C dam D dam E

PSD 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

FRF 2/1/2 0/0/0 0/0/0 0/0/0 0/0/0

Mod. parameter† 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

Res. variance† 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

Res. likelihood† 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

Res. uncorrelatedness† 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

SPRT 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

False alarms for responses Y1/Y2/Y3 out of 39 test cases each; †adjusted α.

Missed damages for responses Y1/Y2/Y3 out of 31 test cases each.

Damage misclassification for responses Y1/Y2/Y3 out of 31 test cases each.

tiple damages. In its more complete form in which damage may occur at an
infinite number of locations on a continuum, the damage identification prob-
lem requires precise localization which – in the context of statistical time
series methods – is possible only through the new Functional Model (FM)
methods. These are more elaborate but also allow for damage magnitude
estimation.

7 Concluding Remarks and Future Research

• Statistical time series SHM methods are capable of achieving damage
detection, identification (including precise localization), and quantifi-
cation (magnitude estimation) in both the response-only and excitation-

response cases based on (i) random excitation and/or response signals,
(ii) statistical model building, and (iii) statistical decision making un-
der uncertainties.

• The methods may be classified as non-parametric or parametric. Non-
parametric methods are generally simpler, while they mainly focus
on the damage detection subproblem, although simple forms of the
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damage identification subproblem may be also tackled. Parametric

methods are more elaborate, as they necessitate the use of proper
parameter estimation and model structure selection techniques. Yet,
they offer potentially high performance along with more effective and
precise damage identification (including localization) and quantifica-
tion.

• The use of random excitation and/or vibration response signals is
important and implies that signals obtained under normal operating

conditions may be potentially employed, which is practically very im-
portant. This is further enhanced by the ability of the methods to
work in the lower frequency range, as vibration signals obtained under
normal operating conditions are often characterized by low frequency
content.

• Two additional and practically important advantages of the methods
is (i) the use of simple and partial (both space and bandwidth wise)
dynamical models and (ii) a limited number of measured signals.

• The handling of uncertainties via proper statistical techniques is an
additional asset.

• Sequential methods require, on average, a substantially smaller num-
ber of observations than their fixed sample size counterparts (Wald,
1947; Ghosh and Sen, 1991; Lehmann and Romano, 2008) and war-
rant further investigation. An added bonus is their direct suitability
for on-line implementation, although other methods may be adapted
as well.

• On the other hand, statistical time series SHM methods are limited
to the identification of damage only to the extent allowed by the spe-
cific type of model employed, while they also require adequate user
expertise. Another limitation relates to the requirement for vibra-
tion data records corresponding to the potential damage states of the
structure in the baseline phase and in case that damage identification
and estimation are sought. Such data may be difficult to obtain, but
either laboratory scale models or analytical (like tuned finite element)
models may be alternatively used.

• Further research is necessary for exploring the limits and applicabil-
ity of the methods in tackling the less studied damage identification
and estimation (quantification) subproblems, including the important
multiple damage case. Effectively handling environmental effects, and
distinguishing them from those of damage, is a critical issue war-
ranting further investigation, as is the more effective handling of un-
certainties. More automated methods and methods suitable for the
multivariate (multi sensor) case (especially in conjunction with large
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structures where dense sensor arrays may be used) need to be de-
veloped. Similarly, methods suitable for structures exhibiting non-
linear and/or time-varying (non-stationary) dynamics have received
only limited attention and warrant further consideration.
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A Appendix: Central limit theorem and statistical
distributions associated with the normal

A.1 The Central Limit Theorem (CLT)

Theorem A.1 (The Central Limit Theorem (Stuart and Ord, 1987; Nguyen
and Rogers, 1989; Montgomery, 1991)). Let Z1, Z2, . . . Zn designate mu-

tually independent random variables each with mean µk and (finite) vari-

ance σ2
k. Then, for n −→ ∞ the distribution of the random variable X =

∑n
k=1 Zk approaches the Gaussian distribution with mean E{X} =

∑n
k=1 µk

and variance var[X ] =
∑n

k=1 σ
2
k.

A.2 The χ2 distribution

Let Z1, Z2, . . . Zn designate mutually independent, normally distributed,
random variables, each with mean µk and standard deviation σk. Then the
sum:

X =

n∑

k=1

(
Zk − µk

σk

)2

(A.1)

is said to follow a (central) chi-square distribution with n degrees of freedom
(X ∼ χ2(n)). Its mean and variance are E{X} = n and var[X ] = 2n,
respectively. Notice that imposing p equality constraints among the random
variables Z1, Z2, . . . Zn reduces the set’s effective dimensionality, and thus
the number of degrees of freedom, by p (Stuart and Ord, 1987, pp. 506–507).

For n −→ ∞ the χ2(n) distribution tends to normality (Stuart and Ord,
1987, p. 523).

The sum X =
∑n

k=1 Z
2
k/σ

2
k is said to follow non-central chi-square distri-

bution with n degrees of freedom and non-centrality parameter λ = µ2
k/σ

2
k.

This distribution is designated as χ2(n;λ) (Nguyen and Rogers, 1989, Vol.
II p. 33).

Let x ∈ R
n follow n-variate normal distribution with zero mean and

covariance Σ (x ∼ N (0,Σ)). Then the quantity xTΣ−1x follows (central)
chi-square distribution with n degrees of freedom (Söderström and Stoica
1989, p. 557, Stuart and Ord 1987, pp. 486–487, Gertler 1998, p. 120).
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A.3 The Student’s t distribution

Let Z be the standard (zero mean and unit variance) normal variable.
Let X follow a (central) chi-square distribution with n degrees of freedom
and be independent of Z. Then the ratio:

T =
Z

√

X/n
(A.2)

is said to follow a Student or t (central) distribution with n degrees of
freedom (central because it is based on a central chi-square distribution;
Nguyen and Rogers 1989, Vol. II p. 34). Its mean and variance are E{T } =
0 (n > 1) and var[T ] = n

n−2
(n > 2), respectively (Stuart and Ord, 1987, p.

513).
The (central) t distribution approaches the standard normal distribution

N (0, 1) as n −→ ∞ (Stuart and Ord, 1987, p.523).

A.4 The Fisher’s F distribution

LetX1,X2 be mutually independent random variables following (central)
chi-square distributions with n1, n2 degrees of freedom, respectively. Then
the ratio:

F =
X1/n1

X2/n2

(A.3)

is said to follow a (central) F distribution with n1, n2 degrees of freedom
(F ∼ F(n1, n2); central because it is based on central chi-square distribu-
tions; Nguyen and Rogers 1989, Vol. II p. 34). Its mean and variance are

E{F} = n2

n2−2
(n2 > 2) and var[F ] =

2n2
2(n1+n2−2)

n1(n2−2)2(n2−4)
(n2 > 4), respectively

(Stuart and Ord, 1987, p. 518).
Note that for the distribution’s 1 − α critical point f1−α(n1, n2) =

1/fα(n2, n1).
The (central) F distribution approaches normality as n1, n2 −→ ∞.

For n2 −→ ∞ n1F approaches a (central) chi-square distribution with n1

degrees of freedom (Stuart and Ord, 1987, p. 523).
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