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Abstract: The identification of stochastic systems operating under multiple conditions is
addressed based on data records obtained under a sample of these conditions. The problem is
important in many practical applications and is tackled within a recently introduced Functional
Pooling framework. The study focuses on the case of operating conditions characterized by
several parameters. Global Vector-dependent Functionally Pooled models of the ARX type are
postulated, proper estimators based on the Least Squares and Maximum Likelihood principles
are formulated, and their strong consistency and asymptotic normality are established. For
model structure selection a Genetic Algorithm based procedure is formulated. The performance
characteristics of the methods are assessed via a Monte Carlo study.
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1. INTRODUCTION

Classical system identification aims at deriving a model
representing a system under a specific operating condition.
Yet, in many cases, a system may operate under different
conditions at different occasions (time periods), with the
dynamics depending in a pseudo-static fashion on certain
operating parameter(s) – also referred to as scheduling
parameter(s). Typical examples include mechanical struc-
tures operating under different environmental conditions,
such as temperature (Hios and Fassois [2009a]), aircraft
systems under different flight conditions, such as altitude
and velocity (Dimogianopoulos et al. [2009]), machinery
operating under different rotating speeds, and so on.

Given a number of data records from a system operat-
ing under different conditions, it is highly desirable to
establish a single and global model, that, while compact
(parsimonious), will be capable of accurately representing
the dynamics under any considered condition.

A “feasible” approach for solving this identification prob-
lem could be along the lines of the “multi-model” princi-
ple. This postulates identification of several conventional
models (one for each operating condition), and their sub-
sequent “interconnection” into a single global model via
proper interpolation of their parameters. This is in fact
the procedure followed for tackling the problem within
the celebrated Linear Parameter Varying (LPV) modelling
framework (see Toth [2010] and the references therein).

1 Corresponding author. Tel./fax: +30 2610 969495 (direct), +30
2610 969492 (central).

Nevertheless, such a two-stage “multi-model” approach is
statistically suboptimal and leads to decreased accuracy.
The reasons for this are: First, the artificial splitting of the
problem into disjoint subproblems (separate identification
for each data record) leads to the estimation of an unnec-
essarily high number of parameters (due to the fact that
each model is identified separately from any other), a fact
violating the principle of statistical parsimony and leading
to decreased accuracy. Second, any interrelations that may
exist among the various data records are disregarded, a
fact leading to further loss of information. Third, the
separate treatment of the parameter interpolation stage
leads to further (unnecessary) estimation errors.

In order to overcome the aforementioned drawbacks and
enable the identification of compact and accurate “global”
models in a statistically optimal sense, a novel Functional
Pooling (FP) framework has been introduced by the au-
thors and co-workers (Sakellariou and Fassois [2007], Hios
and Fassois [2009a]). This FP framework is based on three
important entities:

(i) A stochastic Functionally Pooled (FP) model struc-
ture that explicitly allows for system modelling under
multiple operating conditions via a single (“global”)
mathematical representation. This representation is
characterized by parameters that functionally (ex-
plicitly) depend on the operating parameter in a
quasi-static fashion and allows for the proper, parsi-
monious, modelling of the dynamics under all possible
conditions without using excessively many parame-
ters or requiring a separate interpolation stage.
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(ii) Data pooling techniques which simultaneously treat,
as a single entity, the data records corresponding to all
available operating conditions. In this way potential
interrelations are also accounted for.

(iii) Properly formulated statistical inference techniques
for model estimation.

The identification of univariate and multivariate (vector)
FP models characterized by a single operating parameter
has been treated in Sakellariou and Fassois [2007] and Hios
and Fassois [2009b], respectively. First applications using
early versions of the methods are reported in Hios and
Fassois [2009a] (modelling of composite beam dynamics
under different temperature conditions), Sakellariou and
Fassois [2008] (modelling of different damage states in an
aircraft skeleton structure), Dimogianopoulos et al. [2009]
(modelling of aircraft dynamics under different flight con-
ditions). In Hios and Fassois [2009a] the aforementioned
theoretical advantages and improved achievable accuracy
of the FP framework over the multi-model approach are
also practically confirmed.

The aim of the present study is the proper formulation
and extension of the FP framework to the case of stochas-
tic systems operating under conditions characterized by
several (more than one) operating parameters – a case
of obvious practical importance. These parameters are
collected into a vector, which is subsequently referred to
as the operating parameter vector, and the models are re-
ferred to as Vector-dependent Functionally Pooled (VFP).
Due to space limitations, the case of AutoRegressive with
eXogenous excitation (ARX) models is presently treated,
although the more complete ARMAX (AutoRegressive
Moving Average with eXogenous excitation models) case
is also treated in Kopsaftopoulos [2012] and shall be pre-
sented elsewhere.

Following the postulation of the class of VFP models, the
study proceeds with the formulation of proper estimators
based on the Least Squares (LS) and Maximum Likelihood
(ML) principles. For these developments, a proper vec-
tor algebra and the construction of functional subspaces
comprising of polynomials of several variables (Dunkl and
Xu [2001]) are employed. An additional contribution of
the study is the establishment of the strong consistency
(almost sure convergence) property of the formulated esti-
mators (in contrast to the weaker “in probability” con-
vergence proven in Sakellariou and Fassois [2007] and
Hios and Fassois [2009b]). For this purpose a reformu-
lation of the procedures and stronger asymptotic theo-
rems are utilized. For the model structure (model orders
and functional subspaces) estimation a Genetic Algorithm
(GA) based procedure is formulated. The effectiveness and
performance characteristics of the estimators are finally
assessed via a Monte Carlo study.

2. THE VFP-ARX MODEL STRUCTURE

The identification of Vector-dependent Functionally Pooled
(VFP) models is based on M1 × M2 sets of excitation
and/or response data records corresponding to a sample
of the admissible operating conditions. Each record cor-
responds to a specific value of the operating parameter
vector k, which, without loss of generality, is presently
assumed to be two-dimensional. A sample of M1 values is

used for the scalar operating parameter k1 and a sample
of M2 values is used for k2.

The set of all possible operating conditions for each
scalar parameter belongs to the range [k1

min, k
1
max] ∈

R and [k2
min, k

2
max] ∈ R, while discretized versions

{k1
1, k

1
2, . . . , k

1
M1
} and {k2

1, k
2
2, . . . , k

2
M2
} are used for data

acquisition. Hence, each experiment is characterized by a
specific value of k = [k1

i , k
2
j ]. This vector is, for simplicity

of notation, also designated as the duplet ki,j = (k1
i , k

2
j )

(the first subscript of ki,j designating the value of k1 and
the second that of k2). Assuming N sample-long records,
the complete data set is designated as 2 :

ZNM1M2
∆
=
{
xk[t], yk[t] | k ∆

= [k1 k2]T, t = 1, . . . , N,

k1 ∈ {k1
1, . . . , k

1
M1
}, k2 ∈ {k2

1, . . . , k
2
M2
}
}

(1)

with t designating normalized discrete time, and xk[t], yk[t]
the excitation and response signals, respectively, corre-
sponding to the k-th operating condition.

The VFP AutoRegressive with eXogenous excitation
(VFP-ARX) representation postulated in this work is of
the form:

yk[t]+

na∑
i=1

ai(k)·yk[t−i] =

nb∑
i=0

bi(k)·xk[t−i]+wk[t] (2a)

wk[t] ∼ iid N
(
0, σ2

w(k)
)
, k ∈ R2 (2b)

ai(k) =

pa∑
j=1

ai,jGda(j)(k), bi(k) =

pb∑
j=1

bi,jGdb(j)(k) (2c)

E
{
wki,j [t] · wkm,n [t− τ ]

}
= γw[ki,j , km,n] · δ[τ ] (2d)

with na, nb designating the AutoRegressive (AR) and
eXogenous (X) orders, respectively, and wk[t] the innova-
tions signal, which is zero-mean, serially uncorrelated, with
variance σ2

w(k), but potentially cross-correlated with its
counterparts corresponding to different experiments. E{·}
designates statistical expectation, δ[τ ] the Kronecker delta
(δ[0] = 0, δ[τ ] = 1 for τ 6= 0),N (·, ·) Gaussian distribution,
while iid stands for identically independently distributed.
As (2c) indicates, the AR and X parameters ai(k), bi(k)
are modelled as explicit functions of the operating param-
eter vector k and belong to the functional subspaces:

F〈ai(k)〉 ∆
= {Gda(1)(k), Gda(2)(k), . . . , Gda(pa)(k)}(3a)

F〈bi(k)〉 ∆
= {Gdb(1)(k), Gdb(2)(k), . . . , Gdb(pb)(k)} (3b)

spanned by the basis functions Gda(j)(k), Gdb(j)(k) con-
sisting of polynomials of two variables. These may be ob-
tained from corresponding univariate polynomials (Cheby-
shev, Legendre and other families – see Dunkl and Xu
[2001]). pa, pb designate the AR and X parameter subspace
dimensionalities, respectively, while the indices da(j) (j =
1, . . . , pa) and db(j) (j = 1, . . . , pb) designate the specific
basis functions that are included in each subspace. The
constants ai,j and bi,j designate the AR and X coefficients
of projection, respectively.

The VFP-ARX(na, nb)[pa,pb] model of (2a)–(2d) is pa-
rameterized in terms of the model’s projection coeffi-
cients ai,j , bi,j , the innovations covariance γw[ki,j , km,n]

2 Bold-face upper/lower case symbols designate matrix/column-
vector quantities, respectively.
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(
γw[ki,j , ki,j ] = σ2

w[ki,j ]
)
, and the model structure M,

defined by the model orders na, nb and the functional
subspaces F〈ai(k)〉, F〈bi(k)〉. It is worth noting that:

(1) All information in terms of interrelations among the
data records in ZNM1M2 is reflected in the covari-
ance matrix Γw[t] = E

{
w[t]wT [t]

}
with w[t]

∆
=[

wk1,1
[t] . . . wkM1,M2

[t]
]T

. This knowledge is incorpo-
rated into the parameter estimation phase to obtain
statistically optimal models (see section 3).

(2) The projection of the parameters ai(k), bi(k) on the
functional subspaces F〈ai(k)〉, F〈bi(k)〉 allows for
models capable of representing the system dynamics
everywhere within [k1

min, k
1
max]× [k2

min, k
2
max] ∈ R2,

and not only at the distinct values {k1
1, k

1
2, . . . , k

1
M1
}×

{k2
1, k

2
2, . . . , k

2
M2
} involved in ZNM1M2 .

(3) The form of functional dependence is important.
Physical insight may be used, while experience in-
dicates that orthogonal polynomials or trigonometric
functions are often sufficient (refer to Hios and Fassois
[2009a] and Kopsaftopoulos and Fassois [2011] for
practical applications where shifted Type II Cheby-
shev polynomials are employed).

Using the backshift operator Bi
(
B · x[t]

∆
= x[t − i]

)
the

VFP-ARX model may be expressed as follows:

A[B,k] · yk[t] = B[B,k] · xk[t] + wk[t] (4a)

A[B,k]
∆
= 1 +

na∑
i=1

ai(k)Bi, B[B,k]
∆
=

nb∑
i=0

bi(k)Bi. (4b)

In analogy to conventional models, this representation is
assumed to satisfy the following conditions:

CD1. Stability condition. The poles of the AR polynomials
(see Equation (4a)) lie inside the unit circle for the
discretized sample values of k.

CD2. Irreducibility condition. The polynomials A[B,k] and
B[B,k] are left coprime for the sample values of k.

CD3. The input signal xk[t] is stationary, ergodic and

persistently exciting with E
{
xki,j

[t]wkm,n
[t]
}

= 0
∀ i, j,m, n.

3. VFP-ARX MODEL PARAMETER ESTIMATION

Consider the general case of VFP-ARX models with “in-
complete” (that is not necessarily including all consecu-
tive basis functions up to the specified degree) functional
subspaces. The estimation of the VFP-ARX coefficient of
projection vector:

θ
∆
= [a1,1 . . . a1,pa . . . ana,pa

... b0,1 . . . b0,pb . . . bnb,pb]
T (5)

is considered based on available signal samples {xk[t]}Nt=1,

{yk[t]}Nt=1 and a selected model structure M.

The VFP-ARX model of (2a)–(2d) may be rewritten as:

yk[t] =
[
ϕT

AR[t]⊗ gTAR(k)
... ϕT

X [t]⊗ gTX(k)
]
· θ + ek[t] =⇒

yk[t] =φT
k[t] · θ + ek[t] (6)

with ek[t] designating the model’s one-step-ahead pre-
diction error (residual) corresponding to k-th operating
condition and:

ϕAR[t]
∆
=
[
−yk[t− 1] . . . − yk[t− na]

]T
ϕX [t]

∆
=
[
xk[t] . . . xk[t− nb]

]T
gAR(k)

∆
=
[
Gda(1)(k) Gda(2)(k) . . . Gda(pa)(k)

]T
gX(k)

∆
=
[
Gdb(1)(k) Gdb(2)(k) . . . Gdb(pb)(k)

]T
.

Model parameter estimation requires stacking the equa-
tions of the form (6) for each distinct operating condition
{k1,1, k1,2, . . . , kM1,M2

}. This procedure is referred to as
pooling and gives: yk1,1 [t]

...
ykM1,M2

[t]

=

 φT
k1,1

[t]
...

φT
kM1,M2

[t]

 · θ +

 ek1,1 [t]
...

ekM1,M2
[t]

 =⇒

y[t] = Φ[t] · θ + e[t]. (7)

Following substitution of the available signal samples (for
t = 1, . . . , N) the following dynamic regression like expres-
sion is obtained:

y = Φ · θ + e. (8)

Notice that despite its phenomenal resemblance to stan-
dard regression, this expression includes a rich structure
of interdependencies among the various variables and ex-
periments, which need to be carefully taken into account.
Furthermore, the term functional pooling signifies the
functional dependence of each equation on the operating
parameter vector k. Proper estimation procedures based
on the Least Squares (LS) and Maximum Likelihood (ML)
principles are developed next.

3.1 Least Squares (LS) based estimation methods

Minimization of the Weighted Least Squares (WLS) crite-
rion:

J(θ) =
1

NM1M2

N∑
t=1

eT [t]Γ−1
w[t]e[t] =

1

NM1M2
eTΓ−1

w e

(9)
with Γw = Γw[t] ⊗ IN (IN designates the N unity
matrix), leads to the corresponding WLS estimator:

θ̂
WLS

=
[
ΦTΓ−1

wΦ
]−1[

ΦTΓ−1
w y

]
. (10)

As the covariance matrix Γw is practically unavailable,
it may be consistently estimated by using the Ordinary
Least Squares (OLS) estimator:

Γ̂
OLS

w[t] =
1

N

N∑
t=1

e[t, θ̂
OLS

]eT [t, θ̂
OLS

] (11)

with e[t, θ̂
OLS

] designating the residuals e[t] for θ = θ̂
OLS

.

The estimator in (10) is then expressed as:

θ̂
WLS

=
[
ΦT (Γ̂

OLS

w )−1Φ
]−1[

ΦT (Γ̂
OLS

w )−1y
]

(12)

with the final residual covariance matrix obtained as:

Γ̂
WLS

w[t] =
1

N

N∑
t=1

e[t, θ̂
WLS

]eT [t, θ̂
WLS

]. (13)

The Ordinary Least Squares (OLS) estimator is obtained
as a special case by setting Γw = I in equation (10), with
I designating the NM1M2 unity matrix.
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3.2 The Maximum Likelihood (ML) estimation method

The complete parameter vector θ̄ =
[
θT

... γw[ki,j , km,n]
]

is estimated as Kopsaftopoulos [2012]:̂̄θML ∆
= arg max

¯θ
L(θ,Γw[t]/e) (14)

with L(·) designating the conditional likelihood function.
In the general case of normally distributed and contempo-
raneously correlated residuals 3 ek[t] ∀ k the ML estima-
tors of θ and Γw[t] are obtained as:

θ̂
ML ∆

= arg min
θ

ln det
{ 1

N

N∑
t=1

e[t, θ̂]eT [t, θ̂]
}

(15)

Γ̂w[t] =
1

N

N∑
t=1

e[t, θ̂
ML

]eT [t, θ̂
ML

] (16)

Notice that the use of nonlinear optimization techniques
is required.

It should be noted that the WLS based estimation coin-
cides with the ML based estimation when the innovations
covariance matrix Γw in Equation (10) is replaced by
consistent estimates.

4. LARGE SAMPLE PROPERTIES OF THE
ESTIMATORS

The consistency and asymptotic distribution of the LS and
the ML estimators are studied under the assumption of
exactly known model structure. The proofs of the theorems
may be found in Kopsaftopoulos [2012].

4.1 Consistency analysis

In contrast to previous studies referring to the scalar
operating parameter case (Sakellariou and Fassois [2007],
Hios and Fassois [2009b]) where a weaker “in probability”
convergence was proven, strong consistency (almost sure
convergence) of the formulated estimators is presently
established. This is based on a proper reformulation of the
appropriate asymptotic analysis framework and the use of
proper strong convergence tools.

Theorem 1. (LS estimator). Let θo be the true projection
coefficient vector, wk[t] a white zero mean process with

E{w2
k[t]} = σ2

w(k) for every operating condition, and

E{φk[t]φk
T [t]} a nonsingular matrix. Then:

θ̂
LS

N
a.s.−→ θo (N −→∞),

with a.s. designating almost sure convergence. 2

Theorem 2. (ML estimator). Let θ̄o =
[
θTo

... γw[ki,j , km,n]
]

be the true parameter vector, wk[t] a normally distributed

zero mean white process with E{w2
k[t]} = σ2

w(k) for every

operating condition, and E{φk[t]φk
T [t]} a nonsingular

matrix. Then:̂̄θML

N
a.s.−→ θ̄o (N −→∞). 2

3 Contemporaneously correlated residuals: E{eki,j
[t]eki,j

[t]} =

σ2
e [ki,j ] and E{eki,j

[t]ekm,n [t]} = γe[ki,j , km,n].

4.2 Asymptotic distribution

Theorem 3. (WLS estimator). Let θo be the true projec-
tion coefficient vector, wk[t] a white zero mean process

with E{w2
k[t]} = σ2

w(k) for every operating condition, and

E{φk[t]φk
T [t]} a nonsingular matrix. Then:√

NM1M2(θ̂ − θo)
d−→ N (0,P ) (N −→∞)

with
P = [ΦTΓ−1

wΦ]−1 (17)

and “
d−→” designating convergence in distribution (White

[2001, pp. 65–66]). 2

Theorem 4. (ML estimator). Let θ̄o =
[
θTo

... γw[ki,j , km,n]
]

be the true parameter vector, wk[t] a normally distributed

zero mean white process with E{w2
k[t]} = σ2

w(k) for every

operating condition, and E{φk[t]φk
T [t]} a nonsingular

matrix.

Then the estimate ̂̄θ follows asymptotically Gaussian dis-
tribution with mean θ̄o and covariance matrix equal to
that indicated by the Cramér-Rao lower bound:̂̄θML

N ∼ N (θ̄,PML) (N −→∞). 2

The part of PML that corresponds to the coefficients of
projection vector θo may be shown to coincide with the co-
variance matrix of equation (17), in analogy to the classical
linear regression case with correlated residual sequences
(Söderström and Stoica [1989, p. 564]). Hence, the WLS
estimator of Section 3.1 achieves efficient estimation of θ
(reaching the Cramér-Rao lower bound) when a consistent
estimate of the true covariance matrix Γw is employed.

5. VFP-ARX MODEL STRUCTURE ESTIMATION

Model structure estimation may be based on customary
statistical criteria, such as the Akaike Information Cri-
terion (AIC) and Bayesian Information Criterion (BIC
– Ljung [1999], Söderström and Stoica [1989]), that are
properly adapted to the VFP model structure. In the
present study these criteria are used within the context
of an introduced Genetic Algorithm (GA) based proce-
dure which is very useful in the case of incomplete (that
is not necessarily including consecutive basis functions)
functional subspaces.

Given a basis function family, selection of the VFP-ARX
model structure M refers to the estimation of the set of
integers:

M ∆
= {na, nb, pa, pb, da(1), . . . , da(pa), db(1), . . . , db(pb)}.

Model structure estimation may then be seen as the
estimation of the integer-valued model structure vectorm:

m
∆
= [na nb

... pa pb
... da(1) . . . da(pa)

...

db(1) . . . db(pb)]
T (18)

na, nb ∈ {1, . . . , n̄}, pa, pb ∈ {1, . . . , p̄}
da(j), db(j) ∈ {1, . . . , d̄} (19)

with n̄, p̄ and d̄ designating the maximum considered or-
ders, subspace dimensionalities and basis function indices,
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respectively, which define the search space of the model
structure estimation subproblem.

The estimation of m may be based on minimization of the
BIC (Kopsaftopoulos [2012]):

m̂ = arg min
m

BIC(m), (20)

BIC(m) = ln det{Γw[t]}+ dim(θ) · ln(NM1M2)

N
. (21)

However, the model structure M is not uniquely defined
in terms of the model structure vector m as defined in
(18). As the sub-vectors [da(1) . . . da(pa)], [db(1) . . . db(pb)]
correspond to ordered sets of integers, any recomposition
produces equivalent model structures (for example vectors
[da(1) da(2) da(3)] and [da(1) da(3) da(2)] correspond to
the same model structure). Thus, the model structureM is
not uniquely defined, which implies that several global min-
ima with respect to m exist in the BIC criterion (fitness
function). Moreover, during the optimization procedure
the dimension of the model structure vector m varies, as
the subspace dimensionalities pa and pb change. Thus, the
definition of the model structure vector m of equation (18)
is inappropriate for actual optimization.

In order for the model structureM to be uniquely defined,
m is transformed into a binary variable vector as follows
(details in Kopsaftopoulos [2012]):

mbin
∆
=
[
na nb

... za,1 . . . za,pa
... zb,1 . . . zb,pb

]
[3+pa+pb]

(22)

with za,j , zb,j designating binary variables indicating
whether the basis function Gj(k) is included in the func-
tional subspace F〈AR〉, F〈X〉, respectively. Thus:

za,j = 1 ⇐⇒ Gj(k) ∈ F〈AR〉
za,j = 0 ⇐⇒ Gj(k) /∈ F〈AR〉

and similarly for the variables zb,j .

By the above procedure the model structureM is uniquely
defined by the fixed-dimensional vector mbin of equation
(22). Hence, the estimation of mbin is achieved as:

m̂bin = arg min
mbin

BIC(mbin). (23)

The minimization of m constitutes a discrete variable
optimization problem, which is tackled via the use of Ge-
netic Algorithms (GAs). Alternatively, in order to reduce
the dimension of the optimization problem, the AR and
X model orders may be initially selected via customary
model order selection techniques and the GA based proce-
dure may be used for estimating the functional subspace
dimensionalities and indices.

6. A MONTE CARLO STUDY

A VFP-ARX(4, 1)[9,9] true model with zero delay is used
to generate the data sets. An incomplete (that is not
including all consecutively obtained functions) functional
subspace of maximum polynomial degree 4 consisting of
9 shifted Type II Chebyshev polynomials (subspace di-
mensionality p = pa = pb = 9) is considered. The study
includes 500 runs, in each one of which the first scalar
operating parameter takes 20 values (k1

i ∈ [1, 20]) and
the second 16 (k2

j ∈ [1, 16]). Thus, each run includes
excitation-response signals (N = 1024 samples) from

−0.0804

−0.0797

−0.079

a1,1

0.1039

0.1044

0.1048

a1,4

−5.0396

−4.7483

−4.4571

x 10
−3 a1,9

−0.0122

−0.0118

−0.0113

a2,3

0.0177

0.0181

0.0185

a2,5

−0.0814

−0.0809

−0.0803

a3,1

0.0645

0.0649

0.0653

a3,4

−9.508

−9.2216

−8.9352

x 10
−3 a3,9

−3.185

−2.8571

−2.5291

x 10
−3 a4,5

OLS WLS ML

0.744

0.7453

0.7465

b0,1

OLS WLS ML

0.7171

0.7184

0.7198

b0,7

OLS WLS ML

−0.7409

−0.739

−0.737

b1,2

Fig. 1. Indicative VFP-ARX(4, 1)[9,9] projection coefficient
estimation results by the OLS, WLS and ML methods
(500 runs per method): True values (dashed red lines)
and sample mean estimates ±1.96 sample standard
deviation (shaded boxes). The dashed blue lines indi-
cate the theoretical (asymptotic) WLS/ML standard
deviations.

Table 1. GA details for functional subspace
estimation.

Population Elite Crossover Fitness func. tol.

140 10 0.7 10−4

M1 × M2 = 320 operating conditions. Each response is
corrupted by random noise at the 10% standard deviation
level (according to the ARX equation). The innovations
sequences corresponding to different operating conditions
are cross-sectionally uncorrelated, characterized by differ-
ent variances σ2

w(k). In all cases the responses are gener-
ated by using a number of mutually independent, random
sequences with zero mean and approximately flat spectra
acting as excitations and innovations.

Model structure estimation consists of the determination
of the functional subspace dimensionality p, as well as of
the specific basis functions included in the subspace, and
is treated via the GA procedure; details are provided in
Table 1. The correct functional subspace dimensionality
and specific basis functions have been thus selected in
89% of the cases (446/500 correct selections). These results
may be further improved by increasing the population size,
nevertheless computational burden will be also increased.

OLS and WLS estimation is based on QR implemen-
tation (Ljung [1999, pp. 318–320]). WLS estimation is
non-iterative, while the ML estimation makes use of the
Gauss-Newton non-linear optimization scheme (maximum
number of iterations 100; maximum number of function
evaluations 5000; termination tolerance of the loss function
10−2; termination tolerance of the estimated parameters
10−8). The WLS estimation is initialized by the OLS
covariance matrix, while the ML estimator is initialized
by the WLS estimates. Indicative parameter estimation
results are presented in Fig. 1. All three methods provide
accurate, effectively unbiased, estimates, with the WLS
and ML methods expectedly achieving better accuracy for
the coefficients of projection (smaller standard deviations).
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Fig. 2. VFP-ARX model second natural frequency versus
k1 and k2: (a) true model, (b) OLS estimate, (c) WLS
estimate, and (d) ML estimate (sample means over
500 runs).

The validity of the derived asymptotic distribution for the
projection coefficient estimators is confirmed by the ex-
cellent agreement between the sample standard deviations
and their counterparts obtained through the asymptotic
analysis.

The VFP-ARX(4, 1)[9,9] second natural frequency versus

the operating vector components (k1, k2) is depicted in
Fig. 2 for the true model and the OLS, WLS, and ML
estimates (sample means over 500 runs). Fig. 3 depicts
the VFP-ARX(4, 1)9 based Frequency Response Function
(FRF; B[e−jω,k]/A[e−jω,k]) magnitude surfaces versus
frequency and k2 (with k1 = k1

8), for the true system,
as well as the OLS, WLS, and ML estimates (also sample
means over 500 runs). The agreement between the true
and all estimated curves is indeed excellent.

7. CONCLUDING REMARKS

The identification of global and parsimonious models
based on data records obtained under a sample of different
operating conditions, each one characterized by several pa-
rameters, was considered. The problem was tackled within
a recently developed Functional Pooling (FP) framework.
Vector-dependent Functionally Pooled ARX (VFP-ARX)
models were postulated, and estimators based on the LS
and ML principles were formulated. The estimators’ strong
consistency and asymptotic distribution were established.
For model structure (including functional subspaces) esti-
mation a Genetic Algorithm based procedure was formu-
lated. The effectiveness of the formulated methods, along
with the validity of the asymptotic results, were confirmed
via a Monte Carlo study.
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