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ABSTRACT: A comparative assessment of two time–domain output–only vector structural iden-
tification methods, namely a Vector AutoRegressive (VAR) and a stochastic subspace method, is
presented via their application to a laboratory cable–stayed bridge structure. A brief overview of
the estimation methods is provided, while model order selection and validation are discussed. The
modal frequencies and damping ratios are extracted and compared to those obtained via classi-
cal non–parametric techniques, while the methods’ performance characteristics are assessed. The
results highlight each method’s facets and demonstrate howeach one may be used for effective
output–only identification.

1 INTRODUCTION

Structural identification under unobservable excitation is important in a large number of cases
where the excitation is not measurable (Lardies and Ta 2011,Magalhãeset al. 2009, Papakos and
Fassois 2003, Petsouniset al. 2001). Typical examples include in–flight testing of aeronautical
structures, in–operation testing of surface vehicle (automobile, railway) structures, as well as the
testing of civil structures under ambient or seismic excitation. In such cases the identification has
to be exclusively based upon the measured vibration responses.

Due to a number of advantages (such as reduced acquisition and analysis times, improved esti-
mation accuracy, modal parameter “consistency”),vectormethods, that is methods simultaneously
accounting for several measured vibration signals, are most significant. Nevertheless, despite the
progress achieved so far, our understanding of the methods’relative merits and performance char-
acteristics as related to structural identification appears somewhat limited. This is, at least in part,
due to the lack of comparative studies and critical assessments of the methods’ pros and cons under
various testing conditions.
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Thegoal of this study is to contribute to filling this gap by presenting the application and ex-
perimental assessment of two important time–domain methods, namely a Vector AutoRegressive
(VAR) and a stochastic subspace method using state space (SS) models, to a laboratory cable–
stayed bridge structure. It should be emphasized that although Vector AutoRegressive Moving
Average (VARMA) methods (Papakos and Fassois 2003) are moreappropriate to their VAR coun-
terparts and offer a better complement to SS methods, a VAR method is presently considered
mainly due to simplicity – VARMA results are expected to be presented in a forthcoming paper.
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Figure 1: The scale cable–stayed bridge structure and the experimental set–up: (a) top–to–bottom view,
and (b) general overview (force excitation at Point X and vibration measurement at Points Y1–Y4).

While in recent years both the VAR (Papakos and Fassois 2003,Petsouniset al. 2001) and SS
(Lardies and Ta 2011, Magalhãeset al. 2009, Wenget al. 2008) based structural identification
frameworks have been frequently employed, it appears that no mutually comparative assessments
are available.

Some of the main issues this study addresses between estimated VAR and stochastic SS models
include: (i) achieved model parsimony (including requiredoverdetermination), (ii) achieved model
optimality (in terms of predictive ability and the BayesianInformation Criterion, BIC, Ljung 1999
pp. 505–507), (iii) identified structural dynamics (spectra and cross spectra) and modal parameter
accuracy (point and interval estimates of modal quantities, missed modes, pseudo modes).

2 THE STRUCTURE AND THE EXPERIMENTAL SET–UP

The laboratory cable–stayed bridge structure and the test rig are shown in Fig. 1. The bridge
deck is represented by a1470 × 190 × 2 mm aluminum plate suspended via10 + 10 cables
attached to the central steel pylon and clamped to each edge of the deck. Seven200 × 120 × 5
mm steel plates are placed on the aluminum deck for increasing its mass. The excitation signal
is zero–mean broadband random stationary Gaussian force applied vertically on the deck at Point
X via an electromechanical shaker (MB Dynamics Modal 50A, max load 225 N) and measured
via an impedance head (PCB 288D01, sensitivity 98.41 mV/lb), while the vibration responses
at Points Y1–Y4 (Fig. 1) are measured via dynamic strain gauges (PCB 740B02, longitudinal
orientation,0.005 − 100 kHz, 50 mV/µε; sampling frequencyfs = 256 Hz, signal bandwidth
0.5 − 100 Hz – see Table 1). The force excitation and strain response signals are driven through
conditioning charge amplifiers (PCB 482A20 and PCB 481, respectively) into the data acquisition
system consisting of two SigLab 20–42 measurement modules.The sample mean is subtracted
from each signal, and scaling by the signal’s sample standard deviation is implemented.

Table 1:Vibration signal characteristics and estimation method details.
Vibration signals Signal bandwidth:0.5− 100 Hz, Sampling frequency:fs = 256 Hz

Signal length (samples):N = 23 040
Non–parametric Segment length (samples):L = 2 048, Frequency resolution:∆f = 0.125 Hz
(Welch) estimation Window: Hamming, Overlap:80% (MATLAB function: pwelch.m)
VAR estimation Weighted Least Squares (WLS; single iteration) – QR implementation

(MATLAB function arx.m)
SS estimation Subspace CVA method – QR implementation (MATLAB function n4sid.m)
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3 THE STRUCTURAL IDENTIFICATION METHODS

3.1 The Vector AR identification method

Under the standard assumption of uncorrelated excitation,the observeds–dimensional vibra-
tion (displacement, velocity, or acceleration) signal, say1 y[t], may be modeled as ans–variate
(presentlys = 4) Vector AutoRegressive (VAR(n)) process of the form2 (Fassois 2001, Ljung
1999):

y[t] +

n∑

i=1

Ai · y[t− i] = e[t] E{e[t] · eT [t]} = Σ (1)

with Ai (s × s) designating thei–th AR matrix, e[t] (s × 1) the model residual (one–step–
ahead prediction error) sequence characterized by the non–singular (and generally non–diagonal)
covariance matrixΣ, n the AR order, andE{·} statistical expectation.

Given the vibration signal measurementsy[t] (t = 1, 2 . . . , N), the estimation of the VAR
parameter vectorθ comprising all AR matrix elements(θ = vec([A1 . . . An]) and the residual
covariance matrixΣ is accomplished via linear regression schemes based on minimization of the
Ordinary Least Squares (OLS) or the Weighted Least Squares (WLS) criterion (Fassois 2001,
Ljung 1999 p. 206).

The modeling procedure involves the successive fitting of VAR(n) models for increasing AR
ordern, until an adequate model is achieved. Model adequacy is checked via a combination of
tools, which include monitoring of the Bayesian Information Criterion (BIC) (Ljung 1999 pp.
505–507) and the trace of the estimated residual covariancematrix Σ̂ for a minimum value, as
well as the use of frequency stabilization diagrams (Fassois 2001) which depict the evolution of
estimated natural frequencies with increasing order. Their basis for structural mode distinction lies
with the expectation that structural frequencies tend to “stabilize” (remain invariant) as the order
increases, whereas “extraneous” frequencies change “randomly” within the considered frequency
range.

3.2 The stochastic subspace (State Space, SS) identification method

The stochastic output–only linear multivariate (vector) state space model is of the form (Ljung
1999 Sec. 4.3, Van Overschee and De Moor 1996):

z[t+ 1] = A · z[t] +K · e[t]

y[t] = C · z[t] + e[t] E{e[t] · eT [t]} = Σ (2)

with y[t] representing thes–dimensional vibration response vector,z[t] thep–dimensional state
vector,e[t] ans–dimensional Gaussian zero–mean white vector sequence with covarianceΣ, and
A,C andK the system matrices. The orderp of the system is the dimension of the state vector
z[t], while A ∈ R

p×p is the dynamical system matrix. The matrix pair{A,C} is assumed to be
observable, which implies that all modes in the system can beobserved in the output vectory[t].

The estimation of the unknown system matrices is presently achieved via subspace identification
using the Canonical Variate Algorithm (CVA) (Ljung 1999 Sec. 10.6, Van Overschee and De Moor
1996 pp. 80–81). The modeling procedure involves the successive fitting of state space models
for increasing ordern, until an adequate model is selected (Fassois 2001, Ljung 1999). Model
order selection is based on the BIC, monitoring the logarithm of singular values of the Hankel
matrix obtained via Singular Value Decomposition (SVD) (Ljung 1999 Sec. 10.6), and the use of
frequency stabilization diagrams (Fassois 2001).

1t = 1, 2, . . . indicates discrete time with the corresponding analog being t · Ts (Ts the sampling period).
2Bold face lower/upper case characters indicate vector/matrix quantities, respectively.
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Table 2:Non–parametric (Welch based), VAR(49), and SS(55) modal parameter (point) estimates.
Non–parametric VAR(49) SS(55) Non–parametric VAR(49) SS(55)
Mode fn fn ζ fn ζ Mode fn fn ζ fn ζ

(Hz) (Hz) (%) (Hz) (%) (Hz) (Hz) (%) (Hz) (%)
1† 20.75 21.02 6.29 20.69 6.73 9† 53.25 53.43 2.01 54.01 2.67

– 29.13 5.65 – – 10† 54.75 54.71 0.76 54.52 0.51
2† 34.5 34.26 4.11 35.21 4.85 – 55.62 1.89 – –
3† 36.5 36.01 3.05 36.90 0.41 11† 57.25 57.39 2.39 57.05 4.64
4† 38.5 37.79 1.76 38.22 1.41 – 60.60 2.39 – –

– 39.22 3.06 38.51 5.98 12† 61.5 61.54 0.60 61.41 0.33
5† 41.5 41.79 2.09 41.19 1.72 13 62.75 63.18 2.83 62.83 2.89

– 42.75 5.12 42.21 4.04 – 67.98 2.73 – –
6† 43.125 43.52 2.51 – – 14† 69.75 70.06 1.79 69.95 2.40
7 46.625 45.53 2.90 46.67 6.88 15 73.125 72.61 1.05 72.66 0.85
8† 47.25 47.58 2.89 – – 16 74.75 74.84 1.36 74.78 1.37

– – – 50.86 0.50 17 76.5 77.47 3.36 – –
– 51.90 2.67 – – – 85.42 1.62 – –

18 95.5 95.59 2.29 – –
†indicates mode evident in the non–parametric (Welch based)spectral estimates.

4 STRUCTURAL IDENTIFICATION RESULTS

The structural identification methods are now assessed via their application to a scale cable–stayed
laboratory bridge structure. The structure exhibits 18 modes in the0.5−100 Hz range, the validity
of which has been confirmed via input–output analysis using both non–parametric and parametric
(VAR with eXogenous excitation, VARX) techniques (not presented). A maximum damping ratio
of 10% has been set for distinguishing structural from “extraneous” modes.

All identification results presented in the sequel are basedonN = 23 040 (≈ 90 s) sample–long
response signals obtained from thefour vibration measurement locations on the structure (Fig.1).

4.1 Non–parametric identification results

An L = 2 048 sample–long Hamming data window with80% overlap is used for Welch–based
spectral estimation (Table 1; MATLAB functionpwelch.m). The obtained Power Spectral Density
(PSD) estimates for all vibration measurement locations are depicted in Fig. 2. There are18
modes included in the bandwidth of0.5 − 100 Hz; nevertheless12 modes are most prominent in
the non–parametric spectra (see Fig. 2 and Table 2).

4.2 VAR identification results

The successive fitting of4–variate VAR(n) models forn = 2, . . . , 80 (MATLAB function arx.m)
leads to decreasing BIC, which reaches an approximate plateau for model ordern > 40, while
BIC minimization is achieved for ordern = 49 (Fig. 3).

Moreover, as indicated in the frequency stabilization diagram of Fig. 4a, model orders ofn > 40
are adequate for most natural frequencies to get stabilized. Notice the color bar in the figure, which
presents the damping ratio range. Two norms of the estimatedresidual covariance matrices(Σ̂)
are presented in Fig. 5 for increasing model order – these areessentially measures of the models’
optimality (in terms of predictive ability).

Model parsimony is examined in Fig. 6: Fig. 6a depicts the Samples Per Parameter (SPP) ratio
versus increasing model orderp (lower horizontal axis) and the VAR ordern (upper horizontal
axis). Notice that the SPP ratio is sufficient even for the VAR(80) model, as well as that the model
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Figure 2:Non–parametric (Welch–based) and parametric (VAR(49) and SS(55) based) spectral estimates.
The dashed vertical lines indicate actual structural modes.

order is four times the VAR order. Fig. 6b depicts the number of model parameters estimated
versus the model orderp (lower horizontal axis) and the VAR ordern (upper horizontal axis).

The above identification procedure leads to the selection ofa4–variate VAR(49) model (Table
3). The identified VAR(49) representation has784 parameters with the SPP being equal to29.4.
The VAR(49) based spectra for all vibration measurement locations are presented in Fig. 2, where
they are contrasted to their non–parametric (Welch based) counterparts.
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Figure 3:Model order selection: BIC criterion for VAR(n) and SS(p) type parametric models.
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Figure 4:Frequency stabilization diagrams for VAR(n) and SS(p) type models.

4.3 Stochastic subspace (state space, SS) identification results

Stochastic subspace identification of the structural dynamics (MATLAB function n4sid.m) in-
volves the successive fitting of4–variate SS models forp = 2, . . . , 80. This leads to decreasing
BIC, which reaches a minimum for ordern = 42 (Fig. 3b). Furthermore, as indicated by the
frequency stabilization diagram of Fig. 4, model orders ofp > 50 are needed for most natural
frequencies to get stabilized.

The two norms of the estimated residual covariance matrices(Σ̂) are presented in Fig. 5 for
increasing model order – these are essentially measures of the models’ predictive ability. Model
parsimony is examined in Fig. 6: The Samples Per Parameter (SPP) versus increasing model order
p (lower horizontal axis) is presented in Fig. 6a, while the number of model parameters versus
model order is depicted in Fig. 6b. Notice that the SPP goes below 20 for ordersp > 30, and
decreases to reach only3.24 for p = 80.

A 4–variate SS model of orderp = 55 is finally selected as adequate (Table 3). The identified
SS representation has3 640 parameters with the SPP being equal to6.33. The SS based spectra
for all vibration measurement locations are presented in Fig. 2, where they are compared to their
non–parametric (Welch based) and VAR(49) counterparts.
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Figure 5:Model optimality in terms of predictive ability for VAR(n) and SS(p) type parametric models:
(a) largest singular value of̂Σ and (b) trace of̂Σ for increasing model order.

4.4 Discussion

Both VAR and SS model based identified structural modes are invery good agreement between
themselves, and also with the non–parametric analysis (seeTables 2, 3 and Fig. 2). The identified
modes are mostly characterized by low to medium damping ratios, asζ lies in the interval[0.6%−
6.3%]. The VAR model is characterized by increased overdetermination (515%) compared to
the SS model(147%), which influences the number of identified spurious modes. This is also
obvious from the frequency stabilization diagrams (Fig. 4), where the VAR based figure exhibits
an increased number of non–stabilized (spurious) modes forhigher model orders, whereas the SS
model based figure exhibits a clearly smaller number. The VARmethod effectively identifies all
18 structural modes, whereas the SS (subspace) method is able to identify only 14 (misses 4).
Nevertheless, the VAR model exhibits 8 spurious modes, while the SS exhibits 2 (Table 2).

Furthermore, Fig. 6a shows that the SPP ratio is significantly higher for the VAR models com-
pared to their SS counterparts, as the SS representations use a significantly higher number of
estimated parameters (Fig. 6b and Table 3). This results in reduced statistical robustness, a claim
enhanced by the fact that the SS covariance matrix of the estimated parameters cannot be computed
(Table 3). Nevertheless, the low SPP ratio does not seem to have an effect on the SS based point
modal estimates, as the corresponding results are very accurate. Yet it is clear that sufficiently long
data records should be employed in order for the SS models to be effectively estimated. Finally, as
Fig. 5 demonstrates and despite the lower parametrization (number of estimated parameters), the
VAR models exhibit an overall better predictive ability than that of their SS counterparts (lower
residual covariance matrix singular value and trace – Table3). This may be viewed as somewhat
natural, due to the fact that VAR models are estimated by minimizing a quadratic prediction error
criterion.

Table 3:Estimated VAR(49) and SS(55) model characteristics.
VAR(49) SS(55)

Model Parsimony Model order 196 55
overdetermination(%) 515% 147%
Number of parameters 784 3 520
Samples Per Parameters (SPP) 29.4 6.54

Model optimality Norm of residual cov. matrix 0.21 0.26
(incl. predictive ability) Trace of residual cov. matrix 0.23 0.29

BIC −18.57 −14.13

Modal parameter Point estimates +18 estimated modes +14 estimated modes
estimation - 8 pseudo modes -2 pseudo modes

Interval (uncertainty) estimates:
Condition number of estimated 5× 108 n/a
parameter covariance
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Figure 6: Model parsimony for VAR(n) and SS(p) type parametric models: (a) samples per parameter
(SPP) and (b) number of parameters for increasing model order.

5 CONCLUDING REMARKS

The main conclusions drawn from this work may be summarized as follows:

(a) Both of the VAR and SS identification methods used are in good agreement between them-
selves and also with non–parametric (Welch based) analysis.

(b) The estimated VAR model – albeit of higher order – is far more parsimonious than its esti-
mated SS counterpart (784 versus3 520 parameters). This drastically increased number of
parameters may cause statistical reliability problems for“short” signal records.

(c) The VAR model effectively identifies all 18 structural modes, while it exhibits a somewhat
increased number of spurious modes(8) due to its increased degree of overdetermination
(515%). The SS model fails to identify 4 structural modes, but exhibits only 2 spurious
modes (degree of overdetermination147%). Due to their smaller numbers, the distinction
of spurious modes may be somewhat simpler in the SS model case, but, on the other hand,
the method is more likely to miss some of the “weaker” structural modes.

(d) Although point modal estimates are similar in the VAR andSS cases, interval (uncertain)
modal estimates could be obtained only in the VAR case. They could not be obtained in the
SS case due to very poorly conditioned covariance matrix estimate.

(e) Further comparisons are necessary for fully assessing the methods – these should be ex-
panded to include full VARMA models as well.
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