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ABSTRACT: A comparative assessment of two time—domain wedgnly vector structural iden-
tification methods, namely a Vector AutoRegressive (VAR] arstochastic subspace method, is
presented via their application to a laboratory cable-estdyridge structure. A brief overview of
the estimation methods is provided, while model order siele@nd validation are discussed. The
modal frequencies and damping ratios are extracted and ar@ahpo those obtained via classi-
cal non—parametric techniques, while the methods’ perdoica characteristics are assessed. The
results highlight each method'’s facets and demonstratedamli one may be used for effective
output—only identification.

1 INTRODUCTION

Structural identification under unobservable excitatisnnmiportant in a large number of cases
where the excitation is not measurable (Lardies and Ta 20a@alhdest al. 2009, Papakos and
Fassois 2003, Petsoures al. 2001). Typical examples include in—flight testing of aentical
structures, in—operation testing of surface vehicle (aotgile, railway) structures, as well as the
testing of civil structures under ambient or seismic exidita In such cases the identification has
to be exclusively based upon the measured vibration resgons

Due to a number of advantages (such as reduced acquisitibaretysis times, improved esti-
mation accuracy, modal parameter “consistencygitormethods, that is methods simultaneously
accounting for several measured vibration signals, are sigsificant. Nevertheless, despite the
progress achieved so far, our understanding of the metheldsive merits and performance char-
acteristics as related to structural identification appeamewhat limited. This is, at least in part,
due to the lack of comparative studies and critical assassnoéthe methods’ pros and cons under
various testing conditions.

The goal of this study is to contribute to filling this gap by preseagtithe application and ex-
perimental assessment of two important time—domain methwamely a Vector AutoRegressive
(VAR) and a stochastic subspace method using state spagen@fels, to a laboratory cable—
stayed bridge structure. It should be emphasized thatwth&ector AutoRegressive Moving
Average (VARMA) methods (Papakos and Fassois 2003) are apmepriate to their VAR coun-
terparts and offer a better complement to SS methods, a VARadds presently considered
mainly due to simplicity — VARMA results are expected to beganted in a forthcoming paper.
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Figure 1: The scale cable—stayed bridge structure and the experfsatt-up: (a) top—to—bottom view,
and (b) general overview (force excitation at Point X andation measurement at Points Y1-Y4).

While in recent years both the VAR (Papakos and Fassois 2083punist al. 2001) and SS
(Lardies and Ta 2011, Magalhdesal. 2009, Wenget al. 2008) based structural identification
frameworks have been frequently employed, it appears thatutually comparative assessments
are available.

Some of the main issues this study addresses between estiv@R and stochastic SS models
include: (i) achieved model parsimony (including requiodrdetermination), (ii) achieved model
optimality (in terms of predictive ability and the Bayesiaformation Criterion, BIC, Ljung 1999
pp. 505-507), (iii) identified structural dynamics (spa@nd cross spectra) and modal parameter
accuracy (point and interval estimates of modal quanfitiéssed modes, pseudo modes).

2 THE STRUCTURE AND THE EXPERIMENTAL SET-UP

The laboratory cable—stayed bridge structure and the igestre shown in Fig. 1. The bridge
deck is represented by 170 x 190 x 2 mm aluminum plate suspended via + 10 cables
attached to the central steel pylon and clamped to each ddfe deck. SeveR00 x 120 x 5
mm steel plates are placed on the aluminum deck for incrgatirmass. The excitation signal
is zero—mean broadband random stationary Gaussian foptiegpertically on the deck at Point
X via an electromechanical shaker (MB Dynamics Modal 50Axread 225 N) and measured
via an impedance head (PCB 288D01, sensitivity 98.41 mVillijile the vibration responses
at Points Y1-Y4 (Fig. 1) are measured via dynamic strain ga§CB 740B02, longitudinal
orientation,0.005 — 100 kHz, 50 mV/ue; sampling frequency, = 256 Hz, signal bandwidth
0.5 — 100 Hz — see Table 1). The force excitation and strain respowggelsi are driven through
conditioning charge amplifiers (PCB 482A20 and PCB 481, ,aetyely) into the data acquisition
system consisting of two SigLab 20-42 measurement moddles.sample mean is subtracted
from each signal, and scaling by the signal’'s sample standiariation is implemented.

Table 1:Vibration signal characteristics and estimation methaditte
Vibration signals Signal bandwidth:5 — 100 Hz, Sampling frequencyfs = 256 Hz
Signal length (samples)y = 23 040
Non—parametric Segment length (samplds}: 2 048, Frequency resolutionA f = 0.125 Hz
(Welch) estimation  Window: Hamming, Overlagd% (MATLAB function: pwelch.m)
VAR estimation Weighted Least Squares (WLS; single itergti- QR implementation
(MATLAB function arx.m)
SS estimation Subspace CVA method — QR implementation (MM Eunction n4sid.m)
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3 THE STRUCTURAL IDENTIFICATION METHODS

3.1 The Vector AR identification method

Under the standard assumption of uncorrelated excitatiom,observeds—dimensional vibra-
tion (displacement, velocity, or acceleration) signay'sg[t], may be modeled as an-variate

(presentlys = 4) Vector AutoRegressive (VAR:)) process of the ford(Fassois 2001, Ljung
1999):

ylt] + ZAZ- ylt—i=elt]  Ele[t]-e'[t]} == @

with A; (s x s) designating the-th AR matrix, e[t] (s x 1) the model residual (one—step—
ahead prediction error) sequence characterized by thesimgnuar (and generally non—diagonal)
covariance matrix, n the AR order, andv{-} statistical expectation.

Given the vibration signal measuremeng] (t = 1,2...,N), the estimation of the VAR
parameter vectof comprising all AR matrix element® = veq[A; ... A,]) and the residual
covariance matrix is accomplished via linear regression schemes based omination of the
Ordinary Least Squares (OLS) or the Weighted Least SquasS) criterion (Fassois 2001,
Ljung 1999 p. 206).

The modeling procedure involves the successive fitting oRWA) models for increasing AR
ordern, until an adequate model is achieved. Model adequacy ikededa a combination of
tools, which include monitoring of the Bayesian InformatiGriterion (BIC) (Ljung 1999 pp.

505-507) and the trace of the estimated residual covariaratgx X for a minimum value, as
well as the use of frequency stabilization diagrams (Fas&001) which depict the evolution of
estimated natural frequencies with increasing order. rifasis for structural mode distinction lies
with the expectation that structural frequencies tend tabiitize” (remain invariant) as the order
increases, whereas “extraneous” frequencies changedmagtiwithin the considered frequency
range.

3.2 The stochastic subspace (State Space, SS) identificagthod

The stochastic output—only linear multivariate (vectdgtes space model is of the form (Ljung
1999 Sec. 4.3, Van Overschee and De Moor 1996):

zt+1] = A-z[t|]+ K - et]
ylt] = C-z[t] + eff] E{elt] - e'[t]} = = @

with y|t] representing the—dimensional vibration response vecteft| the p—dimensional state
vector,e[t] ans—dimensional Gaussian zero—mean white vector sequenbeaiariance:, and

A, C and K the system matrices. The ordepf the system is the dimension of the state vector
z[t], while A € RP*P is the dynamical system matrix. The matrix pad, C'} is assumed to be
observable, which implies that all modes in the system casbiserved in the output vectgit|.

The estimation of the unknown system matrices is preseatiieged via subspace identification
using the Canonical Variate Algorithm (CVA) (Ljung 1999 S&6.6, Van Overschee and De Moor
1996 pp. 80-81). The modeling procedure involves the ssaeefitting of state space models
for increasing orden, until an adequate model is selected (Fassois 2001, Lju@§)19Model
order selection is based on the BIC, monitoring the logaritf singular values of the Hankel
matrix obtained via Singular Value Decomposition (SVD)uig 1999 Sec. 10.6), and the use of
frequency stabilization diagrams (Fassois 2001).

1t =1,2,...indicates discrete time with the corresponding analogdeir?, (7 the sampling period).
2Bold face lower/upper case characters indicate vectorixmguantities, respectively.
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Table 2:Non—parametric (Welch based), VAR), and S$55) modal parameter (point) estimates.

Non—parametric VAR49) SS55) Non—parametric VAR49) SS55)
Mode In In ¢ In ¢ Mode In In ¢ In ¢
(Hz) (Hz) ) (Hz) (%) (Hz) (Hz)  0) (Hz) (%)
17 20.75 21.02 6.29 2069 6.73 To 53.25 53.43 2.01 54.01 2.67
- 29.13 565 - - 10 54.75 54.71 0.76 5452 0.51
2t 345 3426 411 3521 485 — 5562 1.89 - -
3t 365 3601 3.05 3690 0.41 1 57.25 57.39 239 57.05 4.64
4t 385 3779 176 3822 141 — 60.60 2.39 - -
— 3922 306 3851 5098 12 61.5 6154 0.60 6141 0.33
5t 415 41.79 2.09 4119 172 13 62.75 63.18 2.83 62.83 2.89
— 4275 512 4221 4.04 - 6798 273 - -
6! 43.125 4352 251 - - ia 69.75 70.06 1.79 69.95 2.40
7 46.625 4553 290 46.67 6.88 15 73.125 7261 1.05 7266 0.85
gt 4725 4758 2.89 - - 16 7475 7484 136 74.78 1.37
- - - 50.86 0.50 17 765 77.47 3.36 - -
- 5190 2.67 - - - 8542 162 - -
18 95,5 9559 2.29 - -

findicates mode evident in the non—parametric (Welch baseehtral estimates.

4 STRUCTURAL IDENTIFICATION RESULTS

The structural identification methods are now assesseti®iadpplication to a scale cable—stayed
laboratory bridge structure. The structure exhibits 18 @sdd the).5 — 100 Hz range, the validity
of which has been confirmed via input—output analysis usoth hon—parametric and parametric
(VAR with eXogenous excitation, VARX) techniques (not meted). A maximum damping ratio
of 10% has been set for distinguishing structural from “extrars2enodes.

Allidentification results presented in the sequel are basedl = 23 040 (=~ 90 s) sample—long
response signals obtained from foer vibration measurement locations on the structure (Fig.1).

4.1 Non-parametric identification results

An L = 2 048 sample-long Hamming data window wig8% overlap is used for Welch-based
spectral estimation (Table 1; MATLAB functigowelch.n. The obtained Power Spectral Density
(PSD) estimates for all vibration measurement locatioesdapicted in Fig. 2. There ans
modes included in the bandwidth @f — 100 Hz; nevertheles$2 modes are most prominent in
the non—parametric spectra (see Fig. 2 and Table 2).

4.2 VAR identification results

The successive fitting of-variate VARn) models forn = 2, ..., 80 (MATLAB function arx.m)
leads to decreasing BIC, which reaches an approximateapldte model ordern > 40, while
BIC minimization is achieved for order = 49 (Fig. 3).

Moreover, as indicated in the frequency stabilization diagof Fig. 4a, model orders af > 40
are adequate for most natural frequencies to get stahilidetice the color bar in the figure, which
presents the damping ratio range. Two norms of the estinragdual covariance matricéX)
are presented in Fig. 5 for increasing model order — thesessm@ntially measures of the models’
optimality (in terms of predictive ability).

Model parsimony is examined in Fig. 6: Fig. 6a depicts the [gdamPer Parameter (SPP) ratio
versus increasing model ordgr(lower horizontal axis) and the VAR order (upper horizontal
axis). Notice that the SPP ratio is sufficient even for the Y8R model, as well as that the model
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Figure 2:Non—parametric (Welch—based) and parametric (V&R and S$55) based) spectral estimates.
The dashed vertical lines indicate actual structural modes

order is four times the VAR order. Fig. 6b depicts the humtfemodel parameters estimated
versus the model order(lower horizontal axis) and the VAR order(upper horizontal axis).

The above identification procedure leads to the selecti@vetariate VAR 49) model (Table
3). The identified VAR49) representation ha&4 parameters with the SPP being equakfol.
The VAR(49) based spectra for all vibration measurement locationsrasepted in Fig. 2, where
they are contrasted to their non—parametric (Welch basmdjterparts.
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Figure 4:Frequency stabilization diagrams for VAR and S$p) type models.

4.3 Stochastic subspace (state space, SS) identificatoittge

Stochastic subspace identification of the structural dycarMATLAB function n4sid.n) in-
volves the successive fitting df-variate SS models fgr = 2,...,80. This leads to decreasing
BIC, which reaches a minimum for order = 42 (Fig. 3b). Furthermore, as indicated by the
frequency stabilization diagram of Fig. 4, model ordergof 50 are needed for most natural
frequencies to get stabilized.

The two norms of the estimated residual covariance mat(ﬁlgsare presented in Fig. 5 for
increasing model order — these are essentially measurég ofiodels’ predictive ability. Model
parsimony is examined in Fig. 6: The Samples Per Parame®&)(&rsus increasing model order
p (lower horizontal axis) is presented in Fig. 6a, while thenber of model parameters versus
model order is depicted in Fig. 6b. Notice that the SPP go&msawb20) for ordersp > 30, and
decreases to reach orgy24 for p = 80.

A 4-variate SS model of order = 55 is finally selected as adequate (Table 3). The identified
SS representation h&s640 parameters with the SPP being equabi&3. The SS based spectra
for all vibration measurement locations are presenteddn Ej where they are compared to their
non—parametric (Welch based) and VAR) counterparts.
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Figure 5:Model optimality in terms of predictive ability for VAR:) and S$p) type parametric models:
(a) largest singular value & and (b) trace o for increasing model order.

4.4 Discussion

Both VAR and SS model based identified structural modes averiy good agreement between
themselves, and also with the non—parametric analysisTe@ges 2, 3 and Fig. 2). The identified
modes are mostly characterized by low to medium dampingsais, lies in the interval0.6% —
6.3%]. The VAR model is characterized by increased overdetetinmd515%) compared to
the SS mode(147%), which influences the number of identified spurious modesis Ehalso
obvious from the frequency stabilization diagrams (Fig.where the VAR based figure exhibits
an increased number of non—stabilized (spurious) moddsdber model orders, whereas the SS
model based figure exhibits a clearly smaller number. The Yi#d®hod effectively identifies all
18 structural modes, whereas the SS (subspace) methodeigoaldentify only 14 (misses 4).
Nevertheless, the VAR model exhibits 8 spurious modes,enthié SS exhibits 2 (Table 2).

Furthermore, Fig. 6a shows that the SPP ratio is signifigdmgiher for the VAR models com-
pared to their SS counterparts, as the SS representatiena significantly higher number of
estimated parameters (Fig. 6b and Table 3). This resulsdnoed statistical robustness, a claim
enhanced by the fact that the SS covariance matrix of thmatd parameters cannot be computed
(Table 3). Nevertheless, the low SPP ratio does not seenmvidraeffect on the SS based point
modal estimates, as the corresponding results are veryadeciet it is clear that sufficiently long
data records should be employed in order for the SS modekséffectively estimated. Finally, as
Fig. 5 demonstrates and despite the lower parametrizatiomijer of estimated parameters), the
VAR models exhibit an overall better predictive ability thenat of their SS counterparts (lower
residual covariance matrix singular value and trace — Tapld his may be viewed as somewhat
natural, due to the fact that VAR models are estimated bymiaiing a quadratic prediction error
criterion.

Table 3:Estimated VAR49) and S$55) model characteristics.

VAR (49) SS(55)
Model Parsimony Model order 196 55
overdeterminatior§%) 515% 147%
Number of parameters 784 3520
Samples Per Parameters (SPP) 29.4 6.54
Model optimality Norm of residual cov. matrix 0.21 0.26
(incl. predictive ability)  Trace of residual cov. matrix 0.23 0.29
BIC —18.57 —14.13
Modal parameter Point estimates 18 estimated modes  #1 estimated modes
estimation - 8 pseudo modes 2 pseudo modes
Interval (uncertainty) estimates:
Condition number of estimated 5 x 10% n/a

parameter covariance
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Figure 6: Model parsimony for VARn) and S$p) type parametric models: (a) samples per parameter
(SPP) and (b) number of parameters for increasing modet.orde

5 CONCLUDING REMARKS

The main conclusions drawn from this work may be summarizadolbows:

(a) Both of the VAR and SS identification methods used are odggreement between them-
selves and also with non—parametric (Welch based) analysis

(b) The estimated VAR model — albeit of higher order — is farenparsimonious than its esti-
mated SS counterpari§4 versus3 520 parameters). This drastically increased number of
parameters may cause statistical reliability problemsdbort” signal records.

(c) The VAR model effectively identifies all 18 structural des, while it exhibits a somewhat
increased number of spurious mod&$ due to its increased degree of overdetermination
(515%). The SS model fails to identify 4 structural modes, but eithibnly 2 spurious
modes (degree of overdeterminatiofi7%). Due to their smaller numbers, the distinction
of spurious modes may be somewhat simpler in the SS modellmais®n the other hand,
the method is more likely to miss some of the “weaker” strraittnodes.

(d) Although point modal estimates are similar in the VAR &1l cases, interval (uncertain)
modal estimates could be obtained only in the VAR case. Thaldmot be obtained in the
SS case due to very poorly conditioned covariance matrisnass.

(e) Further comparisons are necessary for fully asseskimgnethods — these should be ex-
panded to include full VARMA models as well.
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