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An experimental assessment of several vibration based statistical time series methods

for structural health monitoring (SHM) is presented via their application to a

lightweight aluminum truss structure. A concise overview of the main non-parametric

and parametric methods is provided, including response-only and excitation–response

schemes. Damage detection and identification is based on univariate (scalar) versions of

the methods, while results for three distinct vibration measurement positions on the

structure are presented. The methods’ effectiveness is assessed via multiple experi-

ments under various damage scenarios. The results of the study confirm the high

potential and effectiveness of statistical time series methods for SHM.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Vibration based structural damage detection, identification (localization) and magnitude estimation, also collectively
referred to as damage diagnosis, is of paramount importance for reasons associated with proper operation, maintenance
and safety. The process of implementing a damage diagnosis strategy is referred to as structural health monitoring (SHM).
This process involves the observation of a structure/system over time using periodical measurements, the extraction of
damage sensitive quantities (features) from these measurements, and the statistical analysis of these quantities in order to
determine the current structural state.

Over the past several years, a wide variety of local non-destructive testing tools have been developed [1–3]. These are
mainly based on ultrasound, acoustic, radiography, eddy current, and thermal field principles, and require access to the
vicinity of the suspected damage location, while they are typically time consuming and costly. Aiming at overcoming the
aforementioned drawbacks, SHM methods attempt to achieve damage diagnosis on a more ‘‘global’’ basis, with no
requirement for visual inspection and potential automation capability. Among them, vibration based methods [1–4]
appear promising, as they tend to be time effective and less expensive than many alternatives.

Statistical time series methods for SHM form an important, rapidly evolving, category within the broader vibration
based family of methods [5–11]. They utilize (i) random excitation and/or response signals (time series), (ii) statistical
model building, and (iii) statistical decision making for inferring the health state of a structure. As with all vibration based
methods, the fundamental principle upon which they are founded is that small changes (damage) in a structure cause
discrepancies in its vibration response, which may be detected and associated with a specific cause (damage type).
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Statistical time series methods for SHM are fundamentally of the inverse type, as the models used are data based rather
than physics based. Furthermore, they offer a number of important advantages, including inherent accounting for
uncertainties, no need to interrupt normal operation, no requirement for physics-based or finite element (FE) type models,
no requirement for complete modal models, and statistical decision making with specified performance characteristics. On
the other hand, as complete structural models are not employed, time series methods may identify damage only to the
extent allowed by the type of model used. Other limitations include the need for proper ‘‘training’’, adequate user expertise
and potentially limited physical insight. For an extended overview of the principles and techniques of statistical time series
methods for SHM, the interested reader is referred to the recent overviews by the second author and co-workers [5,6].

Statistical time series methods for SHM use scalar or vector random signals from the structure in its healthy state, as
well as from a number of potential damage states, identifying suitable (parametric or non-parametric) statistical time
series models describing the structure in each state, and extracting a statistical quantity (characteristic quantity)
characterizing the structural state in each case (baseline phase). Damage diagnosis is then accomplished via statistical
decision making consisting of comparing, in a statistical sense, the current characteristic quantity with that of each
potential state as determined in the baseline phase (inspection phase).

Non-parametric time series methods for SHM are those based on corresponding time series representations, such as
power spectral estimates [5,6]. This type of methods has received limited attention in the literature. Sakellariou et al. [12]
present the application of a power spectral density (PSD) based method to fault detection in a railway vehicle suspension.
The method is applied within a statistical framework, utilizing interval spectral estimates and statistical decision making
schemes, while its effectiveness is assessed via experimental data. Furthermore, the application of a PSD analysis based
method to a simply supported aluminum beam is presented by Liberatore and Carman [13], although the effectiveness of
the method is demonstrated in conjunction with an analytical model, without employing statistical tools. Rizos et al. [14]
treat the problem of damage detection in stiffened aircraft panels via a non-parametric frequency response function (FRF)
based method. The FRF estimates are demonstrated to exceed their normal variability bounds under skin damage, while
the method accounts for uncertainties and statistical variabilities. Finally, Hwang and Kim [15] present an FRF based
method, whose effectiveness is numerically demonstrated via simulation examples based on finite element models of a
simple cantilever and a helicopter rotor blade. Although no statistical framework is incorporated, the method is reported to
achieve a satisfactory level of precision with respect to damage diagnosis.

Parametric time series methods for SHM are those based on corresponding time series representations, such as the
AutoRegressive Moving Average (ARMA) representation [5,6,16]. This type of methods has attracted considerable attention
and their principles have been used in a number of studies. Sohn et al. [17,18] use the prediction errors of a so-called
AutoRegressive and AutoRegressive with eXogenous inputs (AR-ARX) model, a sequential hypothesis testing technique
(sequential probability ratio test), and extreme value statistics for damage diagnosis. The method is assessed via numerical
simulations and its application to an eight degree-of-freedom mass–spring system, data obtained from a patrol boat, and a
three-storey building model. In a related work, Sohn and Farrar [19] employ the standard deviation ratio of the residual
errors from a two-stage AR-ARX model, obtained from healthy measured signals, as the damage sensitive feature. Under
the normality assumption this feature is shown to follow F distribution based on which a hypothesis test is developed to
infer the structural health state of an eight degree-of-freedom mass–spring system. Adams and Farrar [20] discuss the use
of the autoregressive and exogenous coefficients of a frequency domain ARX model and their implementation for damage
diagnosis. The model coefficients are utilized for detecting damage with some level of statistical confidence by applying
a standard statistical measure (Mahalanobis distance), while the proposed method is applied to data obtained from a
three-storey building model.

Furthermore, the first three autoregressive coefficients of an ARMA model constitute the feature vector employed by
Nair et al. [21,22] to tackle damage detection. A Gaussian mixture model is used to model the feature vector, while damage
is detected via the gap statistic. The postulated method is applied to analytical and experimental data from the ASCE
benchmark structure. Carden and Brownjohn [23] propose a damage detection method based on the ARMA model residual
sum of squares and a statistical classifier utilizing a w2 distribution. The experimental assessment of the method is
achieved via its application to the IASC-ASCE four-storey frame structure, the Z24 bridge, and the Malaysia–Singapore
Second Link bridge. Fugate et al. [24] fit an AR model to the measured data obtained from a healthy structure and the
corresponding model residuals are used as damage sensitive features. Next, statistical process control methods, such as the
X-bar and S control charts, are employed to monitor the mean and variance of the selected features in order to detect
damage. For demonstration, the method is applied to vibration test data acquired from a concrete bridge column. An
estimate of the standard deviation along with higher-order moments of the residuals obtained from vector AR models is
used to detect damage by Mattson and Pandit [25]. A damage detection threshold level is identified from available training
data, while the method is assessed via data obtained from an eight degree-of-freedom test bed. Gao and Lu [26] present a
formulation that enables the construction of residual generators, via state-space representations, as damage indicators.
Then, damage detection is transformed into a disturbance decoupling problem, so that a geometric technique can be
employed to detect damage. Numerical results and experimental examples on a laboratory test frame are used to assess
the effectiveness of the method. A two-stage damage diagnosis strategy is proposed by Zheng and Mita [27]. Damage
existence is determined in the first stage using a damage indicator defined as the distance between two ARMA models,
while, in a second stage, damage localization is achieved via pre-whitening filters. The method does not incorporate a
statistical framework, while it is applied to a five-storey steel structure. Sakellariou and Fassois [28] employ output error
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(OE) models and statistical hypothesis testing procedures utilizing the corresponding model parameter vectors, in order to
achieve damage diagnosis in structures under earthquake excitation. Damage identification (localization) is achieved via a
geometric method, where the parameter vector is used as an initial feature vector, while the method’s effectiveness is
assessed via a six-storey building model.

A method based on subspace identification and state space model residuals is reported in [7,8], while methods based on
the novel class of stochastic functionally pooled (FP) models are reported in [9,10]. The FP model based methods are
capable of offering an effective solution to the damage detection, localization and magnitude (size) estimation
subproblems within a unified framework. Nevertheless, these methods are somewhat more elaborate.

In spite of the progress achieved so far, the literature on vibration based statistical time series methods for SHM remains
relatively sparse. In particular, no application studies that experimentally compare and assess the various methods are
available. The goal of the present study precisely is the experimental comparison and assessment of a number of univariate

(scalar) statistical time series methods to a lightweight laboratory aluminum truss structure. The damage cases considered
correspond to loosening of various bolts connecting certain of the truss elements. Random force excitation is provided via
an electromechanical shaker, while the vibration responses are measured at various positions via dynamic strain gauges.
Two non-parametric methods, namely a power spectral density (PSD) and a frequency response function (FRF) based
method, as well as four parametric methods, namely a model parameter based, a residual variance, a residual likelihood
function, and a residual uncorrelatedness based method, are briefly reviewed and experimentally assessed.

As already indicated, univariate (scalar response) versions of the methods are used, while results are presented for three

distinct vibration response positions designated as Y1, Y2 and Y3. The methods’ main features and operational
characteristics are discussed along with practical issues, while their effectiveness is demonstrated via various test cases
corresponding to different experiments, damage scenarios, and vibration measurement positions.

The rest of the paper is organized as follows: The experimental set-up is presented in Section 2, while the general
workframe of statistical time series methods for SHM is briefly outlined in Section 3. A concise overview of the methods is
given in Section 4, and the experimental assessment and comparison are presented in Section 5. Concluding remarks are
finally summarized in Section 6.

2. The experimental set-up

2.1. The structure

The truss structure is depicted in Fig. 1, suspended through a set of cords. It consists of 28 elements with rectangular
cross sections (15�15 mm) jointed together via steel elbow plates and bolts. All parts are constructed from standard
aluminum with the overall dimensions being 1400 �700 �800 �700 mm.

2.2. The damage types and the experiments

The damages considered correspond to complete loosening of various bolts at different joints of the structure. Five
distinct types are specifically considered (Fig. 1): The first damage type, referred to as damage type A, corresponds to the
loosening of bolt A1 joining together a horizontal with a vertical element. The second damage type, referred to as damage

type B, corresponds to the loosening of bolts A1 and B1 joining together a horizontal with a vertical element. Damage type
B affects the same elements as damage type A, but it is more severe, as loosening of two bolts is involved. The third damage
type, referred to as damage type C, corresponds to the loosening of bolts C1 and C2 joining together a horizontal with a
Fig. 1. The aluminum truss structure and the experimental set-up: the force excitation (Point X), the vibration measurement positions (Points Y1–Y3),

and the considered damage types (A, B, C, D, and E).



Table 1
The considered damage types, number of experiments, and vibration signal details.

Structural state Description Total number of experiments

Healthy – 40 (1 baseline)

Damage type A Loosening of bolt A1 32 (1 baseline)

Damage type B Loosening of bolts A1 and B1 32 (1 baseline)

Damage type C Loosening of bolts C1 and C2 32 (1 baseline)

Damage type D Loosening of bolt D1 32 (1 baseline)

Damage type E Loosening of bolt E1 32 (1 baseline)

Sampling frequency: fs=256 Hz, signal bandwidth: [0.5�100] Hz.

Signal length N in samples (s): non-parametric methods: N=30 720 (120 s), parametric methods: N=10 000 (39 s).
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diagonal element. The fourth damage type, referred to as damage type D, corresponds to the loosening of bolt D1 joining
together a horizontal with a vertical element. Finally, the fifth damage type, referred to as damage type E, corresponds to
the loosening of bolt E1 joining together a vertical with a diagonal element. All damage types considered are summarized
in Table 1.

The force excitation is a random Gaussian signal applied vertically at Point X (Fig. 1) via an electromechanical shaker
(MB Dynamics Modal 50A, max load 225 N) equipped with a stinger, and measured via an impedance head (PCB 288D01,
sensitivity 98.41 mV/lb). The vibration responses are measured at different points via dynamic strain gauges (PCB ICP
740B02, 0.005–100 kHz, 50 mV=me; sampling frequency fs=256 Hz, signal bandwidth 0.5–100 Hz). The force and strain
signals are driven through a signal conditioning device (PCB 481A02) into the data acquisition system (SigLab 20–42).
In this study damage detection and identification results based on each one of the three vibration response signals (Points

Y1, Y2 and Y3—Fig. 1) and obtained via scalar versions of the methods are presented. This allows examination of the
potential of the methods to achieve damage detection and identification even through a single vibration signal
measurement.

A significant number of test cases is considered in the experimental assessment: In each test case a specific experiment
(out of a total of 40 experiments for the healthy structure and 32 experiments for each damage state, with one from each
category reserved for the baseline phase—Table 1) and vibration response measurement position (Points Y1–Y3, Fig. 1) are
employed. Experimental details are presented in Table 1. Notice that the sample mean is subtracted from each signal and
scaling by the signal’s sample standard deviation is implemented.
3. Workframe of statistical time series methods for SHM

Let So designate the structure under consideration in its nominal (healthy) state, SA, SB,y the structure under damage of
type (mode) A, B, y and so on, and Su the structure in unknown (to be determined) state. Each damage type may include a
continuum of damages which are characterized by common nature or location (for instance, damage in a specific structural
element) but varying degree of damage.

Statistical time series methods are commonly based on discretized excitation x[t] and/or response y[t] (for t=1, 2, y, N)
random vibration data records. Note that t refers to discrete time, with the corresponding actual time being (t�1)Ts, where
Ts stands for the sampling period. Let the complete excitation and response signals be presented as X and Y, that is Z=(X, Y).
Like before, a subscript (o, A, B,y, u) is used for designating the corresponding state of the structure that provided the
signals.

Note that all collected signals need to be suitably pre-processed [3,5,29]. This may include low or band-pass filtering
within the frequency range of interest, signal subsampling (in case the originally used sampling frequency is too high),
sample mean subtraction, as well as proper scaling (in the linear dynamics case). The latter is not only used for numerical
reasons, but also for counteracting—to the extent possible—different operating (including excitation levels) and/or
environmental conditions.

The obtained signals are subsequently analyzed by parametric or non-parametric time series methods and appropriate
models are identified and properly validated [5,6,16]. Such models are identified on the basis of data Zo, ZA, ZB,y in
the baseline phase and based on Zu in each inspection phase. From each estimated model, the corresponding
estimate of a characteristic quantity Q is extracted (bQ o, bQ A, bQ B, . . . in the baseline phase; bQ u in the inspection phase—

see Table 2).
Damage detection is then based on proper comparison of the true (but not precisely known) Qu to the true (but also not

precisely known) Qo via a binary statistical hypothesis test that uses the corresponding estimates—see Table 3. Damage

identification is similarly based on the proper comparison Qu to each one of QA, QB,y via statistical hypothesis testing
procedures that also use the corresponding estimates (Table 3). Damage magnitude estimation, when considered, is based
on interval estimation techniques. The general workframe for statistical time series methods for SHM is depicted in Fig. 2.
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Note that the design of a binary statistical hypothesis test is generally based on the probabilities of type I and type II

error, or else the false alarm ðaÞ and missed damage ðbÞ probabilities. The designs presented in this work are based on the
former, but in selecting a it should be born in mind that as a decreases (increases) b increases (decreases).
Table 2
Workframe set-up: structural state, vibration signals used, and the characteristic quantity (baseline and inspection phases).

Baseline phase
Structural state So (healthy structure) SA (damage type A)a SB (damage type B)a

y

Vibration signals zo[t]=(xo[t], yo[t]) zA[t]=(xA[t], yA[t]) zB[t]=(xB[t], yB[t]) y

Zo=(Xo,Yo) ZA=(XA,YA) ZB=(XB,YB) y

Characteristic quantity Qo QA QB y

Inspection phase
Structural state Su (current structure in unknown state)

Vibration signals zu[t]=(xu[t], yu[t])

Zu=(Xu,Yu)

Characteristic quantity Qu

a Normally various damage magnitudes are considered.

Table 3
Statistical hypothesis testing problems for the damage detection and identification tasks.

Damage detection
H0 : Qu �Qo Null hypothesis — healthy structure

H1 : QufQo Alternative hypothesis — damaged structure

Damage identification
HA : Qu �QA Hypothesis A — damage type A

HB : Qu �QB Hypothesis B — damage type B

^ ^

Fig. 2. Workframe for statistical time series methods for structural health monitoring.
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4. Concise overview of selected statistical time series methods for SHM

A concise overview of selected statistical time series methods for SHM is presented—for further details the reader is
referred to [5,6]. Statistical time series methods may be classified as non-parametric or parametric, depending on the way
the characteristic quantity Q is constructed [5,6]. Non-parametric methods utilize a statistic based on non-parametric time
series representations, such as spectral models [5,6]. On the other hand, parametric methods utilize a statistic Q based on
parametric time series representations, such as AutoRegressive with eXogenous excitation (ARX) or other representations
[16,29]. Depending on whether the response only or the excitation and the response signals are employed, the methods are
also classified as response-only or excitation–response, respectively.
4.1. Non-parametric methods

4.1.1. A power spectral density (PSD) based method

Damage detection and identification is tackled via changes in the power spectral density (PSD) of the measured
vibration response signals when the excitation is not available (response-only case). The method’s characteristic quantity
thus is Q ¼ SyyðoÞ ¼ SðoÞ, with o designating frequency. The main idea is based on the comparison of the current
(unknown) structural response’s PSD SuðoÞ to that of the healthy structure’s SoðoÞFor, in fact, to that corresponding to any
other structural condition. The following hypothesis testing problem is then set up for damage detection:

H0 : SuðoÞ ¼ SoðoÞ ðnull hypothesis F healthy structureÞ

H1 : SuðoÞaSoðoÞ ðalternative hypothesis F damaged structureÞ:
ð1Þ

As the true PSDs, SuðoÞ, SoðoÞ, are unknown, their estimates bSuðoÞ, bSoðoÞ obtained via the Welch method (with K non-
overlapping segments; refer to Table 4) are used [30, pp. 3 and 76]. Then, the following quantity follows (for each
frequency o) F distribution with (2K, 2K) degrees of freedom [5,6]:

F ¼
bSoðoÞ=SoðoÞbSuðoÞ=SuðoÞ

� Fð2K , 2KÞ: ð2Þ

Under the null (H0) hypothesis the true PSDs coincide ðSuðoÞ ¼ SoðoÞÞ and F ¼ bSoðoÞ=bSuðoÞ. This should then be in the range
½fa=2, f1�a=2� with probability 1�a, and decision making is as follows at a selected a risk level (type I error probability of a):

fa=2ð2K , 2KÞrFr f1�a=2ð2K , 2KÞ ð8oÞ ¼) H0 is accepted ðhealthy structureÞ

Else ¼) H1 is accepted ðdamaged structureÞ,
ð3Þ

with fa=2, f1�a=2 designating the F distribution’s a=2 and 1�a=2 critical points.
Note that damage identification may be similarly achieved by performing hypotheses testing similar to the above for

damages from each potential damage type (see Table 3).
4.1.2. A frequency response function (FRF) based method

This method is similar, but requires the availability of both the excitation and response signals (excitation–response

case) and uses the FRF magnitude as its characteristic quantity Q ¼ jHðjoÞj. The main idea is the comparison of the FRF
magnitude jHuðjoÞj of the current state of the structure to that of the healthy structure jH0ðjoÞj. The following hypothesis
testing problem is then set up for damage detection:

H0 : djHðjoÞj ¼ jH0ðjoÞj�jHuðjoÞj ¼ 0 ðnull hypothesis F healthy structureÞ

H1 : djHðjoÞj ¼ jH0ðjoÞj�jHuðjoÞja0 ðalternative hypothesis F damaged structureÞ:
ð4Þ

As the true FRFs, HuðjoÞ and H0ðjoÞ, are unknown, their respective estimates, bHuðjoÞ and bH0ðjoÞ, obtained as indicated in
Table 4, are used. The FRF estimator may, asymptotically ðN-1Þ, be considered as approximately following Gaussian
distribution [31, p. 338]. Under the null (H0) hypothesis the true FRF magnitudes coincide ðjHuðjoÞj ¼ jH0ðjoÞjÞ, hence
djbHðjoÞj ¼ jbH0ðjoÞj�jbHuðjoÞj �N ð0, 2s2

oðoÞÞ. The variance s2
oðoÞ ¼ var½jbH0ðjoÞj� is generally unknown, but may be

estimated in the baseline phase (Table 4).
Equality of the two FRF magnitudes may be then examined at the selected a (type I) risk level through the statistical

test:

Z ¼ jdjbHðjoÞjj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bs2

oðoÞ
q

rZ1�a=2 ð8oÞ ¼) H0 is accepted ðhealthy structureÞ

Else ¼) H1 is accepted ðdamaged structureÞ,
ð5Þ

with Z1�a=2 designating the standard normal distribution’s 1�a=2 critical point.
Damage identification may be similarly achieved by performing hypotheses testing similar to the above for damages

from each potential damage type (see Table 3).



Table 4
Estimation of non-parametric statistical time series models.

Quantity Power spectral density (PSD) Cross spectral density (CSD) Frequency response function (FRF)

Estimator bSyyðoÞ ¼
1

K

PK
i ¼ 1

bY i

LðjoÞbY i

Lð�joÞ bSyxðoÞ ¼
1

K

PK
i ¼ 1

bY i

LðjoÞbX i

Lð�joÞ
bHðjoÞ ¼ bSyxðjoÞ=bSxxðoÞ

bY i

LðjoÞ ¼
1ffiffiffi
L
p

PL
t ¼ 1

a½t�byi
½t�e�joTs bX i

LðjoÞ ¼
1ffiffiffi
L
p

PL
t ¼ 1

a½t�bxi
½t�e�joTs

byi
½t� ¼ yi½t��bmy

bxi
½t� ¼ xi½t��bmx

(i-th segment of length L) (i-th segment of length L)

Properties 2KbSyyðoÞ=SyyðoÞ � w2ð2KÞ EfjbSyxðjoÞjg � jSyxðjoÞj EfjbHðjoÞjg � jHðjoÞj
var½jbSyxðjoÞj� �

jSyxðjoÞj2

g2ðoÞK
var½jbHðjoÞj� � 1�g2ðoÞ

g2ðoÞ2K

Comments Welch method (no overlap)

K: number of data segments For N-1, a½t� ¼ 1

a[t]: time window g2ðoÞ-1 or K-1

Remarks: o 2 ½0,2p=Ts� stands for frequency in radian per second; j stands for the imaginary unit; K stands for the number of segments used in Welch

spectral estimation; g2ðoÞ stands for the coherence function [31, p. 196]. The frequency-domain estimator distributions may be approximated as

Gaussian for small relative errors (that is g2ðoÞ-1 or K-1) [31, pp. 274–275].

MATLAB functions: pwelch.m for bSyy , csd.m for bSyx , tfestimate.m for bH , mscohere.m for bg2
.
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4.2. Parametric methods

4.2.1. A model parameter based method

This method bases damage detection and identification on a characteristic quantity Q ¼ f ðhÞ which is function of the
parameter vector h of a parametric time series model (Q ¼ h in the typical case).

Let bh designate a proper estimator of the parameter vector h [29,16, pp. 212–213]. For sufficiently long signals the
estimator is (under mild assumptions) Gaussian distributed with mean equal to its true value h and a certain covariance Ph

[16, p. 303], hence bh �N ðh, PhÞ.
Damage detection is based on testing for statistically significant changes in the parameter vector h between the nominal

and current state of the structure through the hypothesis testing problem [5,6]:

H0 : dh¼ ho�hu ¼ 0 ðnull hypothesis F healthy structureÞ,

H1 : dh¼ ho�hua0 ðalternative hypothesis F damaged structureÞ:
ð6Þ

The difference between the two parameter vector estimators also follows Gaussian distribution [5], that is
dbh ¼ bho�

bhu �N ðdh, dPÞ, with dh¼ ho�hu and dP¼ PoþPu, where Po, Pu designate the corresponding covariance matrices.
Under the null (H0) hypothesis dbh ¼ bho�

bhu �N ð0, 2PoÞ and the quantity w2
h ¼ dbhT

� dP�1
� dbh (with dP ¼ 2Po) follows w2

distribution with d (parameter vector dimensionality) degrees of freedom [5,6,16, p. 558].
As the covariance matrix Po corresponding to the healthy structure is unavailable, its estimated version bPo is used. Then,

the following test is constructed at the a (type I) risk level:

w2
hrw2

1�aðdÞ ¼) H0 is accepted ðhealthy structureÞ

Else ¼) H1 is accepted ðdamaged structureÞ,
ð7Þ

with w2
1�aðdÞ designating the w2 distribution’s 1�a critical point.

Damage identification may be based on the multiple hypotheses testing problem of Table 3 comparing the parameter
vector bhu belonging to the current state of the structure to those corresponding to different damage types bhA, bhB, . . . .
4.2.2. Residual based methods

These methods [5,6] attempt damage detection and identification using characteristic quantities that are functions of
residual sequences obtained by driving the current signal(s) Zu through suitable predetermined—in the baseline
phase—models Mo, MA, MB,y, each one corresponding to a particular state of the structure (healthy and damaged structure
under specific damage types). The general idea is that the residual sequence obtained by a model that truly reflects the
actual (current) state of the structure will possess certain distinct properties, and will be thus possible to distinguish. An
advantage of the methods is that model identification is not repeated in the inspection phase.

Let MV designate the model representing the structure in its V state (V=o or V=A, B,y). The residual series obtained by
driving the current signals Zu through each one of the aforementioned models are designated as eou[t], eAu[t], eBu[t],y and



Fig. 3. Schematic for residual based statistical time series methods for SHM (the inspection phase is depicted outside the dashed boxes).
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are characterized by respective variances s2
ou, s2

Au, s2
Bu, . . .F notice that the first subscript designates the model employed

and the second the structural state corresponding to the current excitation and/or response signal(s) used. The
characteristic quantities obtained from the corresponding residual series are designated as Qou, QAu, QBu,y . Ṫhe
characteristic quantities obtained using the baseline data records are designated as QVV (V=o or V=A, B,y).

A schematic for the residual based statistical time series methods for SHM is illustrated in Fig. 3.

4.2.2.1. Residual variance based method. In this method the characteristic quantity is the residual variance. Damage
detection is based on the fact that the residual series eou[t], obtained by driving the current signal(s) Zu through the model
Mo corresponding to the nominal (healthy) structure should be characterized by variance s2

ou, which becomes minimal
(specifically equal to s2

oo) if and only if the current structure is healthy. The following hypothesis testing problem is then
set up:

H0 : s2
oo ¼ s2

ou ðnull hypothesis F healthy structureÞ

H1 : s2
ooos2

ou ðalternative hypothesis F damaged structureÞ:
ð8Þ

Under the null (H0) hypothesis the residuals eou[t] are (just like the residuals eoo[t]) iid zero mean Gaussian with
variance s2

oo [5]. Hence, the quantities Nubs2
ou=s2

oo and ðNo�dÞbs2
oo=s2

oo follow central w2 distributions with Nu and No�d

degrees of freedom, respectively [5]. Note that No and Nu designate the number of samples used in estimating the residual
variance in the healthy and current cases, respectively (typically No=Nu=N), and d designates the dimensionality of the
model parameter vector. Consequently, the statistic bs2

ou=bs2
oo follows F distribution with (Nu, No�d) degrees of freedom [5].

The following test is then constructed at the a (type I) risk level:

F ¼
bs2

ou

bs2
oo

r f1�aðNu,No�dÞ ¼) H0 is accepted ðhealthy structureÞ

Else ¼) H1 is accepted ðdamaged structureÞ:

ð9Þ

Damage identification may be achieved based on the multiple hypotheses testing problem of Table 3.

4.2.2.2. Likelihood function based method. In this method damage detection is based on the likelihood function under the
null (H0) hypothesis of a healthy structure [5,6,32, pp. 119–120]. The hypothesis testing problem considered is:

H0 : ho ¼ hu ðnull hypothesis F healthy structureÞ,

H1 : hoahu ðalternative hypothesis F damaged structureÞ,
ð10Þ

with ho, hu designating the parameter vectors corresponding to the healthy and current structure, respectively. Assuming
serial independence of the residual sequence, the Gaussian likelihood function LyðY , h=XÞ for the data Y given X is obtained
[5,6,33, p. 226].

Under the null (H0) hypothesis, the residual series eou[t] generated by driving the current signal(s) through the nominal
model is (just like eoo[t]) iid Gaussian with zero mean and variance s2

oo. Decision making may be then based on the
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likelihood function under H0 evaluated for the current data, by requiring it to be larger or equal to a threshold l (which is to
be selected) in order for the null (H0) hypothesis to be accepted:

LyðY ,ho=XÞZ l ¼) H0 is accepted ðhealthy structureÞ

Else ¼) H1 is accepted ðdamaged structureÞ:
ð11Þ

Under the null (H0) hypothesis, the statistic Nbs2
ou=bs2

oo follows w2 distribution with N degrees of freedom [5,6]. This leads
to the re-expression of the above decision making rule as follows:

w2
N ¼

Nbs2
ou

bs2
oo

rw2
1�aðNÞ ¼) H0 is accepted ðhealthy structureÞ

Else ¼) H1 is accepted ðdamaged structureÞ,

ð12Þ

with w2
1�aðNÞ designating the w2 distribution’s 1�a critical point. Note that the above decision making is similar to that of

the previous (residual variance based) method.
Damage identification may be achieved by computing the likelihood function for the current signal(s) for the various

values of h ðhA, hB, . . .Þ and accepting the hypothesis that corresponds to the maximum value of the likelihood.

4.2.2.3. Residual uncorrelatedness based method. This method is based on the fact that the residual sequence eou[t] obtained
by driving the current signal(s) Zu through the nominal model will be uncorrelated (white) if and only if the current
structure is in its nominal (healthy) state [5,6]. Damage detection may be then based on the hypothesis testing problem:

H0 : r½t� ¼ 0, t¼ 1, 2, . . . , r ðnull hypothesis F healthy structureÞ

H1 : r½t�a0, for some t ðalternative hypothesis F damaged structureÞ,
ð13Þ

with r½t� designating the normalized autocovariance function (see Table 4) of the eou[t] residual sequence.
Under the null (H0) hypothesis, eou[t] is iid Gaussian with zero mean and the statistic w2

r ¼NðNþ2Þ
Pr

t ¼ 1ðN�tÞ
�1br2
½t�

follows w2 distribution with r degrees of freedom and br½t� designating the estimator of r½t� [33, p. 314]. Decision making is
then based on the following test at the a (type I) risk level:

w2
r ¼NðNþ2Þ

Xr

t ¼ 1

ðN�tÞ�1br2½t�rw2
1�aðrÞ ¼) H0 is accepted ðhealthy structureÞ

Else ¼) H1 is accepted ðdamaged structureÞ:

ð14Þ

Damage identification may be achieved by similarly examining which one of the eVu[t] (V=A, B,y) residual series is
uncorrelated.

5. Experimental assessment of statistical time series methods for SHM

The experimental assessment of the univariate statistical time series methods is based on a number of test cases, each
corresponding to a single (out of several possible) structural states (damage scenarios—see Table 1), a single experiment
(Table 1), and a single vibration response measurement position (out of Points Y1, Y2, Y3—Fig. 1). Note that 40
experiments are run for the healthy structure and 32 for each considered damage state (damage types A, B,y, E).

In Sections 5.1 and 5.2 representative results for the first vibration measurement position (Point Y1, Fig. 1) are
presented, while in Section 5.3 summary results for all three vibration measurement positions are presented.

5.1. Baseline phase: Structural identification under various structural states (measurement position Y1)

5.1.1. Non-parametric methods

Non-parametric identification of the structure is based on N=30 720 ð � 120 sÞ sample-long excitation–response signals.
An L=2048 sample-long Hamming data window with zero overlap is used (number of segments K=15) for PSD (MATLAB
function pwelch.m) and FRF (MATLAB function tfestimate.m) Welch based estimation (see Tables 4 and 5).
Table 5
Non-parametric estimation details.

Data length N=30 720 samples ð � 120 sÞ

Method Welch

Segment length L=2048 samples

No of non-overlapping segments K=15 segments

Window type Hamming

Frequency resolution Df ¼ 0:125 Hz
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The obtained response PSD and FRF magnitude estimates for the healthy and damaged states of the structure (Point Y1)
are depicted in Fig. 4. As it may be observed, the healthy and damaged curves are rather similar in the 0.5–30 Hz range,
where the first 12 modes are included. Significant differences between the healthy and damage types C, D and E curves are
seen in the 30–58 Hz range, where the next 3 modes are included. Finally, discrepancies are more evident for damage types
C and E in the 58–100 Hz range, where the next 8 modes are included.

The data sets used for obtaining the above response PSD and FRF estimates for the healthy and damaged structural
states are considered as the only baseline (reference) data sets throughout this work and are used for obtaining the
nominal characteristic quantities Qo for each time series method. The healthy baseline data set is used for the damage
detection task, while the damaged baseline data sets are used for the damage identification task.

5.1.2. Parametric methods

Parametric identification of the structural dynamics is based on N=10 000 ð � 39 sÞ sample-long excitation and single
response signals which are used for estimating AutoRegressive with eXogenous excitation (ARX) models (MATLAB function
arx.m). The modeling strategy consists of the successive fitting of ARX(na, nb) models (with na, nb designating the AR and X
orders, respectively; in this study na=nb=n) until a suitable model is selected. Model parameter estimation is achieved by
minimizing a quadratic prediction error (PE) criterion leading to a least squares (LS) estimator [29,16, p. 206]. Model order
selection, which is crucial for successful identification, may be based on a combination of tools, including the Bayesian
information criterion (BIC) (Fig. 5a), which is a statistical criterion that penalizes model complexity (order) as a
counteraction to a decreasing quality criterion [29,16, pp. 505–507], monitoring of the RSS/SSS (residual sum of squares/
signal sum of squares) criterion (Fig. 5b), monitoring of the residual autocorrelation function (MATLAB function autocorr.m)
10 20 30 40 50 60 70 80 90 100
−120

−100

−80

−60

−40

−20

0

PSD estimates

PS
D

 (
dB

)

Healthy Damage A Damage B Damage C Damage D Damage E

10 20 30 40 50 60 70 80 90 100

−50

−40

−30

−20

−10

0

10

20
FRF estimates

M
ag

ni
tu

de
 (

dB
)

Frequency (Hz)

Healthy Damage A Damage B Damage C Damage D Damage E

Fig. 4. (a) Power spectral density (PSD) and (b) frequency response function (FRF) magnitude estimates for the healthy and damaged structural states

(response Y1).

20 40 60 80 100 120 140

−7

−6

−5

−4

B
IC

ARX (n,n)

20 40 60 80 100 120 140

100

101

R
SS

/S
SS

 (
%

)

ARX (n,n)

100 110 120 130 140 150

−7.4

−7.3

−7.2

Fig. 5. Order selection criteria for ARX(n, n) type parametric models in the healthy case (response Y1): (a) BIC and (b) RSS/SSS.



10 20 30 40 50 60 70 80 90 100

20

40

60

80

100

120

140

Frequency (Hz)

A
R

X
 (

n,
n)

ARX frequency stabilization plot

D
am

pi
ng

 R
at

io

0

2

4

6

8

Fig. 6. Frequency stabilization diagram for ARX(n, n) type models in the healthy case (response Y1).

Table 6
Selected models and estimation details (response Y1).

Method Selected model Number of estimated parameters Samples per parameter

Model parameter ARX(103,103) 207 parameters 48.3

Residual variance ARX(103,103) 207 parameters 48.3

Residual likelihood ARX(103,103) 207 parameters 48.3

Residual uncorrelatedness ARX(138,138) 277 parameters 36.1

Parameter estimation method: weighted least squares (WLS), QR implementation, N=10 000 samples.
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[16, p. 512], and use of ‘‘stabilization diagrams’’ (Fig. 6) which depict the estimated modal parameters (usually frequencies)
as a function of increasing model order [16,29].

An approximate plateau in the BIC and RSS/SSS sequences is achieved for model order n470 (Fig. 5). Furthermore, as
indicated in the frequency stabilization diagram of Fig. 6, model orders of n490 are adequate for most natural frequencies
to get stabilized. Notice the color bar in Fig. 6, which demonstrates the damping ratios for each frequency for increasing
model order. In the 0.5–50 Hz range, higher damping ratios for model order no100 are observed for certain structural
modes.

The above identification procedure leads to an ARX(103,103) model (vibration measurement position Y1), which is
selected as adequate for the model parameter, residual variance, and likelihood function based methods. The identified
ARX(103,103) representation has 207 parameters with the sample per parameter (SPP) number being equal to 48.3. For the
residual uncorrelatedness based method an ARX(138,138) model is selected, as the corresponding model residuals need to
be as white as possible in order for the method to work effectively. The identified ARX(138,138) representation has
277 parameters (SPP=36.1). The selected models and estimation details are summarized in Table 6. Note that the
identification procedure generally leads to different ARX models (including somewhat different model orders) for each
vibration measurement position.
5.2. Inspection phase (measurement position Y1)

5.2.1. PSD based method

Typical PSD based damage detection results are presented in Fig. 7. Evidently, correct detection at the a¼ 10�4 risk level
is obtained in each case, as the test statistic is shown not to exceed the critical points (dashed horizontal lines) in the
healthy case, while it exceeds them in the damaged cases. Observe that damage types C (two bolts loosened) and D (one
bolt loosened) are easiest to detect (note the logarithmic scale on the vertical axis of Fig. 7), while damage type A (one bolt
loosened) is hardest (the test statistic is within the critical points for most frequencies).

Representative damage identification results at the a¼ 10�4 risk level are presented in Fig. 8, with the actual damage
being of type A. When testing the hypothesis of damage type A, the test statistic does not exceed the critical points, while it
clearly does so when testing the hypothesis of any other damage type.
5.2.2. FRF based method

Fig. 9 presents typical FRF based damage detection results. Evidently, correct detection at the a¼ 10�5 risk level is
achieved in each case, as the test statistic is shown not to exceed the critical points (dashed horizontal lines) in the healthy
case, while it exceeds them in the damaged cases. Again, damage types C and D appear as easiest to detect, while damage
types A and B are hardest.
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Indicative damage identification results at the a¼ 10�5 risk level are presented in Fig. 10, with the actual damage being
of type C. When testing the hypothesis of damage type C, the test statistic does not exceed the critical points, while it
clearly does so when testing the hypothesis of any other damage type.
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5.2.3. Model parameter based method

The model parameter based method (excitation–response case) is based on the identified ARX(103,103) models
from the baseline phase, as well as on identified ARX(103,103) models from the current (unknown) data records Zu

(inspection phase).
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Fig. 11 depicts typical scalar model parameter estimates (a1 and bo) based on ARX(103,103) models for two healthy and
five damaged states of the structure. The dark lines represent the scalar parameter estimates for each test case, while the
shaded boxes designate their corresponding 73 sample standard deviation confidence intervals. It may be observed that
the parameter estimates obtained from models representing damaged structural states significantly differ from the
parameter estimates obtained from healthy models. Moreover, the interval estimates obtained from the healthy models
overlap, implying rather small changes.

Figs. 12 and 13 present typical parametric damage detection and identification results, respectively, obtained by the
model parameter based method at the a¼ 10�12 risk level. Evidently, correct detection (Fig. 12) is obtained in each case, as
the test statistic is shown not to exceed the critical point in the healthy case, while it exceeds it in the damaged cases; note
the logarithmic scale on the vertical axis which indicates significant difference between the healthy and damaged test
statistics. Moreover, Fig. 13 demonstrates the ability of the method to accurately identify the actual damage type.
5.2.4. Residual based methods

5.2.4.1. Residual variance based method. This method tackles damage detection and identification based on the identified
(in the baseline phase) ARX(103,103) models–no model identification is involved in the inspection phase. Fig. 14 depicts
typical residual variance estimates based on ARX(103,103) models for two healthy and five damaged states of the
structure. The dark lines represent the scalar residual variance estimates for each test case, while the shaded boxes
designate their corresponding 73 standard deviation confidence intervals. The residual variances bs2

ou, bs2
Au, . . . , bs2

Eu,
corresponding to each test case, are estimated from the respective residual sequences eou[t], eAu[t],y, eEu[t] obtained by
driving the current (unknown) signals Zu through the models Mo, MA,y, ME, respectively.

As it may be observed, the residual variance interval estimates bs2
ou obtained from the two healthy data sets are quite

close and overlap. On the other hand, the variance estimates bs2
Au, . . . , bs2

Eu obtained from representative damaged data sets
are significantly greater than the healthy estimates (interval estimates are clearly separated). Notice that the more severe
damage types (such as types C and E) yield greater residual variance estimates than the less severe ones (damage types A
and B).

Typical damage detection and identification results are presented in Figs. 15 and 16, respectively, at the a¼ 10�12 risk
level. Evidently, correct detection (Fig. 15) is obtained in each considered case, as the test statistic is shown not to exceed
the critical point in the healthy case, while it exceeds it in the damaged test cases. Moreover, Fig. 16 demonstrates the
ability of the method to correctly identify the actual damage type (note the logarithmic scale on the vertical axes).
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The residual variance and likelihood function based methods exhibit quite identical performance, as the data record
length N is large. This is expected and rather obvious from the comparison of Eqs. (9) and (12). Hence, for the sake of
brevity, the results for the likelihood function based method are omitted.

5.2.4.2. Residual uncorrelatedness based method. This method tackles damage detection and identification based on the
identified (in the baseline phase) ARX(138,138) models. Fig. 17 depicts typical residual normalized ACF estimates br½t�
for the first four lags ðt¼ 1, . . . ,4Þ, based on ARX(138,138) models for the healthy and five damaged structural states.



Healthy Damage A Damage B Damage C Damage D Damage E
100

101

102

103
Residual Based Method: using the residual variance (Damage Detection)

T
es

t S
ta

tis
tic

Test Cases

1.1

1.2

Fig. 15. Residual variance based method (response Y1): indicative damage detection results for six representative test cases (one healthy and five

damaged) at the a¼ 10�12 risk level. A damage is detected if the test statistic (bar) exceeds the critical point (dashed horizontal line).

Damage A Damage B Damage C Damage D Damage E
100

102

104
Residual Based Method: using the residual variance (Damage Identification)

T
es

t S
ta

tis
tic

Damage A Damage B Damage C Damage D Damage E
100

102

104

T
es

t S
ta

tis
tic

Damage A Damage B Damage C Damage D Damage E
100

101

102

T
es

t S
ta

tis
tic

Damage A Damage B Damage C Damage D Damage E
100

102

104

T
es

t S
ta

tis
tic

Damage A Damage B Damage C Damage D Damage E
100

102

104

T
es

t S
ta

tis
tic

Test Cases

1.1

1.2

1.1

1.2

1.1

1.2

1.1

1.2

1.1

1.2

actual damage A

actual damage B

actual damage C

actual damage D

actual damage E

Fig. 16. Residual variance based method (response Y1): indicative damage identification results for five damage test cases at the a¼ 10�12 risk level. Each

bar corresponds to each considered hypothesis test, with the actual damage indicated within each subplot. A damage type is identified as current if the

test statistic (bar) does not exceed the critical point (dashed horizontal line).

F.P. Kopsaftopoulos, S.D. Fassois / Mechanical Systems and Signal Processing 24 (2010) 1977–19971992
The residuals for each considered state of the structure are obtained by driving the current data records Zu through the models
Mo, MA,y, ME. Under the null hypothesis of a healthy current structure, the first residual series (obtained by driving the
signals through the model Mo) normalized ACF estimates should lie within the statistical insignificance zone of 71:96=

ffiffiffiffi
N
p
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with probability p=0.95. This should not be the case for the other residual series (obtained by driving the signals through
the each one of the MA,y, ME models).

Representative damage detection and identification results via the residual uncorrelatedness based method are, at the
a¼ 10�12 risk level with r=25 (see Eq. (14)), presented in Figs. 18 and 19, respectively. Evidently, correct detection (Fig. 18)
is obtained in each case, as the test statistic is shown not to exceed the critical point in the healthy case, while it exceeds it
in the damaged test cases. Moreover, Fig. 19 demonstrates the ability of the method to accurately identify the actual
damage type as the current one.

5.3. Summary results and discussion (all measurement positions)

Summary results for all test cases—which also include all three measurement positions (Y1, Y2 and Y3)—are presented
in Table 7. Both non-parametric and parametric methods achieve accurate damage detection with almost always zero false
alarms for the selected risk levels. In fact only the FRF based method exhibits one and two false alarms for vibration
measurement positions Y1 and Y3, respectively. Moreover, the ability of the methods to effectively detect damage is
demonstrated by the fact that no missed damage cases are observed. The damage identification results demonstrate the
ability of the methods to accurately identify the actual damage type. No damage misclassification cases are observed,
except for the FRF based method where misclassification errors occur for damage type A (Table 7).

It is also important to note that the methods are capable of detecting and identifying damage using a single response
signal. This is true for the cases where the damage location is relatively close to the response sensor, but also to the cases
where the damage location is far from that. Performance is of course, and expectedly, affected by this distance, and this is
also shown in the damage type A case where the lowest misclassification rate occurs for sensor Y2 (Table 7) which is
closest to the damage location.

Overall, both non-parametric and parametric statistical time series methods demonstrate high potential for effective
damage detection and identification based even on a single vibration response signal. Between the two non-parametric
methods, the FRF based one appears to achieve better damage detection and identification. Among the parametric
methods, the residual based methods appear to achieve clearer damage detection and identification than the parameter
based method.

Nevertheless, a number of issues require some attention on part of the user. First, careful model identification—espe-
cially in the parametric case—is crucial for successful damage diagnosis. Parametric models require accurate parameter
estimation and appropriate model structure (order) selection in order to properly represent the structural dynamics and be
effectively used for damage detection and identification. Therefore, parametric methods require adequate user expertise
and are somewhat more elaborate than their non-parametric counterparts. In particular, extra attention should be paid to
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successful model identification in conjunction with the model residual uncorrelatedness method, as the corresponding
model residuals should be as close to whiteness as possible in order for the method to work effectively.

Another issue of primary importance is the proper selection of the risk level a (type I error), for reasons associated with
the methods’ robustness and effectiveness. If this is not properly adjusted, damage diagnosis will be ineffective, as false
alarm, missed damage, and damage misclassification cases may occur. The user is advised to make an initial investigation
of the false alarm rates for different a levels using several healthy data sets. Afterwards, potential missed damage cases
may be checked with data corresponding to various damaged structural states. When applying the model residual
uncorrelatedness based method, the user should be aware of the fact that the max lag r value may also affect performance.
Thus, a tentative inquiry on the way max lag r value affects false alarm occurrence should be undertaken. Depending on the
exact type and order of the parametric model used, max lag r values may range from a few to N/4 (N is the residual signal
length in samples).

Moreover, in order for most parametric methods to work effectively, a very small value of type I risk level a is often
needed. This is due to the fact that the current parametric time series models (ARMA, ARX, state space and so on) used for
modeling the structural dynamics are incapable of fully capturing the experimental, operational and environmental
uncertainties that the structure is subjected to—in this context see Refs. [34,35]. For this reason, a very small a is often
selected in order to compensate for the lack of effective uncertainty modeling. This subject, along with more accurate
modeling of uncertainties, is important for current and future research.



Table 7
Damage detection and identification summary results for three responses (Y1, Y2 and Y3).

Method Damage detection

False alarms Missed damage

Damage A Damage B Damage C Damage D Damage E

PSD based 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

FRF based 1/0/2 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

Mod. parametera 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

Res. variancea 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

Res. likelihooda 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

Res. uncorrelatednessa 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

Method Damage identification

Damage misclassification

Damage A Damage B Damage C Damage D Damage E

PSD based 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

FRF based 2/1/2 0/0/0 0/0/0 0/0/0 0/0/0

Mod. parametera 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

Res. variancea 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

Res. likelihooda 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

Res. uncorrelatednessa 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

False alarms for Points Y1/Y2/Y3 out of 39 test cases each.

Missed damages for Points Y1/Y2/Y3 out of 31 test cases each.

Damage misclassification for Points Y1/Y2/Y3 out of 31 test cases each.
a Adjusted a.
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The selection of the number and position of measurement sensors is another important issue. Several vibration
based damage diagnosis techniques that appear to work well in test cases may perform poorly when subjected to the
measurement constraints imposed by actual testing [2,3]. Techniques that are to be seriously considered for
implementation in the field should demonstrate that they can perform well under limitations of a small number of
measurement positions and under the constraint that these positions should be selected a priori, without a priori
knowledge of the damage location. As already demonstrated, statistical time series methods are capable of treating
damage diagnosis based on limited or even on a single pair of excitation–response measurements and may also
achieve a certain level of automation, although their performance on large scale structures needs to be further
investigated.

Finally, in the case of multiple damage scenarios, or even single damage cases not considered in the baseline (training)
phase, statistical time series methods are capable of effectively treating the damage detection subproblem. The damage
identification (classification) subproblem is clearly more difficult, and requires the use of advanced methods, such as those
more recently developed by the authors and their co-workers [9,10]. Work on these methods is still on-going, and
experimental comparisons along with full assessments are to be made.
6. Concluding remarks

A comparative experimental assessment of vibration based statistical time series methods for SHM was presented via
their application to damage diagnosis in a lightweight aluminum truss structure. Some of the important conclusions drawn
from this study may be summarized as follows:
�
 Statistical time series methods for SHM achieve damage detection and identification based on (i) scalar or vector

random excitation and/or vibration response signals, (ii) statistical model building, and (iii) statistical decision making
under uncertainty.

�
 Both non-parametric and parametric methods were shown to effectively tackle damage detection and identification,

with parametric methods achieving excellent performance with zero (in the present study) false alarm, missed damage,
and damage misclassification rates.

�
 Both non-parametric and parametric methods were shown to have global damage detection capability, as they are able

to detect ‘‘local’’ and ‘‘remote’’ damage with respect to the sensor position used.
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�
 All methods were shown to be capable of correctly identifying the actual damage type, with the exception of the FRF
based method which exhibited a small number of damage misclassification errors for damage type A, irrespectively of
the vibration measurement position used.

�
 Parametric time series methods are more elaborate and demand increased user expertise compared to their generally

simpler non-parametric counterparts. Yet, they were shown to offer increased sensitivity and accuracy.

�
 The availability of data records corresponding to various potential damage scenarios is necessary in order to treat

damage identification. This may not be possible with the actual structure itself, but laboratory scale models or
analytical (finite element) models may be used for this purpose.

�
 The extension of the methods to the more general multivariate case requires the use of corresponding vector models and

multivariate statistical decision making procedures and needs to be fully investigated in the future.

�
 The need for methods capable of working under varying operational and environmental conditions and uncertainties is

important and also the subject of current research (for instance [35,36]).

Appendix A. Important conventions and symbols

Bold-face upper/lower case symbols designate matrix/column-vector quantities, respectively. Matrix transposition is
indicated by the superscriptT.

A functional argument in parentheses designates function of a real variable; for instance x(t) is a function of analog time
t 2 R.

A functional argument in brackets designates function of an integer variable; for instance x[t] is a function of
normalized discrete time (t=1, 2,y). The conversion from discrete normalized time to analog time is based on (t�1)Ts,
with Ts designating the sampling period.

A functional argument including the imaginary unit designates complex function; for instance XðjoÞ is a complex
function of o.

A hat designates estimator/estimate of the indicated quantity; for instance bh is an estimator/estimate of h.
The subscripts ‘‘o’’ and ‘‘u’’ designate quantities associated with the nominal (healthy) and current (unknown) state of

the structure, respectively.

Appendix B. Acronyms
ACF
 autoCovariance function
ARX
 autoRegressive with eXogenous excitation models
BIC
 Bayesian information criterion
CSD
 cross spectral density
FE
 finite element
FRF
 frequency response function
iid
 identically independently distributed
LS
 least squares
PE
 prediction error
PSD
 power spectral density
RSS
 residual sum of squares
SHM
 structural health monitoring
SSS
 signal sum of squares
WLS
 weighted least squares
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