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ABSTRACT

This work aims at the experimental assessment of a numbaatsteal time
series methods for Structural Health Monitoring (SHM). Tinain features and oper-
ation of the employed non—parametric and parametric mathoel briefly reviewed.
Their performance is subsequently assessed via labom@tpsriments pertaining to
damage detection and identification on a thin aluminum @atecture. The results
of the study demonstrate the potential and effectivenefiseo$tatistical time series
SHM methods.

INTRODUCTION

Vibration based statistical time series methods for Stmat¢tHealth Monitoring
utilize random excitation and/or vibration response siginalong with statistical
model building and decision making tools, for inferring thealth state of a struc-
ture [1-5]. They offer a number of important advantagedustiog no requirement
for physics—based or finite element type models, no req@ntiior complete modal
models, the treatment of uncertainties, and statisticziba® making with specified
performance characteristics. In spite of these, the titeeson vibration—based time
series methods for condition monitoring remains relagigglarse, and, in particular,
no application studies that assess and experimentally amthe various methods
are available.

The goal of the present study is to present the application of a nurobstatis-
tical time series methods to damage detection and idetitfican a thin aluminum
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Point Y

Figure 1.The thin plate structure and the experimental set-up: Theefexcitation position (point
X), the vibration measurement position (Point Y), and thesidered damage types.

plate. The methods are based on a single pair of (scalatptirci-response vibra-
tion signals obtained via force and dynamic strain gaugs@snrespectively. Four
types of structural conditions are considered, each onegponding to the release
of each one of the four clamps (clamps A, B, C, D) holding ttege(Figure 1). Two
non-parametric methods, namely a Power Spectral Denssip)@nd Frequency Re-
sponse Function (FRF) based method, and three paramethodsg namely a model
parameter based, a residual variance, and a residual etatedness based method,
are employed and are experimentally assessed via a numtast gses.

THE EXPERIMENTAL SET-UP

The structure. The thin plate structure is depicted in Figure 1. It is madstahdard
aluminum, with its dimensions bein@00 x 800 x 2 mm, and it is suspended verti-
cally via four symmetrically positioned clamps designaasdlamps A, B, C, and D.
Each clamp consists of two thick (nm) rectangular steel plates tightened together
via two M8 bolts.

The damage and the experimentsi-our distinct damage types are considered (Table
). Each one, referred to &3amage type A, B, C, or [xorresponds to the complete
loosening of clamp A, B, C, or D, respectively (Figure 1).

In all cases the excitation is random Gaussian force appledontally at Point
X (Figure 1) via an electromechanical shaker (MB Dynamicsi®I&0A) equipped

TABLE |I. STRUCTURAL STATES AND EXPERIMENTAL DETAILS
Structural State Description Number of Experiments

Healthy — 13
Damage type A loosening of clamp A

Damage type B  loosening of clamp B

Damage type C loosening of clamp C

Damage type D loosening of clamp D

Sampling frequencyy, = 256 Hz; signal bandwidth{0.5 — 100] Hz

Signal lengthlV in samples (s):

Non—parametric method$V = 30 720 (120 s); Parametric method8f = 6 480 (25 s)
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Figure 2.(a) Power Spectral Density (PSD) and (b) Frequency Resgansetion (FRF) magnitude
estimates for the healthy and damaged structural statdst{\Weethod — details in Table IlI).

with a stinger. The actual force exerted on the structuresigsuared via an impedance
head (PCB 288D01), while the resulting vibration respomsesneasured (sampling
frequencyf, = 256 Hz, signal bandwidtl).5 — 100 Hz) at various points on the
structure via strain gauges (PCB ICP 740B02). In this sthdyrésults are based on
asinglevibration response measurement (Point Y, Figure 1) areepted. The force
and strain signals are driven through a signal conditiodmgce (PCB 481A02) into
the data acquisition system (SigLab 20-42).

A number of experiments are carried out, initially for theahley structure (13
experiments) and subsequently for each damaged state €5ments per state — see
Table I). Each measured signal is adjusted to zero sampla arehnormalized to a
unity sample standard deviation. Typical non—parameéiikel¢h based) Power Spec-
tral Density (PSD) and Frequency Response Function (FREphimale estimates for
the healthy and each damaged state of the structure ardetemid-igure 2.

STATISTICAL TIME SERIES METHODS FOR SHM

In this section the basic principles of the employed mettavdgpresented. Each
method is based on the detection of changes in a characteusintity() constructed
from each data set under the healthy/nominal and damagedistil states. Depend-
ing on the way this characteristic quantity is constructed,methods are classified
as non—parametric or parametric. The main characteristittsee methods are sum-
marized in Table Il. For a detailed overview the reader ismref to references [1, 2].

Non—parametric methods. Non—parametric methods are those in which the char-
acteristic quantity) is constructed based on non—parametric time series repeese
tions (models). Two non—parametric methods are used isthdy/: a Power Spectral
Density (PSD) and a Frequency Response Function (FRF) lmastttbd. For both
methods the excitation and/or vibration response sigmalsegmented int& non—
overlapping sections, each of lendilsamples, and Welch type spectral estimation is
employed.

(a) The Power Spectral Density (PSD) based methtus method tackles damage
detection and identification via changes in the PS) of the measured vibration
signal when the excitation is not available (response—oa$e). The method’s char-



TABLE Il. STATISTICAL TIME SERIES METHODS FOR SHM [2]

Method Null Hypothesis (principle) Test Statistic

PSD Sulw) = Sp(w) F = Sy(w)/Su(w)

FRF S|H (jeo)| = [Ho(jw)| — |Hou(jw)| = 0 Z = 3|H(jw)|/V25

Model parameter 50=0,—0,=0 X3 = 5§T(2139)*15§
Residual variance o2, ; o2, F =352,/52,

Residual likelihood 0, =0, X3 = N62,/0%,

Residual uncorr. plr] = Xo=NIN+2)>7 (N —71)'pr]

S(w): Power Spectral Density (PSD) functid@f (jw)|: Frequency Response Function (FRF) magnitude
o standard deviation qﬁo(jw)h 6: model parameter vectoFy: covariance 0B,

o2,: variance of residual signal obtained by driving the headtinucture signals through the healthy model
o2,,: variance of residual signal obtained by driving the curstructure signals through the healthy model
p[7]: residual normalized autocovarian@é; signal length in samples

Estimators/estimates are designated by a hat.

The subscripts “0” and “u” designate healthy and currenkfonvn) structural state, respectively.

acteristic quantity thus i = S(w). Damage detection is based on confirmation of
statistically significant deviations (from the nominakitay) in the current structure’s
PSD function at some frequency(ies) [1, 2]. Damage ideatifim may be achieved
via a hypothesis testing procedure for each potential dartygue.

(b) The Frequency Response Function (FRF) based mefflad.method is similar,
but requires the availability of both the excitation andp@sse signals and uses the
FRF magnitude as its characteristic quantity, thus- |H (jw)| with j designating
the imaginary unit. Damage detection is based on confirmatfcstatistically sig-
nificant deviations (from the nominal/healthy) in the cuatrstructure’s FRF at some
frequency(ies) through a hypothesis testing problem (&whev) [1, 2]. Damage
identification may be achieved via a hypotheses testingephae for each potential
damage type.

Parametric methods. Parametric methods are those in which the characterissic-qu
tity () is constructed based on parametric time series represgrgémodels). They
are applicable to both the response—only and excitatieperese cases, as each sit-
uation may be dealt with through the use of proper repregenta Two families of
parametric methods are used in the study.

(a) The model parameter based methobhis method attempts damage detection
and identification using a characteristic quan@tythat is function of the parameter
vector @ of a time series model. The model has to be re—estimatedglthian in-
spection phase based on signals from the current (unknaat® of the structure.
Damage detection is based on testing for statisticallyisogmt changes in the pa-
rameter vectof between the nominal and current structural states via athgpis
testing procedure [1, 2]. Damage identification may be agiesia a hypotheses
testing procedure for each potential damage type.

(b) Model residual based method$hese attempt damage detection and identifica-
tion using characteristic quantities that are functionsesfdual sequences obtained
by driving the current structural excitation and/or resgosignals through suitable




TABLE 1ll. NON-PARAMETRIC METHOD DETAILS
Method | Segment lengthl{) | Non-overlapping segment&() | Window type

Welch 2048 samples 15 Hamming
TABLE IV. PARAMETRIC METHOD DETAILS

Method Estimated Model Dimension 6f Max. Lagr
Model parameter ARXR2, 82) 165 parameters —
Residual variance ARPX2, 82) 165 parameters -
Residual likelihood function  ARX82,82) 165 parameters -
Residual uncorrelatedness ARIG, 96) 193 parameters 25 samples
ARX(na,nb) stands for AutoRegressive model with eXogenous excitatfarders(na, nb)

pre—determined models corresponding to a particular stdke structure (healthy or
damaged structure under specific damage type) [1, 2]. A fict snethod is based
on the fact that the model matching the current state of tiuetsire should generate
a residual sequence characterized by minimal variance.cénsemethod is based
on the residual series uncorrelatedness. The model mgttiencurrent state of the
structure should generate a white (uncorrelated) resgheplence. Both methods use
classical tests on the residuals and offer simplicity andewd for model estimation
in the inspection phase.

EXPERIMENTAL RESULTS

The presented methods are now applied to the problem of dadetgction and
identification on the thin aluminium plate. Non—paramesin@ parametric method
details are provided in Tables Il and IV, respectively.

Figures 3 and 4 present typical non—parametric damagetaeteesults obtained
via the PSD and FRF based methods, respectively. Evideotisgct detection at the
selectedv (false alarm) risk level is obtained in each case, as thestasistics are
shown not to exceed the critical points (dashed horizoiriak) in the healthy case,
while they clearly exceed them for each presented damage déste that damage
type C appears easiest to detect, while damage type A apgelesdest (Figure 3).
It is worth noting that damage A is close to the excitatiompdiut most distant from
the response measurement point (Figure 1).

Figures 5 and 6 present typical parametric damage detesarits obtained by
the model parameter and residual uncorrelatedness baskeddagrespectively, at the
selectedh risk level. Evidently, correct detection is obtained infeaase, as the test
statistic is shown not to exceed the critical point in thdtgeacase, while it exceeds it
in all considered damage cases (note the logarithmic scaleesovertical axis which
indicates significant difference between the healthy amdadge test statistics for the
considered test cases).

Summary results for all the considered methods are presémt€able V. The
damage detection assessment is based2oexperiments for the healthy structure
(an additional experiment is used for establishing thelbegeand5 experiments for
each considered damaged state (damage types A,..., D —Ilskeel)Tdor damage
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Figure 3. Indicative damage detection results via the PS2danethod for five test cases
(one healthy and four damaged) at the= 10~ risk level. A damage is detected if the test
statistic exceeds the critical points (dashed horizoirak).

Healthy Structure Damage type A

L
k7]
§ 4
w3
Ny
1
0
20 40 60 80 100 20 40 60 80 100
Frequency (Hz) Frequency (Hz)
Damage type B Damage type C Damage type D
30 250, 50
25 200 40
20
150| 30
15
100| 20
10
5k 50 10
0 0 =] 0
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Frequency (Hz) Frequency (Hz) Frequency (Hz)

Figure 4. Indicative damage detection results via the FREdaethod for five test cases
(one healthy and four damaged) at the= 10~ risk level. A damage is detected if the test
statistic exceeds the critical point (dashed horizonteg)li

identification assessment one experiment (and correspgldita set) for each dam-
age type is used for establishing the baseline, while theair@ng 20 experiments
compose the considered test cases.

As suggested by the results of Table V, both non—parametdparametric meth-
ods achieve accurate damage detection with zero falsesédrtime selected risk (false
alarm) levelsy and the vibration measurement position used. The abilitg@fmeth-
ods to properly detect damage is accompanied by no missedg#acases, even for
parametric methods for which a very small value of the risleler was selected.
Damage identification results also demonstrate the alwfitthe methods to accu-
rately identify the actual damage type. It is worthwhile dragizing that no damage
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Figure 5. Indicative damage detection results via the mpaeimeter based method (five
test cases; critical point at the= 10~!2 risk level shown as dashed horizontal line; damage
is detected if the test statistic exceeds the critical point

¢ Residual Based Method: using the residual uncorrelatedness (Damage Detection)
1

T [
10 I

Healthy Damage A Damage B Damage C Damage D
Test Cases

Figure 6. Indicative damage detection results via the vadidncorrelatedness based method
(five test cases; critical point at the= 10~'2 risk level shown as dashed horizontal line;
damage is detected if the test statistic exceeds the ¢itcat).
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misclassification errors are recorded.

Overall, both non—parametric and parametric time seri¢boas for SHM demon-
strate high potential for effective damage detection amhtification, even when
based on just @ingle vibration response signal. Furthermore, if the risk level
(false alarm) is properly adjusted, the methods seem t@eeld@ccurate damage de-
tection and damage type identification. The FRF and residas¢éd methods seem
to achieve clearer damage detection and damage type idetitifi than the PSD and
parameter based methods, respectively, although therpefwe of all considered
methods appears very good.

Nevertheless, a number of issues require attention on p#neaiser. Effective
model identification and proper selection of the risk levdétype | error) are crucial
for successful damage diagnosis, especially for parametethods. Moreover, In
the case of multiple damage scenarios, statistical timesarethods are capable of
effectively treating damage detection, although propenaige identification (classi-
fication) is a more difficult problem that requires the usedfanced methods [4, 5].

CONCLUDING REMARKS

An experimental assessment of non—parametric and paiarseztistical time se-
ries methods for SHM was presented via their applicationamage detection and
identification in a thin aluminum plate. Both types of methadere shown to ef-
fectively tackle the detection and identification subpeoi$, achieving excellent per-
formance with zero false alarm, missed damage, and damagpassification rates,
although only a single vibration response signal measunemas used.

Non—parametric methods are generally simpler to use andreegnly little user



TABLE V. SUMMARY DAMAGE DETECTION AND IDENTIFICATION RESULTS

Damage Detection Damage Identification

Method False Missed damage Damage misclassification

alarms| dam. A dam.B dam.C dam.[Ddam. A dam.B dam.C dam.D
PSD based 0/12 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5
FRF based 0/12 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5
Mod. parametér  0/12 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5
Res. variance 0/12 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5
Res. likelihood 0/12 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5
Res. uncof. 0/12 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5
Tadjusted.

expertise. Parametric methods are somewhat more elalardteequire more ex-
perience. Yet, parametric methods offer increased seitgiind accuracy, along
with more effective tackling of the damage detection anatifieation subproblems.
Accurate parametric modeling is nevertheless necessaile the methods may be
somewhat sensitive to experimental and modeling uncéieain
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