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ABSTRACT

This work aims at the experimental assessment of a number of statistical time
series methods for Structural Health Monitoring (SHM). Themain features and oper-
ation of the employed non–parametric and parametric methods are briefly reviewed.
Their performance is subsequently assessed via laboratoryexperiments pertaining to
damage detection and identification on a thin aluminum platestructure. The results
of the study demonstrate the potential and effectiveness ofthe statistical time series
SHM methods.

INTRODUCTION

Vibration based statistical time series methods for Structural Health Monitoring
utilize random excitation and/or vibration response signals, along with statistical
model building and decision making tools, for inferring thehealth state of a struc-
ture [1–5]. They offer a number of important advantages, including no requirement
for physics–based or finite element type models, no requirement for complete modal
models, the treatment of uncertainties, and statistical decision making with specified
performance characteristics. In spite of these, the literature on vibration–based time
series methods for condition monitoring remains relatively sparse, and, in particular,
no application studies that assess and experimentally compare the various methods
are available.
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Thegoal of the present study is to present the application of a numberof statis-
tical time series methods to damage detection and identification in a thin aluminum
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Figure 1.The thin plate structure and the experimental set-up: The force excitation position (point
X), the vibration measurement position (Point Y), and the considered damage types.

plate. The methods are based on a single pair of (scalar) excitation–response vibra-
tion signals obtained via force and dynamic strain gauge sensors, respectively. Four
types of structural conditions are considered, each one corresponding to the release
of each one of the four clamps (clamps A, B, C, D) holding the plate (Figure 1). Two
non-parametric methods, namely a Power Spectral Density (PSD) and Frequency Re-
sponse Function (FRF) based method, and three parametric methods, namely a model
parameter based, a residual variance, and a residual uncorrelatedness based method,
are employed and are experimentally assessed via a number oftest cases.

THE EXPERIMENTAL SET-UP

The structure. The thin plate structure is depicted in Figure 1. It is made ofstandard
aluminum, with its dimensions being1000× 800 × 2 mm, and it is suspended verti-
cally via four symmetrically positioned clamps designatedas clamps A, B, C, and D.
Each clamp consists of two thick (5 mm) rectangular steel plates tightened together
via two M8 bolts.

The damage and the experiments.Four distinct damage types are considered (Table
I). Each one, referred to asDamage type A, B, C, or D, corresponds to the complete
loosening of clamp A, B, C, or D, respectively (Figure 1).

In all cases the excitation is random Gaussian force appliedhorizontally at Point
X (Figure 1) via an electromechanical shaker (MB Dynamics Modal 50A) equipped

TABLE I. STRUCTURAL STATES AND EXPERIMENTAL DETAILS
Structural State Description Number of Experiments
Healthy — 13
Damage type A loosening of clamp A 5
Damage type B loosening of clamp B 5
Damage type C loosening of clamp C 5
Damage type D loosening of clamp D 5
Sampling frequency:fs = 256 Hz; signal bandwidth:[0.5− 100] Hz
Signal lengthN in samples (s):
Non–parametric methods:N = 30 720 (120 s); Parametric methods:N = 6 480 (25 s)
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Figure 2.(a) Power Spectral Density (PSD) and (b) Frequency ResponseFunction (FRF) magnitude
estimates for the healthy and damaged structural states (Welch method – details in Table III).

with a stinger. The actual force exerted on the structure is measured via an impedance
head (PCB 288D01), while the resulting vibration responsesare measured (sampling
frequencyfs = 256 Hz, signal bandwidth0.5 − 100 Hz) at various points on the
structure via strain gauges (PCB ICP 740B02). In this study the results are based on
asinglevibration response measurement (Point Y, Figure 1) are presented. The force
and strain signals are driven through a signal conditioningdevice (PCB 481A02) into
the data acquisition system (SigLab 20–42).

A number of experiments are carried out, initially for the healthy structure (13
experiments) and subsequently for each damaged state (5 experiments per state – see
Table I). Each measured signal is adjusted to zero sample mean and normalized to a
unity sample standard deviation. Typical non–parametric (Welch based) Power Spec-
tral Density (PSD) and Frequency Response Function (FRF) magnitude estimates for
the healthy and each damaged state of the structure are depicted in Figure 2.

STATISTICAL TIME SERIES METHODS FOR SHM

In this section the basic principles of the employed methodsare presented. Each
method is based on the detection of changes in a characteristic quantityQ constructed
from each data set under the healthy/nominal and damaged structural states. Depend-
ing on the way this characteristic quantity is constructed,the methods are classified
as non–parametric or parametric. The main characteristicsof the methods are sum-
marized in Table II. For a detailed overview the reader is referred to references [1,2].

Non–parametric methods. Non–parametric methods are those in which the char-
acteristic quantityQ is constructed based on non–parametric time series representa-
tions (models). Two non–parametric methods are used in thisstudy: a Power Spectral
Density (PSD) and a Frequency Response Function (FRF) basedmethod. For both
methods the excitation and/or vibration response signals are segmented intoK non–
overlapping sections, each of lengthL samples, and Welch type spectral estimation is
employed.
(a) The Power Spectral Density (PSD) based method.This method tackles damage
detection and identification via changes in the PSDS(ω) of the measured vibration
signal when the excitation is not available (response–onlycase). The method’s char-



TABLE II. STATISTICAL TIME SERIES METHODS FOR SHM [2]
Method Null Hypothesis (principle) Test Statistic

PSD Su(ω)
?
= So(ω) F = Ŝo(ω)/Ŝu(ω)

FRF δ|H(jω)| = |Ho(jω)| − |Hu(jω)| ?
= 0 Z = δ|Ĥ(jω)|/

√
2σ̂H

Model parameter δθ = θo − θu
?
= 0 χ2

θ = δθ̂
T
(2P̂ θ)

−1δθ̂

Residual variance σ2
oo

?

≥ σ2
ou F = σ̂2

ou/σ̂
2
oo

Residual likelihood θo
?
= θu χ2

N = Nσ̂2
ou/σ

2
oo

Residual uncorr. ρ[τ ]
?
= 0 χ2

ρ = N(N + 2)
∑r

τ=1
(N − τ)−1ρ̂2[τ ]

S(ω): Power Spectral Density (PSD) function;|H(jω)|: Frequency Response Function (FRF) magnitude
σH : standard deviation of|Ĥo(jω)|; θ: model parameter vector;P θ: covariance ofθo

σ2

oo: variance of residual signal obtained by driving the healthy structure signals through the healthy model
σ2

ou: variance of residual signal obtained by driving the current structure signals through the healthy model
ρ[τ ]: residual normalized autocovariance;N : signal length in samples
Estimators/estimates are designated by a hat.
The subscripts “o” and “u” designate healthy and current (unknown) structural state, respectively.

acteristic quantity thus isQ = S(ω). Damage detection is based on confirmation of
statistically significant deviations (from the nominal/healthy) in the current structure’s
PSD function at some frequency(ies) [1, 2]. Damage identification may be achieved
via a hypothesis testing procedure for each potential damage type.
(b) The Frequency Response Function (FRF) based method.This method is similar,
but requires the availability of both the excitation and response signals and uses the
FRF magnitude as its characteristic quantity, thusQ = |H(jω)| with j designating
the imaginary unit. Damage detection is based on confirmation of statistically sig-
nificant deviations (from the nominal/healthy) in the current structure’s FRF at some
frequency(ies) through a hypothesis testing problem (for eachω) [1, 2]. Damage
identification may be achieved via a hypotheses testing procedure for each potential
damage type.

Parametric methods.Parametric methods are those in which the characteristic quan-
tity Q is constructed based on parametric time series representations (models). They
are applicable to both the response–only and excitation–response cases, as each sit-
uation may be dealt with through the use of proper representations. Two families of
parametric methods are used in the study.
(a) The model parameter based method.This method attempts damage detection
and identification using a characteristic quantityQ that is function of the parameter
vectorθ of a time series model. The model has to be re–estimated during the in-
spection phase based on signals from the current (unknown) state of the structure.
Damage detection is based on testing for statistically significant changes in the pa-
rameter vectorθ between the nominal and current structural states via a hypothesis
testing procedure [1, 2]. Damage identification may be achieved via a hypotheses
testing procedure for each potential damage type.
(b) Model residual based methods.These attempt damage detection and identifica-
tion using characteristic quantities that are functions ofresidual sequences obtained
by driving the current structural excitation and/or response signals through suitable



TABLE III. NON–PARAMETRIC METHOD DETAILS
Method Segment length (L) Non-overlapping segments (K) Window type
Welch 2048 samples 15 Hamming

TABLE IV. PARAMETRIC METHOD DETAILS
Method Estimated Model Dimension ofθ Max. Lagr
Model parameter ARX(82, 82) 165 parameters –
Residual variance ARX(82, 82) 165 parameters –
Residual likelihood function ARX(82, 82) 165 parameters –
Residual uncorrelatedness ARX(96, 96) 193 parameters 25 samples
ARX(na, nb) stands for AutoRegressive model with eXogenous excitationof orders(na, nb)

pre–determined models corresponding to a particular stateof the structure (healthy or
damaged structure under specific damage type) [1, 2]. A first such method is based
on the fact that the model matching the current state of the structure should generate
a residual sequence characterized by minimal variance. A second method is based
on the residual series uncorrelatedness. The model matching the current state of the
structure should generate a white (uncorrelated) residualsequence. Both methods use
classical tests on the residuals and offer simplicity and noneed for model estimation
in the inspection phase.

EXPERIMENTAL RESULTS

The presented methods are now applied to the problem of damage detection and
identification on the thin aluminium plate. Non–parametricand parametric method
details are provided in Tables III and IV, respectively.

Figures 3 and 4 present typical non–parametric damage detection results obtained
via the PSD and FRF based methods, respectively. Evidently,correct detection at the
selectedα (false alarm) risk level is obtained in each case, as the teststatistics are
shown not to exceed the critical points (dashed horizontal lines) in the healthy case,
while they clearly exceed them for each presented damage case. Note that damage
type C appears easiest to detect, while damage type A appearsas hardest (Figure 3).
It is worth noting that damage A is close to the excitation point, but most distant from
the response measurement point (Figure 1).

Figures 5 and 6 present typical parametric damage detectionresults obtained by
the model parameter and residual uncorrelatedness based methods, respectively, at the
selectedα risk level. Evidently, correct detection is obtained in each case, as the test
statistic is shown not to exceed the critical point in the healthy case, while it exceeds it
in all considered damage cases (note the logarithmic scale on the vertical axis which
indicates significant difference between the healthy and damage test statistics for the
considered test cases).

Summary results for all the considered methods are presented in Table V. The
damage detection assessment is based on12 experiments for the healthy structure
(an additional experiment is used for establishing the baseline) and5 experiments for
each considered damaged state (damage types A,. . . , D – see Table I). For damage
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Figure 3. Indicative damage detection results via the PSD based method for five test cases
(one healthy and four damaged) at theα = 10−4 risk level. A damage is detected if the test

statistic exceeds the critical points (dashed horizontal lines).
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Figure 4. Indicative damage detection results via the FRF based method for five test cases
(one healthy and four damaged) at theα = 10−6 risk level. A damage is detected if the test

statistic exceeds the critical point (dashed horizontal line).

identification assessment one experiment (and corresponding data set) for each dam-
age type is used for establishing the baseline, while the remaining 20 experiments
compose the considered test cases.

As suggested by the results of Table V, both non–parametric and parametric meth-
ods achieve accurate damage detection with zero false alarms at the selected risk (false
alarm) levelsα and the vibration measurement position used. The ability ofthe meth-
ods to properly detect damage is accompanied by no missed damage cases, even for
parametric methods for which a very small value of the risk level α was selected.
Damage identification results also demonstrate the abilityof the methods to accu-
rately identify the actual damage type. It is worthwhile emphasizing that no damage
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Figure 5. Indicative damage detection results via the modelparameter based method (five
test cases; critical point at theα = 10−12 risk level shown as dashed horizontal line; damage

is detected if the test statistic exceeds the critical point).
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Figure 6. Indicative damage detection results via the residual uncorrelatedness based method
(five test cases; critical point at theα = 10−12 risk level shown as dashed horizontal line;

damage is detected if the test statistic exceeds the critical point).

misclassification errors are recorded.
Overall, both non–parametric and parametric time series methods for SHM demon-

strate high potential for effective damage detection and identification, even when
based on just asingle vibration response signal. Furthermore, if the risk levelα

(false alarm) is properly adjusted, the methods seem to achieve accurate damage de-
tection and damage type identification. The FRF and residualbased methods seem
to achieve clearer damage detection and damage type identification than the PSD and
parameter based methods, respectively, although the performance of all considered
methods appears very good.

Nevertheless, a number of issues require attention on part of the user. Effective
model identification and proper selection of the risk levelα (type I error) are crucial
for successful damage diagnosis, especially for parametric methods. Moreover, In
the case of multiple damage scenarios, statistical time series methods are capable of
effectively treating damage detection, although proper damage identification (classi-
fication) is a more difficult problem that requires the use of advanced methods [4,5].

CONCLUDING REMARKS

An experimental assessment of non–parametric and parametric statistical time se-
ries methods for SHM was presented via their application to damage detection and
identification in a thin aluminum plate. Both types of methods were shown to ef-
fectively tackle the detection and identification subproblems, achieving excellent per-
formance with zero false alarm, missed damage, and damage misclassification rates,
although only a single vibration response signal measurement was used.

Non–parametric methods are generally simpler to use and require only little user



TABLE V. SUMMARY DAMAGE DETECTION AND IDENTIFICATION RESULTS
Damage Detection Damage Identification

Method False Missed damage Damage misclassification
alarms dam. A dam. B dam. C dam. D dam. A dam. B dam. C dam. D

PSD based 0/12 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5
FRF based 0/12 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5
Mod. parameter† 0/12 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5
Res. variance† 0/12 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5
Res. likelihood† 0/12 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5
Res. uncor.† 0/12 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5
†adjustedα.

expertise. Parametric methods are somewhat more elaborateand require more ex-
perience. Yet, parametric methods offer increased sensitivity and accuracy, along
with more effective tackling of the damage detection and identification subproblems.
Accurate parametric modeling is nevertheless necessary, while the methods may be
somewhat sensitive to experimental and modeling uncertainties.
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