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ABSTRACT
A comparative assessment of several vibration based sta-

tistical time series methods for Structural Health Monitoring
(SHM) is presented via their application to an aircraft scale
skeleton structure. A concise overview of some of the main scalar
and vector time series methods is provided, encompassing both
non–parametric and parametric as well as response–only and
excitation–response schemes. Damage detection and identifica-
tion, collectively referred to as damage diagnosis, is based on
single and multiple vibration response signals. The methods’ ef-
fectiveness is assessed via multiple experiments under various
damage scenarios (loosened bolts). The results of the studycon-
firm the global damage detection capability and effectiveness of
scalar and vector statistical time series methods for SHM.

INTRODUCTION
Statistical time series methods for damage detection and

identification (localization), collectively referred to as damage
diagnosis, utilize random excitation and/or vibration response
signals (time series), along with statistical model building and
decision making tools, for inferring the health state of a structure
(Structural Health Monitoring – SHM). They offer a number of
advantages, including no requirement for physics based or finite
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element models, no requirement for complete modal models, ef-
fective treatment of uncertainties, and statistical decision making
with specified performance characteristics [1,2]. These methods
form an important, rapidly evolving, category within the broader
vibration based family of methods [3–5].

Statistical time series methods for SHM are based onscalar
or vectorrandom (stochastic) vibration signals under healthy and
potentially damaged states, identification of suitable (parametric
or non–parametric) time series models describing the dynamics
in each state, and extraction of a statistical characteristic quan-
tity Qo characterizing the structural state in each case (baseline
phase). Damage diagnosis is then accomplished via statistical
decision making consisting of comparing, in a statistical sense,
the current characteristic quantityQu with that of each potential
state as determined in the baseline phase (inspection phase). For
an extended overview of the principles and techniques of statisti-
cal time series methods for SHM the interested reader is referred
to the recent overviews by the last author and co–workers [1,2].

Non–parametric time series methods are those based on
scalar or vector non–parametric time series representations, such
as spectral estimates [1, 2], and have received limited attention
in the literature [6–8]. Parametric time series methods arethose
based on scalar or vector parametric time series representations,
such as the AutoRegressive Moving Average (ARMA) models
[1, 2]. This latter category has attracted significant attention re-
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FIGURE 1. THE AIRCRAFT SCALE SKELETON STRUCTURE AND THE EXPERIMENTAL SET-UP: THE FORCE EXCITATION(POINT X), THE VI-
BRATION MEASUREMENT LOCATIONS(POINTS Y1 – Y4), AND THE BOLTS CONNECTING THE VARIOUS ELEMENTS OF THE STRUCTURE.

cently [9–11].
Thegoalof the present study is the comparative assessment

of severalscalar(univariate) andvector(multivariate) statistical
time series methods for SHM, both non–parametric and paramet-
ric, via their application to an aircraft scale skeleton structure.
This structure has been used in [4] for the introduction of a novel
stochastic scalar (univariate) Functional Model Based Method
for the detection, localization, and magnitude (size) estimation
of damages simulated by small masses added on the structure.
In the present paper three scalar methods, namely a Power Spec-
tral Density (PSD), a Frequency Response Function (FRF), and
a model residual variance based method, as well as two vector
methods, namely a model parameter based and a residual likeli-
hood function based method, are employed, while the damages
correspond to loosening of various bolts connecting the structural
elements.

The main issues the study addresses include the following:

(a) Comparison of the performance ofscalarandvectorstatisti-
cal time series methods with regard to effective damage di-
agnosis; false alarms, missed damage and damage misclas-
sification rates are investigated under multiple experiments.

(b) Assessment of the methods in terms of their damage detec-
tion capability under various scenarios;multiple vibration
measurement locations, “local” or “remote” to damage, are
employed.

(c) Assessment of the ability of the methods to accurately iden-
tify the actual damage type using “local” or “remote” sen-
sors.

(d) Discussion and assessment of the various methods features
and facets.

TABLE 1 . EXPERIMENTAL DETAILS
Structural State Description No of

Experiments
Healthy — 60
Damage A loosening of bolts A1, A4, Z1, Z2 40
Damage B loosening of bolts D1, D2, D3 40
Damage C loosening of bolts K1 40
Damage D loosening of bolts D2, D3 40
Damage E loosening of bolts D3 40
Damage F loosening of bolts K1, K2 40
Sampling frequency:fs = 512 Hz, Signal bandwidth:[4−200] Hz
Signal lengthN in samples (s):
Non-parametric methods:N = 46 080 (90 s)
Parametric methods:N = 15 000 (29 s)

THE STRUCTURE AND THE EXPERIMENTAL SET–UP
The structure

The scale aircraft structure considered was designed by ON-
ERA in conjunction with the GARTEUR SM-AG19 Group and
manufactured at the University of Patras (Fig. 1). It represents
a typical aircraft skeleton design and consists of six solidbeams
with rectangular cross sections representing the fuselage(1500×
150× 50 mm), the wing (2000× 100× 10 mm), the horizon-
tal (300×100×10 mm) and vertical stabilizers (400×100×10
mm), and the right and left wing–tips (400×100×10 mm). All
parts are constructed from standard aluminum and are jointed to-
gether via steel plates and bolts. The total mass of the structure
is approximately 50 kg.

The damage types and the experiments
Damage detection and identification are based on vibration

testing of the structure, which is suspended through a set of
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FIGURE 2. FREQUENCY RESPONSEFUNCTION (FRF) MAGNITUDE ESTIMATES FOR THE HEALTHY AND DAMAGED STRUCTURAL STATES

(POINT X – POINT Y2 TRANSFER FUNCTION).

TABLE 2 . NON-PARAMETRIC ESTIMATION DETAILS
Data length N = 46 080 samples (≈90 s)
Method Welch
Segment length L = 2048 samples
Non–overlapping segments K = 22 segments
Window type Hamming
Frequency resolution ∆ f = 0.25 Hz

bungee cords and hooks from a long rigid beam sustained by
two heavy–type stands (Fig. 1). The suspension is designed in a
way to exhibit a pendulum rigid body mode below the frequency
range of interest, as the boundary conditions are free–free.

The excitation is broadband random stationary Gaussian ap-
plied vertically at the right wing–tip (Point X, Fig. 1) through an
electromechanical shaker (MB Dynamics Modal 50A, max load
225 N). The actual force exerted on the structure is measuredvia
an impedance head (PCB M288D01), while the resulting verti-
cal acceleration responses at Points Y1, Y2, Y3 and Y4 (Fig. 1)
are measured via lightweight accelerometers (PCB 352A10 ICP).
The force and acceleration signals are driven through a condi-
tioning charge amplifier (PCB 481A02) into the data acquisition
system based on SigLab 20–42 measurement modules.

The damage considered corresponds to the loosening of a
variable number of bolts at different joints of the structure (Fig.
1). Six distinct types are considered and summarized in Tab.1.

The assessment of the presented statistical time series meth-
ods with respect to the damage detection and identification sub-

problems is based on 60 experiments for the healthy and 40 ex-
periments for each considered damaged state of the structure
(damage types A, B,. . . , F – see Tab. 1). Moreover,four vi-
bration measurement locations (Fig. 1, Points Y1 – Y4) are em-
ployed in order to determine the ability of the considered meth-
ods in treating damage diagnosis using single and multiple vibra-
tion response signals.

For damage detection a single healthy data set is used for
establishing the baseline (reference) set, while 60 healthy and
240 damaged sets (six damage types with 40 experiments each)
are used as inspection data sets. For the damage identification
task, a single data set for each damaged structural state (damage
types A, B,. . . , F) is used for establishing the baseline (reference)
set, while 240 sets are considered as inspection data sets (corre-
sponding to unknown structural states). The time series mod-
els are estimated and the corresponding estimates of the char-
acteristic quantityQ are extracted (̂QA,Q̂B, . . . ,Q̂F in the base-
line phase;Q̂u in the inspection phase). Damage identification
is presently based on successive binary hypothesis tests – as op-
posed to proper multiple hypothesis tests – and should be thus
considered as preliminary [2].

STRUCTURAL DYNAMICS OF THE HEALTHY
STRUCTURE
Non-parametric identification

Non–parametric identification of the structure is based on
N = 46 080 (≈ 90 s) sample–long excitation–response signals
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FIGURE 3. BAYESIAN INFORMATION CRITERION (BIC) FOR

VARX (n,n) TYPE PARAMETRIC MODELS IN THE HEALTHY CASE.

obtained fromfour vibration measurement locations on the struc-
ture (see Fig. 1). AnL = 2048 sample–long Hamming data win-
dow with zero overlap is used (number of segmentsK = 22) for
PSD (MATLAB functionpwelch.m) and FRF (MATLAB func-
tion tfestimate.m) Welch based estimation (see Tab. 2).

The obtained spectral estimates for the healthy and damaged
states of the structure for the Point X – Point Y2 transfer function
are depicted in Fig. 2. As it may be observed the FRF magni-
tude curves are quite similar in the 4−60 Hz range; notice that
this range includes the first five modes of the structure. Signifi-
cant differences between the healthy and damage type C, D and
E magnitude curves are observed in the range of 60− 150 Hz,
where the next four modes are included. Finally, in the rangeof
150−200 Hz another two modes are present, and discrepancies
are more evident for damage types A, B, C and F. Notice that
the FRF magnitude curves for damage types D and E are very
similar to those of the healthy structure.

Parametric identification
Parametric identification of the structural dynamics is based

on N = 15 000 (≈ 29 s) sample–long excitation and single re-
sponse signals, used to estimate Vector AutoRegressive with eX-
ogenous excitation (VARX) models (MATLAB functionarx.m).
The modeling strategy consists of the successive fitting of
VARX(na,nb) models (withna,nb designating the AR and X
orders, respectively –na= nb= n is currently used) until a can-
didate model is selected. Model parameter estimation is achieved
by minimizing a quadratic Prediction Error (PE) criterion (trace
of residual covariance matrix) leading to a Least Squares (LS)
estimator [12], [13, p. 206]. Model order selection, which is
crucial for successful identification, may be based on a combina-
tion of tools, including the Bayesian Information Criterion (BIC)
(Fig. 3), which is a statistical criterion that penalizes model
complexity (order) as a counteraction to a decreasing modelfit
criterion [12], [13, pp. 505–507] and use of “stabilizationdi-
agrams” which depict the estimated modal parameters (usually
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FIGURE 4. PSDBASED METHOD: INDICATIVE DAMAGE DETEC-
TION RESULTS(OUTPUT 3) AT THE α = 10−5 RISK LEVEL. THE AC-
TUAL STRUCTURAL STATE IS SHOWN ABOVE EACH PLOT.

frequencies) as a function of increasing model order [12, 13].
BIC minimization is achieved for model ordern = 80 (Fig. 3),
thus a 4−variate VARX(80,80) model is selected as adequate for
the model parameter, residual variance, and likelihood function
based methods. The identified VARX(80,80) representation has
1604 parameters, yielding a Sample Per Parameter (SPP) number
equal to 37.4.

SCALAR TIME SERIES METHODS FOR SHM
Time series methods for SHM employscalar (univariate

case) orvector(multivariate case) random vibration excitation–
response signals. The multivariate case requires the establish-
ment of vector statistics and the use of corresponding models
[14]. Despite their phenomenal resemblance to their univariate
counterparts, multivariate models generally have a much richer
structure, while they typically require multivariate statistical de-
cision making procedures [2,14].

In this section, two non–parametric, namely a PSD and an
FRF based method, and a parametric (residual variance based
method)scalartime series method for SHM are briefly reviewed,
and corresponding results are presented and discussed. Themain
characteristics of the methods are summarized in Tab. 3.

A Power Spectral Density (PSD) based method
Damage detection and identification is in this case tackled

via characteristic changes in the Power Spectral Density (PSD)
of the measured vibration response signals (non–parametric
method). The excitation is not assumed available(response–only
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TABLE 3 . CHARACTERISTICS OF STATISTICAL TIME SERIES METHODS FOR SHM
Method Principle Test Statistic Type

PSD based Su(ω)
?
= So(ω) F = Ŝo(ω)/Ŝu(ω) ∼ F(2K,2K) scalar

FRF based δ |H( jω)| = |Ho( jω)|− |Hu( jω)| ?
= 0 Z = δ |Ĥ( jω)|/

√
2σ̂H ∼ N(0,2σ2

H (ω)) scalar

Residual variance σ2
oo

?
≥ σ2

ou F = σ̂2
ou/σ̂2

oo ∼ F(N,N−d) scalar

Model parameter δθ = θ o−θ u
?
= 0 χ2

θ = δ θ̂
T
(2P̂θ )−1δ θ̂ ∼ χ2(d) vector

Residual likelihood θo
?
= θu ∑N

t=1(e
T
u [t,θ o] ·Σo ·eu[t,θo]) ≤ l vector

S(ω): Power Spectral Density (PSD) function;|H( jω)|: Frequency Response Function (FRF) magnitude

σH : standard deviation of|Ĥo( jω)|; θ : model parameter vector;d: parameter vector dimensionality;Pθ : covariance ofθo

σ2
oo: variance of residual signal obtained by driving the healthy structure signals through the healthy model

σ2
ou: variance of residual signal obtained by driving the current structure signals through the healthy model

e: k-variate residual sequence;Σ: residual covariance matrix;l : user defined threshold;N: signal length in samples

In all cases estimators/estimates are designated by a hat.

The subscripts “o” and “u” designate healthy and current (unknown) structural state, respectively.

case). The method’s characteristic quantity thus isQ = S(ω) (ω
designates frequency) (see Tab. 3). Damage detection is based
on confirmation of statistically significant deviations (from the
nominal/healthy) in the current structure’s PSD function at some
frequency [1,2]. Damage identification may be achieved by per-
forming hypothesis testing similar to the above separatelyfor
damages of each potential type. It should be noted that response
signal scaling is important in order to properly account forpo-
tentially different excitation levels.

Results. Typical non–parametric damage detection results
obtained from vibration measurement location at Point Y3 (out-
put 3) are presented in Fig. 4. Evidently, correct detectionat the
α = 10−5 risk level is obtained in each case, as the test statis-
tic is shown not to exceed the critical points (dashed horizontal
lines) in the healthy case, while it exceeds it in each damagecase.
Observe that damage types A, B and C (see Fig. 1 and Tab. 1) ap-
pear more severe (note the logarithmic scale on the verticalaxis
of Fig. 4), while damage types D and E are harder to detect.

Representative damage identification results at theα = 10−5

risk level for vibration measurement location at Point Y1 (output
1) are presented in Fig. 5, with the actual damage being of type
A. The test statistic does not exceed the critical points in the first
case, while this is exceeded in the remaining cases. This cor-
rectly identifies damage type A as current.

Summary damage detection and identification results for the
considered vibration measurement locations (Fig. 1) are pre-
sented in Tab. 4. The PSD based method achieves accurate dam-
age detection as no false alarms are exhibited, while the number
of missed damage cases is zero for all considered damaged struc-
tural states. The method is also capable of identifying the actual
damage type, as zero damage misclassification errors were re-
ported for damage types A, C, D and F, while it exhibits some
misclassification errors for damage type E. The misclassification
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FIGURE 5. PSDBASED METHOD: INDICATIVE DAMAGE IDENTI -
FICATION RESULTS(OUTPUT 1) AT THE α = 10−5 RISK LEVEL, WITH

THE ACTUAL DAMAGE BEING OF TYPE A. EACH CONSIDERED TEST

CASE IS SHOWN ABOVE EACH PLOT.

problem is more intense for damage type B from the Y3 and Y4
vibration measurement locations (Tab. 4).

A Frequency Response Function (FRF) based method
This is similar to the previous method, except that it re-

quires the availability of both the excitation and responsesig-
nals(excitation–response case)and uses the FRF magnitude as
its characteristic quantity (non–parametric method), thus Q =
|H( jω)| with j =

√
−1 (see Tab. 3). The main idea is the com-

parison of the FRF magnitude|Hu( jω)| of the current state of the
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FIGURE 6. FRFMAGNITUDE BASED METHOD: INDICATIVE DAM -
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structure to that of the healthy structure|Ho( jω)|. Damage de-
tection is based on confirmation of statistically significant devi-
ations (from the nominal/healthy) in the current structure’s FRF
at one or more frequencies through a hypothesis testing problem
(for eachω) [1, 2]. Damage identification may be achieved by
performing hypothesis testing similar to the above separately for
damages of each potential type.

Results. Figure 6 presents typical non–parametric damage
detection results via the FRF based method obtained at vibration
measurement location Y2 (output 2). Evidently, correct detec-
tion at theα = 10−6 risk level is achieved in each case, as the
test statistic is shown not to exceed the critical points (dashed
horizontal lines) in the healthy case, while it exceeds the critical
point in the damaged cases. Again, damage types A, B and C
are the more severe, while damage types D and E are harder to
detect.

Indicative damage identification results at theα = 10−6 risk
level for output 4 via the FRF based method are presented in Fig.
7, with the actual damage being of type D. The test statistic does
not exceed the critical point in this (Damage D) case, while it
exceeds it in all other cases. This correctly identifies damage
type D as current.

The summarized damage detection and identification results
for the considered vibration measurement locations (Fig. 1) are
presented in Tab. 4. The FRF magnitude based method achieves
effective damage detection as no false alarms or missed damages
are reported (Tab. 4). The method on the other hand, exhibitsde-
creased accuracy in damage identification as significant numbers

50 100 150 200
10

−2

10
0

10
2

10
4

Damage A

|Z
| s

ta
tis

tic

Frequency (Hz)
50 100 150 200

10
−5

10
0

10
5

Damage B

Frequency (Hz)
50 100 150 200

10
−2

10
0

10
2

10
4

Damage C

Frequency (Hz)

50 100 150 200
0

2

4

6

8
Damage D

|Z
| s

ta
tis

tic
Frequency (Hz)

50 100 150 200
0

5

10

15

20

25
Damage E

Frequency (Hz)
50 100 150 200

10
−4

10
−2

10
0

10
2

10
4

Damage F

Frequency (Hz)

FIGURE 7. FRFMAGNITUDE BASED METHOD: INDICATIVE DAM -
AGE IDENTIFICATION RESULTS(OUTPUT 3) AT THE α = 10−6 RISK

LEVEL , WITH THE ACTUAL DAMAGE BEING OF TYPE D. EACH CON-
SIDERED TEST CASE IS SHOWN ABOVE EACH PLOT.

of damage misclassification errors are reported for damage types
B and D (Tab. 4).

Residual variance based method
In this method(excitation–response case)the characteris-

tic quantity is the residual variance. The main idea is basedon
the fact that the model (parametric method) matching the current
state of the structure should generate a residual sequence char-
acterized by minimal variance [1, 2]. Damage detection is based
on the fact that the residual series obtained by driving the cur-
rent signal(s) through the model corresponding to the nominal
(healthy) structure have variance that is minimal if and only if
the current structure is healthy [1, 2]. This method uses classi-
cal tests on the residuals and offers simplicity and no need for
model estimation in the inspection phase. The method’s main
characteristics are shown in Tab. 3.

Results. The residual variance based method is based on
the identified 4−variate VARX(80,80) models obtained from the
baseline phase, as well as on corresponding models from the cur-
rent (unknown) data records (inspection phase). Damage detec-
tion and identification is achieved via statistical comparison of
the two residual variances (observe that each one of the scalar
responses is considered separately).

Typical damage detection and identification results obtained
via the residual variance based method for vibration measure-
ment location Y2 are shown in Fig. 8 and Fig. 9. Evidently,
correct detection (Fig. 8) is obtained in each considered case,
as the test statistic is shown not to exceed the critical point in the

6 Copyright c© 2010 by ASME
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healthy case, while it exceeds it in the damaged test cases. More-
over, Fig. 9 demonstrates the ability of the method to correctly
identify the actual damage type.

Summary damage detection and identification results for the
considered vibration measurement locations (Fig. 1) are pre-
sented in Tab. 4. The method achieves effective damage de-
tection and identification as no false alarms, missed damages, or
damage misclassification cases are observed.

VECTOR TIME SERIES METHODS FOR SHM
Two vector(multivariate) parametric time series methods for

SHM, namely a model parameter based method and a residual
likelihood function based method, are presently reviewed,while
their experimental results are presented and assessed. Themain
characteristics of the methods are summarized in Tab. 3.

A model parameter based method
This method bases damage detection and identification on

a characteristic quantityQ = θ which is function of the pa-
rameter vectorθ of a parametric time series model (parametric
method) [1, 2]. In this method the model has to be re–estimated
in the inspection phase based on signals from the current (un-
known) state of the structure. Damage detection is based on test-
ing for statistically significant changes in the parameter vectorθ
between the nominal and current structures through a hypothesis
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FIGURE 9. RESIDUAL VARIANCE BASED METHOD: INDICA-
TIVE DAMAGE IDENTIFICATION RESULTS (OUTPUT 2; 240 EXPER-
IMENTS), WITH THE ACTUAL DAMAGE BEING OF TYPE A. A DAM -
AGE IS IDENTIFIED AS TYPEA IF THE TEST STATISTIC IS BELOW THE

CRITICAL POINT (DASHED HORIZONTAL LINE).

testing problem. Damage identification may be based on mul-
tiple hypothesis testing comparing the current parameter vector
to those corresponding to different damage types. In the present
case a procedure that uses a series of binary hypothesis tests is
employed. The method’s main characteristics are presentedin
Tab. 3.

Results. The model parameter based method(excitation–
response case)employs the identified in the baseline phase
4−variate VARX(80,80) models, as well as an identified
VARX(80,80) model for each current data record (inspection
phase).

Figure 10 presents typical parametric damage detection re-
sults. The healthy test statistics are shown in circles (60 exper-
iments), while the least severe damage types D and E are pre-
sented with asterisks and diamonds, respectively (one for each
one of the 40 experiments). Evidently, correct detection isob-
tained in each case, as the test statistic is shown not to exceed the
critical point in the healthy cases, while it exceeds it in the dam-
aged cases; note the logarithmic scale on the vertical axis which
indicates significant difference between the healthy and damaged
test statistics for the considered test cases.

As Tab. 5 indicates, the model parameter based method
achieves accurate damage detection and identification, as no false
alarm, missed damage, or damage misclassification cases arere-
ported.
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Residual likelihood function based method
In this parametric method, damage detection is based on

the likelihood function evaluated for the current signal(s) un-
der each one of the considered structural states [1, 2], [15,pp.
119–120]. The hypothesis corresponding to the largest likeli-
hood is selected as true for the current structural state. Damage
identification is achieved by computing the likelihood function
of the current signal(s) for the baseline models corresponding to
damaged structural states and accepting the hypothesis that cor-
responds to the maximum value of the likelihood – by including
the healthy baseline model damage detection is also treated. This
method offers simplicity as there is no need for model estimation
in the inspection phase. The method’s main characteristicsare
shown in Tab. 3.

Results. The residual likelihood function based method
(excitation–response case)is based on the identified 4−variate
VARX(80,80) models from the baseline phase. Figure 11
presents typical damage detection results obtained by the like-
lihood function based method. Evidently, correct detection is
obtained in each case, as the test statistic is shown not to exceed
the critical point in the healthy cases, while it exceeds it in the
damaged cases. Indicative damage identification results, with the
actual damage being of type C, are depicted in Fig. 12.

The method achieves accurate damage detection and identi-
fication, as no false alarm, missed damage, or damage misclas-
sification cases are reported. Summary damage detection and
identification results are presented in Tab. 5.
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FIGURE 11. RESIDUAL LIKELIHOOD FUNCTION BASED METHOD:
INDICATIVE DAMAGE DETECTION RESULTS(HEALTHY – 60EXPERI-
MENTS; DAMAGED – 200EXPERIMENTS). A DAMAGE IS DETECTED

IF THE TEST STATISTIC EXCEEDS THE CRITICAL POINT(DASHED

HORIZONTAL LINE ).

DISCUSSION
Scalar time series methods for SHM are shown to achieve

effective damage detection and identification, although non–
parametric scalar methods encounter some difficulties. ThePSD
based method achieves excellent damage detection, although it
exhibits some misclassification errors for damage type E. The
misclassification problem is more intense for damage type B
and the Y3 and Y4 vibration measurement locations. The FRF
based method achieves accurate damage detection with no false
alarms or missed damages, except for vibration measurement
location Y4 for which it exhibits an increased number of false
alarms. Moreover, it faces problems in correctly identifying
damage types B and D, as the number of damage misclassifi-
cation cases is higher for these specific damage types. Both of
these damage types involve loosening of bolts on the left wing–
tip of the aircraft (Fig. 1). On the other hand, the parametric
residual variance based method achieves excellent performance
in accurately detecting and identifying damage for all considered
vibration measurement locations (Tab. 4).

Vector time series methods for SHM achieve very accurate
damage detection and identification, as with properly adjusted
risk levelα (type I error) no false alarm, missed damage, or dam-
age misclassification cases are reported. Moreover, the methods
demonstrate global damage detection capability. Nevertheless,
parametric vector models require accurate parameter estimation
and appropriate model structure (order) selection in orderto ac-
curately represent the structural dynamics and effectively tackle

8 Copyright c© 2010 by ASME



10
6

10
7

10
8

10
9

10
10

Model Residual Likelihood Function Based Method

T
es

t S
ta

tis
tic

Test Case
 

 

Damage A Damage B Damage C Damage D Damage E Damage F

FIGURE 12. RESIDUAL LIKELIHOOD FUNCTION BASED METHOD:
INDICATIVE DAMAGE IDENTIFICATION RESULTS (240 EXPERI-
MENTS), WITH THE ACTUAL DAMAGE BEING OF TYPE C. A DAMAGE

IS IDENTIFIED AS TYPE C IF THE TEST STATISTIC IS BELOW THE

CRITICAL POINT (DASHED HORIZONTAL LINE).

the damage detection and identification subproblems. Therefore,
methods falling into this category require adequate user exper-
tise and are somewhat more elaborate than their scalar or non–
parametric counterparts.

Furthermore, the number and location of vibration measure-
ment sensors is an important issue. Several vibration baseddam-
age diagnosis techniques that appear to work well in certaintest
cases, could actually perform poorly when subjected to the mea-
surement constraints imposed by actual testing [3]. Techniques
that are to be seriously considered for implementation in the
field should demonstrate that they can perform well under lim-
itations of a small number of measurement locations and under
the constraint that these locations should be selected a–priori,
without knowledge of the actual damage location. In the present
study, statistical time series methods were demonstrated to be
capable of achieving effective damage diagnosis based on very
limited (vector case), or even on a single–pair(scalar case), of
excitation–response measurements. Nevertheless, their perfor-
mance on large scale structures should be further investigated.

Moreover, in order for certain parametric methods to work
effectively, a very small value of the type I riskα is often needed.
This is due to the fact that the current stochastic time series mod-
els (ARMA, ARX, State Space and so on) used for modeling
the structural dynamics are incapable of fully capturing the ex-
perimental, operational and environmental uncertaintiesthat the
structure is subjected to. For this reason, a very smallα is often
selected in order to compensate for the lack of effective uncer-

tainty modeling. More accurate modeling of uncertainties is an
important subject of current research – in this context see [16].

CONCLUDING REMARKS
• Statistical time series methods for SHM achieve effective

damage detection and identification based on (i) random ex-
citation and/or vibration response (scalaror vector) signals,
(ii) statistical model building, and (iii) statistical decision
making under uncertainty.

• Both scalar and vector statistical time series methods for
SHM were shown to effectively tackle damage detection and
identification, with the vector methods achieving excellent
performance with zero false alarm, missed damage and dam-
age misclassification rates.

• Both scalar and vector methods have global damage detec-
tion capability, as they are able to detect “local” and “re-
mote” damage with respect to the sensor location being
used.

• All methods were able to correctly identify the actual dam-
age type, with the exception of the FRF based method which
exhibited an increased number of damage misclassification
errors for the two damage types that affect the left wing–tip
of the aircraft scale skeleton structure.

• Parametric time series methods are more elaborate and re-
quire higher user expertise compared to their generally sim-
pler non–parametric counterparts. Yet, they offer increased
sensitivity and accuracy. Moreover, vector methods based
on multivariate models are more elaborate but offer the po-
tential of further enhanced performance.

• The availability of data records corresponding to various po-
tential damage scenarios is necessary in order to treat dam-
age identification. This may not be possible with the actual
structure itself, but laboratory scale models or analytical (Fi-
nite Element) models may be used for this purpose.
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