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ABSTRACT

A comparative assessment of several vibration based sta-

tistical time series methods for Structural Health Moniiar
(SHM) is presented via their application to an aircraft seal
skeleton structure. A concise overview of some of the malarsc
and vector time series methods is provided, encompassitiig bo
non—parametric and parametric as well as response—only and
excitation—response schemes. Damage detection andfidenti
tion, collectively referred to as damage diagnosis, is lase
single and multiple vibration response signals. The meshefd
fectiveness is assessed via multiple experiments undarugar
damage scenarios (loosened bolts). The results of the sty
firm the global damage detection capability and effectigsrod
scalar and vector statistical time series methods for SHM.

INTRODUCTION

Statistical time series methods for damage detection and
identification (localization), collectively referred te @amage
diagnosis, utilize random excitation and/or vibrationp@sse
signals (time series), along with statistical model buigdand
decision making tools, for inferring the health state ofracture
(Structural Health Monitoring — SHM). They offer a number of
advantages, including no requirement for physics basedhioe fi
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element models, no requirement for complete modal modkls, e
fective treatment of uncertainties, and statistical denimaking
with specified performance characteristics [1, 2]. Thesthots
form an important, rapidly evolving, category within theobader
vibration based family of methods [3-5].

Statistical time series methods for SHM are basedaatar
orvectorrandom (stochastic) vibration signals under healthy anc
potentially damaged states, identification of suitablegpeetric
or non—parametric) time series models describing the djgcsam
in each state, and extraction of a statistical characieigstan-
tity Qo characterizing the structural state in each case (baselin
phase). Damage diagnosis is then accomplished via statisti
decision making consisting of comparing, in a statistieaise,
the current characteristic quantify, with that of each potential
state as determined in the baseline phase (inspection)pirase
an extended overview of the principles and techniques tfsta
cal time series methods for SHM the interested reader isrezfe
to the recent overviews by the last author and co—worke&j[1,

Non—parametric time series methods are those based c
scalar or vector non—parametric time series represengtsoich
as spectral estimates [1, 2], and have received limiteahtidte
in the literature [6—8]. Parametric time series methodslzoee
based on scalar or vector parametric time series repregarga
such as the AutoRegressive Moving Average (ARMA) models
[1,2]. This latter category has attracted significant aitenre-
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POINT X

FIGURE 1. THE AIRCRAFT SCALE SKELETON STRUCTURE AND THE EXPERIMENTAL BT-UP: THE FORCE EXCITATION(POINT X), THE VI-
BRATION MEASUREMENT LOCATIONS(POINTS Y1 — Y4), AND THE BOLTS CONNECTING THE VARIOUS ELEMENTS OF THE STRUCTRE.

_ TABLE 1. EXPERIMENTAL DETAILS
cently [9-11]. o
. . Structural State  Description No of
Thegoal of the present study is the comparative assessment Experiments
of severabkcalar (univariate) andrector(multivariate) statistical Dealih — 50
time series methods for SHM, both non—parametric and parame y .
. . . . . Damage A loosening of bolts A1, A4, Z1, Z2 40
ric, via their application to an aircraft scale skeletorusture. .
. . . . Damage B loosening of bolts D1, D2, D3 40
This structure has been used in [4] for the introduction ofaeh .
stochastic scalar (univariate) Functional Model Basedhdet Damage C loosening of bolts K1 40
Damage D loosening of bolts D2, D3 40

for the detection, localization, and magnitude (size)neation

of damages simulated by small masses added on the structure.
In the present paper three scalar methods, namely a Power Spe
tral Density (PSD), a Frequency Response Function (FRFE), an
a model residual variance based method, as well as two vector
methods, namely a model parameter based and a residuél likel
hood function based method, are employed, while the damages
correspond to loosening of various bolts connecting thesiral
elements.

The main issues the study addresses include the following:

Damage E loosening of bolts D3 40
Damage F loosening of bolts K1, K2 40
Sampling frequencyfs = 512 Hz, Signal bandwidth4 — 200 Hz
Signal lengthN in samples (s):

Non-parametric method® = 46 080 (90 s)

Parametric method$ = 15 000 (29 s)

THE STRUCTURE AND THE EXPERIMENTAL SET-UP

The structure

(@ Comparison of the performancesdalarandvectorstatisti- The scale aircraft structure considered was designed by ON
cal time series methods with regard to effective damage di- ERA in conjunction with the GARTEUR SM-AG19 Group and
agnosis; false alarms, missed damage and damage misclasManufactured at the University of Patras (Fig. 1). It repnés
sification rates are investigated under multiple experisien & typical aircraft skeleton design and consists of six soéiéms

(b) Assessment of the methods in terms of their damage detec- With rectangular cross sections representing the fus¢legix

tion capability under various scenariasltiple vibration 150> 50 mm), the wing (2006 100x 10 mm), the horizon-
measurement locations, “local” or “remote” to damage, are tal (300x 100x 10 mm) and vertical stabilizers (460100x 10
employed. mm), and the right and left wing—tips (460L00x 10 mm). All

() Assessment of the ability of the methods to accurately iden- Parts are constructed from standard aluminum and are fbiate
tify the actual damage type using “local” or “remote” sen- gether via steel plates and bolts. The total mass of thetateic

Sors. is approximately 50 kg.

(d) Discussion and assessment of the various methods features

and facets. The damage types and the experiments

Damage detection and identification are based on vibratio
testing of the structure, which is suspended through a set ¢
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FIGURE 2.
(POINT X — POINT Y2 TRANSFER FUNCTION.

TABLE 2. NON-PARAMETRIC ESTIMATION DETAILS
Data length N = 46 080 samples¥90 s)
Method Welch

Segment length L = 2048 samples
Non-overlapping segments K = 22 segments
Window type Hamming
Frequency resolution Af =0.25 Hz

FREQUENCY RESPONSEFUNCTION (FRF) MAGNITUDE ESTIMATES FOR THE HEALTHY AND DAMAGED STRUCTURAL STATES

problems is based on 60 experiments for the healthy and 40 e
periments for each considered damaged state of the steuctu
(damage types A, B,..., F — see Tab. 1). Moreofeuy vi-
bration measurement locations (Fig. 1, Points Y1 — Y4) are em
ployed in order to determine the ability of the consideredhme
ods in treating damage diagnosis using single and multiplav
tion response signals.

For damage detection a single healthy data set is used fc
establishing the baseline (reference) set, while 60 healttd

bungee cords and hooks from a long rigid beam sustained by 240 damaged sets (six damage types with 40 experiments eac

two heavy—type stands (Fig. 1). The suspension is designad i
way to exhibit a pendulum rigid body mode below the frequency
range of interest, as the boundary conditions are free—free

The excitation is broadband random stationary Gaussian ap-

plied vertically at the right wing—tip (Point X, Fig. 1) thugh an
electromechanical shaker (MB Dynamics Modal 50A, max load
225 N). The actual force exerted on the structure is measiged
an impedance head (PCB M288D01), while the resulting verti-
cal acceleration responses at Points Y1, Y2, Y3 and Y4 (Big. 1
are measured via lightweight accelerometers (PCB 352AR).IC
The force and acceleration signals are driven through aieond
tioning charge amplifier (PCB 481A02) into the data acqoisit
system based on SigLab 20—42 measurement modules.

are used as inspection data sets. For the damage identificati
task, a single data set for each damaged structural stateafpa
types A, B,..., F) is used for establishing the baseline(ezice)
set, while 240 sets are considered as inspection data sets-c
sponding to unknown structural states). The time series-moc
els are estimated and the corresponding estimates of tire ch:
acteristic quantityQ are extracted@a,Qs, ..., Qr in the base-
line phaseQy in the inspection phase). Damage identification
is presently based on successive binary hypothesis testep-a
posed to proper multiple hypothesis tests — and should k& tht
considered as preliminary [2].

The damage considered corresponds to the loosening of aSTRUCTURAL DYNAMICS OF THE HEALTHY

variable number of bolts at different joints of the struet(Fig.
1). Six distinct types are considered and summarized in Tab.

The assessment of the presented statistical time seriés met
ods with respect to the damage detection and identificatibn s

3

STRUCTURE
Non-parametric identification

Non—parametric identification of the structure is based or
N = 46 080 & 90 s) sample—long excitation—response signals

Copyright © 2010 by ASME



VARX(80,80) ]

-42.2
70 80 85 90

BIC

1

80

40 50 60 70 90
VARX(n,n)
FIGURE 3. BAYESIAN INFORMATION CRITERION (BIC) FOR

VARX (n,n) TYPE PARAMETRIC MODELS IN THE HEALTHY CASE

10 20 30 100

obtained fronfour vibration measurement locations on the struc-
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FIGURE 4. PSDBASED METHOD: INDICATIVE DAMAGE DETEC-
TION RESULTS(OUTPUT 3) AT THE a = 10~ RISK LEVEL. THE AC-

The obtained spectral estimates for the healthy and damagedTUAL STRUCTURAL STATE IS SHOWN ABOVE EACH PLOT

states of the structure for the Point X — Point Y2 transfecfiam

are depicted in Fig. 2. As it may be observed the FRF magni-
tude curves are quite similar in the-460 Hz range; notice that
this range includes the first five modes of the structure. ifign

E magnitude curves are observed in the range of 660 Hz,
where the next four modes are included. Finally, in the raosfge

frequencies) as a function of increasing model order [1R, 13

BIC minimization is achieved for model ordar= 80 (Fig. 3),

thus a 4-variate VARX(80,80) model is selected as adequate for
cant differences between the healthy and damage type C, D andt X(80,80) g

he model parameter, residual variance, and likelihoodtfan
based methods. The identified VARSO, 80) representation has
1604 parameters, yielding a Sample Per Parameter (SPPenumt

150— 200 Hz another two modes are present, and discrepancies
are more evident for damage types A, B, C and F. Notice that
the FRF magnitude curves for damage types D and E are very

equal to 374.

similar to those of the healthy structure.

Parametric identification

Parametric identification of the structural dynamics isdoas
on N =15 000 & 29 s) sample—long excitation and single re-
sponse signals, used to estimate Vector AutoRegressikieXit
ogenous excitation (VARX) models (MATLAB functicarx.m.
The modeling strategy consists of the successive fitting of
VARX (na,nb) models (withna nb designating the AR and X
orders, respectively rRa= nb= nis currently used) until a can-
didate model is selected. Model parameter estimation ieaeti
by minimizing a quadratic Prediction Error (PE) criteridra¢e
of residual covariance matrix) leading to a Least Squar& (L
estimator [12], [13, p. 206]. Model order selection, whigh i
crucial for successful identification, may be based on a ¢oab
tion of tools, including the Bayesian Information Criteri(BIC)
(Fig. 3), which is a statistical criterion that penalizesdab
complexity (order) as a counteraction to a decreasing miidel
criterion [12], [13, pp. 505-507] and use of “stabilizatidia
agrams” which depict the estimated modal parameters (ysual

4

SCALAR TIME SERIES METHODS FOR SHM

Time series methods for SHM empl®gcalar (univariate
case) owector(multivariate case) random vibration excitation—
response signals. The multivariate case requires thelisstab
ment of vector statistics and the use of corresponding nsodel
[14]. Despite their phenomenal resemblance to their uiatear
counterparts, multivariate models generally have a muadheri
structure, while they typically require multivariate $$éital de-
cision making procedures [2, 14].

In this section, two non—parametric, namely a PSD and au
FRF based method, and a parametric (residual variance bas
method)scalartime series method for SHM are briefly reviewed,
and corresponding results are presented and discussethaihe
characteristics of the methods are summarized in Tab. 3.

A Power Spectral Density (PSD) based method

Damage detection and identification is in this case tacklec
via characteristic changes in the Power Spectral DensBpjP
of the measured vibration response signals (non—parametr
method). The excitation is not assumed availgl@eponse—only

Copyright © 2010 by ASME



TABLE 3. CHARACTERISTICS OF STATISTICAL TIME SERIES METHODS FOR $H

Method Principle Test Statistic Type
PSD based (W) £ S(w) F=S(w)/Su(w) ~ F(2K,2K) scalar
FRF based 6|H(jw)\:\Ho(jw)|f\Hu(jw)\:?0 Z=3|H(jw)|/V20u ~ N(0,207 (w))  scalar
Residual variance 0, ; ag, F =062,/62 ~ F(N,N—d) scalar
Model parameter 50=00—0,=0 X5 = 58" (2Pg) 156 ~ x2(d) vector
Residual likelihood 8 = 6, SN (el[t,00] Zo-eult,80)) < | vector

S(w): Power Spectral Density (PSD) functioii (jw)|: Frequency Response Function (FRF) magnitude

on: standard deviation dfio(jw)|; 6: model parameter vectod; parameter vector dimensionalitfp: covariance 0B,
02, variance of residual signal obtained by driving the headttiucture signals through the healthy model

02, variance of residual signal obtained by driving the curstructure signals through the healthy model

e: k-variate residual sequencg; residual covariance matrik; user defined threshold\: signal length in samples

In all cases estimators/estimates are designated by a hat.

The subscripts “0” and “u” designate healthy and currenkiemn) structural state, respectively.

case) The method’s characteristic quantity thu€is= S(w) (w _ Damage A . Damage B Damage C
designates frequency) (see Tab. 3). Damage detectionésibas
on confirmation of statistically significant deviationso(fn the
nominal/healthy) in the current structure’s PSD functiba@ane
frequency [1, 2]. Damage identification may be achieved by pe
forming hypothesis testing similar to the above separdialy
damages of each potential type. It should be noted that nsgpo

F statistic
w D

N

=

signal scaling is important in order to properly accountgor o 1m0 200 0 10 10 200 ° 20 100 150 200

tentially different excitation levels. Frequency (Hz) Frequency (Hz) Frequency (Hz)
Results. Typical non—parametric damage detection results ;¢ Damage D 1 Damage E Damage F

obtained from vibration measurement location at Point i&<(o

put 3) are presented in Fig. 4. Evidently, correct detectivthe 1

a = 105 risk level is obtained in each case, as the test statisZ

tic is shown not to exceed the critical points (dashed hotalo ~ ®

lines) in the healthy case, while it exceeds it in each darage. 10"

Observe that damage types A, Band C (see Fig. 1and Tab. 1)a | i W

pear more severe (note the logarithmic scale on the veridal 750 100 180 200 ' 50 100 150 200 ° 50 100 150 200

F H F H F H
of Fig. 4), while damage types D and E are harder to detect. requency (Hz) requency (H2) requency (Hz)

Representative damage identification results atitke10~°
risk level for vibration measurement location at Point Y titout
1) are presented in Fig. 5, with the actual damage being & typ
A. The test statistic does not exceed the critical pointhé@nfirst
case, while this is exceeded in the remaining cases. This cor
rectly identifies damage type A as current. problem is more intense for damage type B from the Y3 and Y4

Summary damage detection and identification results for the ViPration measurement locations (Tab. 4).
considered vibration measurement locations (Fig. 1) aee pr
sented in Tab. 4. The PSD based method achieves accurate damA Frequency Response Function (FRF) based method

FIGURE 5. PSDBASED METHOD: INDICATIVE DAMAGE IDENTI -
FICATION RESULTS(OUTPUT1) AT THE a = 10" ° RISK LEVEL, WITH
THE ACTUAL DAMAGE BEING OF TYPEA. EACH CONSIDERED TEST
CASE IS SHOWN ABOVE EACH PLOT

age detection as no false alarms are exhibited, while thébrum This is similar to the previous method, except that it re-
of missed damage cases is zero for all considered damagesd str  quires the availability of both the excitation and resposise
tural states. The method is also capable of identifying ttezd nals (excitation—-response casahd uses the FRF magnitude as

damage type, as zero damage misclassification errors were re its characteristic quantity (non—parametric method) stQu=
ported for damage types A, C, D and F, while it exhibits some |H(jw)| with j =+/—1 (see Tab. 3). The main idea is the com-
misclassification errors for damage type E. The misclassifin parison of the FRF magnitudld,(jw)| of the current state of the

5 Copyright © 2010 by ASME
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FIGURE 6. FRFMAGNITUDE BASED METHOD: INDICATIVE DAM -
AGE DETECTION RESULTS(OUTPUT 2) AT THE a = 1078 Risk
LEVEL. THE ACTUAL STRUCTURAL STATE IS SHOWN ABOVE EACH
PLOT.

structure to that of the healthy structyky(jw)|. Damage de-
tection is based on confirmation of statistically significdavi-
ations (from the nominal/healthy) in the current strucgiFRF

at one or more frequencies through a hypothesis testindggob
(for eachw) [1, 2]. Damage identification may be achieved by
performing hypothesis testing similar to the above sepérédr
damages of each potential type.

10" 10° 10"
10 10°
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Frequency (Hz) Frequency (Hz) Frequency (Hz)
Damage D Damage E . Damage F
8 10
o 6 10°
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FIGURE 7. FRFMAGNITUDE BASED METHOD: INDICATIVE DAM -
AGE IDENTIFICATION RESULTS(OUTPUT 3) AT THE a = 1078 Risk
LEVEL, WITH THE ACTUAL DAMAGE BEING OF TYPE D. EACH CON-
SIDERED TEST CASE IS SHOWN ABOVE EACH PLQT

of damage misclassification errors are reported for dampgmpest
B and D (Tab. 4).

Residual variance based method

In this method(excitation—-response cas#)e characteris-
tic quantity is the residual variance. The main idea is based
the fact that the model (parametric method) matching theeatir

Results. Figure 6 presents typical non—parametric damage state of the structure should generate a residual sequéace ¢

detection results via the FRF based method obtained attidhra
measurement location Y2 (output 2). Evidently, correcedet

acterized by minimal variance [1, 2]. Damage detection feba
on the fact that the residual series obtained by driving tive c

tion at thear = 107° risk level is achieved in each case, as the rent signal(s) through the model corresponding to the namin

test statistic is shown not to exceed the critical pointsliea
horizontal lines) in the healthy case, while it exceeds fitecal

(healthy) structure have variance that is minimal if andyahl
the current structure is healthy [1, 2]. This method usesstla

point in the damaged cases. Again, damage types A, B and Ccal tests on the residuals and offers simplicity and no need f
are the more severe, while damage types D and E are harder tomodel estimation in the inspection phase. The method’s mail

detect.

Indicative damage identification results at the= 10~ risk
level for output 4 via the FRF based method are presentedjin Fi
7, with the actual damage being of type D. The test statistésd
not exceed the critical point in this (Damage D) case, while i
exceeds it in all other cases. This correctly identifies dgama
type D as current.

characteristics are shown in Tab. 3.

Results. The residual variance based method is based ol
the identified 4-variate VARX(80,80) models obtained from the
baseline phase, as well as on corresponding models fronuthe c
rent (unknown) data records (inspection phase). Damage-det
tion and identification is achieved via statistical comgpaini of
the two residual variances (observe that each one of tharscal

The summarized damage detection and identification results responses is considered separately).

for the considered vibration measurement locations (Fjgaré

Typical damage detection and identification results oletin

presented in Tab. 4. The FRF magnitude based method achievesia the residual variance based method for vibration measur
effective damage detection as no false alarms or missedgisma ment location Y2 are shown in Fig. 8 and Fig. 9. Evidently,

are reported (Tab. 4). The method on the other hand, exkiits
creased accuracy in damage identification as significanbetsn

6

correct detection (Fig. 8) is obtained in each considerasg,ca
as the test statistic is shown not to exceed the criticaltpoithe

Copyright © 2010 by ASME
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FIGURE 8. RESIDUAL VARIANCE BASED METHOD: INDICATIVE FIGURE 9. RESIDUAL VARIANCE BASED METHOD: INDICA-
DAMAGE DETECTION RESULTS(OUTPUT 2; HEALTHY — 60 EXPERK TIVE DAMAGE IDENTIFICATION RESULTS (OUTPUT 2; 240 EXPER-
MENTS; DAMAGED — 200EXPERIMENTS). A DAMAGE IS DETECTED IMENTS), WITH THE ACTUAL DAMAGE BEING OF TYPE A. A DAM-
IF THE TEST STATISTIC EXCEEDS THE CRITICAL POINT(DASHED AGE IS IDENTIFIED AS TYPEA IF THE TEST STATISTIC IS BELOW THE
HORIZONTAL LINE). CRITICAL POINT (DASHED HORIZONTAL LINE).

healthy case, while it exceeds it in the damaged test casee-M

_c()jver,_Figr.] 9 dem:agstrates the ability of the method to cdlyec testing problem. Damage identification may be based on mul
identify the actual damage tyPe- ) o tiple hypothesis testing comparing the current paramegetor

Summary damage detection and identification results for the to those corresponding to different damage types. In theepite
considered vibration measurement locations (Fig. 1) @€ pr  ca5e a procedure that uses a series of binary hypothesisgest
sented in Tab. 4. The method achieves effective damage de-gmpjoyed. The method's main characteristics are presénted
tection and identification as no false alarms, missed dasyage Tab. 3.

damage misclassification cases are observed. o
Results. The model parameter based metHegcitation—

response casegmploys the identified in the baseline phase
4—variate VARX(80,80) models, as well as an identified
VECTOR TIME SERIES METHODS FOR SHM VARX (80,80) model for each current data record (inspection
Two vector(multivariate) parametric time series methods for phase).
SHM, namely a model parameter based method and a residual Figure 10 presents typical parametric damage detection re

likelihood function based method, are presently reviewedle sults. The healthy test statistics are shown in circles (G&e
their experimental results are presented and assessedndihe iments), while the least severe damage types D and E are pr
characteristics of the methods are summarized in Tab. 3. sented with asterisks and diamonds, respectively (onedoh e

one of the 40 experiments). Evidently, correct detectioohis

tained in each case, as the test statistic is shown not tedsxthe

critical point in the healthy cases, while it exceeds it ia tam-

aged cases; note the logarithmic scale on the vertical axichw
indicates significant difference between the healthy amaidped

test statistics for the considered test cases.

A model parameter based method

This method bases damage detection and identification on
a characteristic quantity) = 6 which is function of the pa-
rameter vectoB of a parametric time series model (parametric
method) [1, 2]. In this method the model has to be re—estithate

in the inspection phase based on signals from the current (un As Tab. 5 indicates, the model parameter based metho
known) state of the structure. Damage detection is baseglsbnt  achieves accurate damage detection and identification, fatse
ing for statistically significant changes in the parametatoro alarm, missed damage, or damage misclassification cases-are

between the nominal and current structures through a hgpith ~ ported.

7 Copyright © 2010 by ASME



Test Statistic
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FIGURE 10. MODEL PARAMETER BASED METHOD INDICATIVE FIGURE 11. RESIDUAL LIKELIHOOD FUNCTION BASED METHOD:
DAMAGE DETECTION RESULTS FOR THREE STRUCTURAL STATES INDICATIVE DAMAGE DETECTION RESULTS(HEALTHY—60EXPERI—
(HEALTHY — 60 EXPERIMENTS DAMAGED — 80 EXPERIMENTS). A MENTS; DAMAGED — 200EXPERIMENTS). A DAMAGE IS DETECTED
DAMAGE IS DETECTED IF THE TEST STATISTIC EXCEEDS THE CRIFI IF THE TEST STATISTIC EXCEEDS THE CRITICAL POINT(DASHED
CAL POINT (DASHED HORIZONTAL LINE). HORIZONTAL LINE).
Residual likelihood function based method DISCUSSION
In this parametric method, damage detection is based on Scalartime series methods for SHM are shown to achieve
the likelihood function evaluated for the current signgal(s- effective damage detection and identification, although-no
der each one of the considered structural states [1, 2],df5, parametric scalar methods encounter some difficulties P32
119-120]. The hypothesis corresponding to the largesli-like based method achieves excellent damage detection, althbug
hood is selected as true for the current structural statendge exhibits some misclassification errors for damage type E Th
identification is achieved by computing the likelihood ftion misclassification problem is more intense for damage type E
of the current signal(s) for the baseline models correspgno and the Y3 and Y4 vibration measurement locations. The FRI

damaged structural states and accepting the hypothesisaha based method achieves accurate damage detection withseo fal
responds to the maximum value of the likelihood — by inclgdin  alarms or missed damages, except for vibration measureme
the healthy baseline model damage detection is also treblésl location Y4 for which it exhibits an increased number of éals
method offers simplicity as there is no need for model estona alarms. Moreover, it faces problems in correctly identifyi

in the inspection phase. The method’s main characteriaties damage types B and D, as the number of damage misclassi

shown in Tab. 3. cation cases is higher for these specific damage types. Both
Results. The residual likelihood function based method these damage types involve loosening of bolts on the lefgwin
(excitation—response casi) based on the identified-4/ariate tip of the aircraft (Fig. 1). On the other hand, the parametri
VARX (80,80) models from the baseline phase. Figure 11 residual variance based method achieves excellent peafaren
presents typical damage detection results obtained byikee | in accurately detecting and identifying damage for all cdered
lihood function based method. Evidently, correct deteci® vibration measurement locations (Tab. 4).
obtained in each case, as the test statistic is shown noteedx Vectortime series methods for SHM achieve very accurate
the critical point in the healthy cases, while it exceeds ithie damage detection and identification, as with properly adglis
damaged cases. Indicative damage identification resittsthve risk levela (type | error) no false alarm, missed damage, or dam:
actual damage being of type C, are depicted in Fig. 12. age misclassification cases are reported. Moreover, thieotiet

The method achieves accurate damage detection and identi-demonstrate global damage detection capability. Neviedhe
fication, as no false alarm, missed damage, or damage misclas parametric vector models require accurate parameter aibim
sification cases are reported. Summary damage detection andand appropriate model structure (order) selection in ctalec-
identification results are presented in Tab. 5. curately represent the structural dynamics and effegtitzakle

8 Copyright © 2010 by ASME
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FIGURE 12. RESIDUAL LIKELIHOOD FUNCTION BASED METHOD!
INDICATIVE DAMAGE IDENTIFICATION RESULTS (240 EXPERFK
MENTS), WITH THE ACTUAL DAMAGE BEING OF TYPE C. A DAMAGE

IS 1
CRI

DENTIFIED AS TYPE C IF THE TEST STATISTIC IS BELOW THE
TICAL POINT (DASHED HORIZONTAL LINE).

the damage detection and identification subproblems. Tdrese
methods falling into this category require adequate uspeiex

tise and are somewhat more elaborate than their scalar er non

parametric counterparts.

Furthermore, the number and location of vibration measure-

ment sensors is an importantissue. Several vibration lutesed
age diagnosis techniques that appear to work well in cetggin
cases, could actually perform poorly when subjected to tha-m
surement constraints imposed by actual testing [3]. Teghes

that are to be seriously considered for implementation & th
field should demonstrate that they can perform well under lim
itations of a small number of measurement locations andrunde

the constraint that these locations should be selectedoai-pr
without knowledge of the actual damage location. In thegmes

Stu

capable of achieving effective damage diagnosis based gn ve

lim

dy, statistical time series methods were demonstratdmxb t

ited (vector case)or even on a single—pafscalar case) of

excitation—response measurements. Nevertheless, tdorp
mance on large scale structures should be further invéstiga

Moreover, in order for certain parametric methods to work

effectively, a very small value of the type I rigkis often needed.
This is due to the fact that the current stochastic time senied-

els (ARMA, ARX, State Space and so on) used for modeling

the structural dynamics are incapable of fully capturing éx-
perimental, operational and environmental uncertairitiasthe
structure is subjected to. For this reason, a very smadl often
selected in order to compensate for the lack of effectiveetnc

9

tainty modeling. More accurate modeling of uncertaintgearn
important subject of current research — in this context $6¢ [

CONCLUDING REMARKS

Statistical time series methods for SHM achieve effective
damage detection and identification based on (i) random ex
citation and/or vibration responsgc@laror vectol) signals,

(ii) statistical model building, and (iii) statistical dsmon
making under uncertainty.

Both scalar and vector statistical time series methods fo
SHM were shown to effectively tackle damage detection anc
identification, with the vector methods achieving excédllen
performance with zero false alarm, missed damage and dan
age misclassification rates.

Both scalar and vector methods have global damage dete:
tion capability, as they are able to detect “local” and “re-
mote” damage with respect to the sensor location being
used.

All methods were able to correctly identify the actual dam-
age type, with the exception of the FRF based method whicl
exhibited an increased number of damage misclassificatio
errors for the two damage types that affect the left wing—tip
of the aircraft scale skeleton structure.

Parametric time series methods are more elaborate and r
quire higher user expertise compared to their generally sim
pler non—parametric counterparts. Yet, they offer incedas
sensitivity and accuracy. Moreover, vector methods base
on multivariate models are more elaborate but offer the po
tential of further enhanced performance.

The availability of data records corresponding to varions p
tential damage scenarios is necessary in order to treat dar
age identification. This may not be possible with the actual
structure itself, but laboratory scale models or analy(iea

nite Element) models may be used for this purpose.

REFERENCES

(1]

(2]

(3]

(4]

Fassois, S., and Sakellariou, J., 2007. “Time seriehimet
ods for fault detection and identification in vibrating stru
tures”. The Royal Society — Philosophical Transactions:
Mathematical, Physical and Engineering Sciences,

pp. 411-448.

Fassois, S., and Sakellariou, J., 2009. “Statisticaleti
series methods for structural health monitoring”. Hn-
cyclopedia of Structural Health MonitoringC. Boller,

F. K. Chang, and Y. Fujino, eds. John Wiley & Sons Ltd.,
pp. 443-472.

Doebling, S., Farrar, C., and Prime, M., 1998. “A summary
review of vibration—based damage identification methods”.
Shock and Vibration Digest30(2), pp. 91-105.

Sakellariou, J., and Fassois, S., 2008. “Vibration bidaalt

Copyright © 2010 by ASME



TABLE 4. SCALAR METHODS DAMAGE DETECTION AND IDENTIFICATION SUMMARY RESULTS
Damage Detection Damage ldentification
Method False Missed damage Damage misclassification
alarms | dam. A dam.B dam.C dam.D dam.E dam|Fdam.A dam.B dam.C dam.D dam.E dam.F

PSD based

response Y1 0/60 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 /40 0 0/40 0/40

response Y2 0/60 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 /40 0 0/40 0/40

response Y3 0/60 0/40 0/40 0/40 0/40 0/40 0/40 0/40 21/40 0/40 0/40 1/40 0/40

response Y4 0/60 0/40 0/40 0/40 0/40 0/40 0/40 0/40 21/40 0/40 0/40 2/40 0/40

FRF based

response Y1 1/60 0/40 0/40 0/40 0/40 0/40 0/40 0/40 10/40 6/40 5/40 2/40 0/40

response Y2 0/60 0/40 0/40 0/40 0/40 1/40 0/40 0/40 4/40 10140  22/40 9/40 3/40

response Y3 0/60 0/40 0/40 0/40 1/40 0/40 0/40 0/40 7/40 2/40 9/40 5/40 1/40

response Y4 35/60 0/40 0/40 0/40 0/40 0/40 0/40 0/40  8/40 0/40 8/40 2/40 0/40

Res. variance’

response Y1 0/60 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 /40 0 0/40 0/40

response Y2 0/60 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 /40 0 0/40 0/40

response Y3 0/60 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 /40 0 0/40 0/40

response Y4 0/60 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 /40 0 0/40 0/40

T adjusteda

TABLES5. VECTOR METHODS DAMAGE DETECTION AND IDENTIFICATION SUMMARY RESULTS
Damage Detection Damage Identification
Method False Missed damage Damage misclassification
alarms | dam. A dam.B dam.C dam.D dam.E dam.|Fdam.A dam.B dam.C dam.D dam.E dam.F

Mod. parametdr  0/60 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 00/4
Res. likelihood 0/60 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 00/4
T adjusteda

detection and identification in an aircraft skeleton stiuet

via a stochastic functional model based methdd&chan-

ical Systems and Signal Processirg, pp. 557-573.
Kopsaftopoulos, F., and Fassois, S., 2007. “Vibration— [11]
based structural damage detection and precise assessment
via stochastic functionally pooled modeley Engineer-

(5]

ing Materials, 347, pp. 127-132. [12]
[6] Sakellariou, J., Petsounis, K., and Fassois, S., 2001 *
bration analysis based on—board fault detection in railway
vehicle suspensions: a feasibility study”. In Proceedofgs  [13]
First National Conference on Recent Advances in Mechan-
ical Engineering. [14]
[7] Liberatore, S., and Carman, G., 2004. “Power spectnal de
sity analysis for damage identification and locatioddur- [15]
nal of Sound and Vibration274(3-5), pp. 761-776.
[8] Rizos, D., Fassois, S., Marioli-Riga, Z., and Karanika, [16]

2008. “Vibration—based skin damage statistical detection
and restoration assessment in a stiffened aircraft panel”.
Mechanical Systems and Signal Processi2g, pp. 315—
337.

[9] Sohn, H., and Farrar, C., 2001. “Damage diagnosis using
time series analysis of vibration signalSmart Materials
and Structures,10, pp. 446-451.

[10] Carden, E., and Brownjohn, J., 2008. “Arma modelled

10

time—series classification for structural health monitgri
of civil infrastructure”. Mechanical Systems and Signal
Processing,22(2), pp. 295-314.

Gao, F., and Lu, Y., 2009. “An acceleration residualeyan
tion approach for structural damage identificatioidurnal

of Sound and Vibration319, pp. 163-181.

Fassois, S., 2001. “Parametric identification of vibra
ing structures”. InEncyclopedia of VibrationS. Braun,
D. Ewins, and S. Rao, eds. Academic Press, pp. 673-685
Ljung, L., 1999.System Identification: Theory for the User
2nd ed. Prentice—Hall.

Lutkepohl, H., 2005.New Introduction to Multiple Time
Series AnalysisSpringer-Verlag Berlin.

Gertler, J., 1998 Fault Detection and Diagnosis in Engi-
neering Systemdvarcel Dekker.

Michaelides, P., and Fassois, S., 2008. “Stochaséntid
fication of structural dynamics from multiple experiments
— epxerimental variability analysis”. In Proceedings & th
ISMA Conference on Noise and Vibration Engineering.

Copyright (©) 2010 by ASME



