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ABSTRACT

This work aims at the experimental assessment of vibration–based time series

methods for Structural Health Monitoring (SHM). The methods are classified as non–

parametric and parametric, while their features and operation are discussed. Further-

more, their performance characteristics and ease of use are assessed and compared.

The application and comparative assessment of the methods through experiments on

a laboratory aluminum truss structure is presented. The results of the study confirm

the high potential and effectiveness of the statistical time series methods for SHM.

INTRODUCTION

Vibration–based statistical time series methods for damage detection and identi-

fication utilize random excitation and/or vibration response signals, along with sta-

tistical model building and decision making tools, for inferring the health state of a

structure [1–4]. They offer a number of important advantages, including no require-

ment for physics–based or finite element type models, no requirement for complete

modal models, effective treatment of uncertainties, and statistical decision making

with specified performance characteristics. In spite of the above, the literature on

vibration–based time series methods for SHM remains relatively sparse, and, in par-

ticular, no application studies that assess and compare the various methods are avail-

able.
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The goal of this study is to contribute to filling this gap by presenting the applica-

tion and comparative assessment of a number of statistical time methods to a labora-

tory aluminum truss structure. The damages considered correspond to the loosening

of bolts connecting certain of the truss elements. Random force excitation is pro-

vided via an electromechanical shaker, while the vibration responses are measured at

various positions via lightweight strain gauges. Two non–parametric methods (Power



Figure 1. The aluminum truss structure and the experimental set-up: The force excitation

(point X), the vibration measurement position (Point Y), and the damage types I and II.

Spectral Density and Frequency Response Function based) and four parametric meth-

ods (model parameter based, residual variance, likelihood function, residual uncorre-

latedness based) are employed.

THE EXPERIMENTAL SET-UP

The structure. The truss structure employed was designed and manufactured by the

SMSA Laboratory of the University of Patras. It consists of thirty beam elements

with rectangular cross sections jointed together via steel elbow plates and bolts (Fig-

ure 1). All parts are constructed from standard aluminum with the truss dimensions

being 140 × 70 × 80 mm.

The damage and the experiments. The damage considered corresponds to loosen-

ing of a variable number of bolts at different joints of the truss. Two distinct types are

considered: The first damage type, referred to as damage type I, corresponds to loos-

ening of two bolts joining together an horizontal and a vertical beam element (bolts A

and B, Figure 1). The second damage type, referred to as damage type II, corresponds

to the loosening of one bolt (bolt C, Figure 1).

Damage detection and identification are based on vibration testing of the structure,

which is suspended through a set of cords. The excitation is a random Gaussian

force applied vertically at Point X (Figure 1) via an electromechanical shaker (MB

Dynamics Modal 50A). The actual force exerted on the structure is measured via

an impedance head (PCB 288D01), while the resulting responses are measured at

different points on the structure via strain gauges (PCB ICP 740B02). In this study

the results based on a single response measurement (Point Y, Figure 1) are presented.

The force and strain signals are driven through a signal conditioning device (PCB

481A02) into the data acquisition system (SigLab 20-42).

A number of experiments are carried out, initially for the healthy and subsequently

for the damaged states of the structure. Experimental details are presented in Table I.

In Figure 2 the non–parametric (Welch based) and parametric (AutoRegressive with

eXogenous excitation – ARX – model based) Frequency Response Function (FRF)

estimates for the healthy and damaged states of the structure are depicted. As it may

be observed, damage type I is more evident than damage type II.
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Figure 2. Frequency Response Function (FRF) magnitude estimates for the healthy and

damaged states of the structure: (a) Non-parametric (Welch based) estimates and (b)

parametric (ARX based) estimates. For the healthy FRFs the ±2 standard deviation

confidence intervals are also depicted (solid thick lines).

STATISTICAL TIME SERIES METHODS FOR DAMAGE DETECTION AND

IDENTIFICATION

An extensive overview of time series methods for SHM in vibrating structures can

be found in [1]. In this study only the basic principles of the methods are reviewed.

The methods are based on the detection of changes in a characteristic quantity Q con-

structed from each data set under the healthy/nominal and damaged structural states.

Depending on the way this characteristic quantity is constructed, time series methods

may be classified as non–parametric or parametric. A rough comparison of the meth-

ods is presented in Table II, while their main characteristics are presented in Table III.

Non–parametric methods. Non–parametric methods (see [1] and the references

therein) are those in which the characteristic quantity Q is constructed based on non–

parametric time series representations (models). Two non–parametric methods are

briefly reviewed in the following: a Power Spectral Density (PSD) based method

TABLE I. EXPERIMENTAL DETAILS
Structural State Description No of Experiments

Healthy — 40

Damage type I loosening of bolts A and B 32

Damage type II loosening of bolt C 32

Sampling frequency: fs = 256 Hz, Signal bandwidth: [0.5 − 100] Hz

Signal length N in samples (s):

Non-parametric methods: N = 30720 (120 s), Parametric methods: N = 10000 (39 s)

TABLE II. COMPARISON OF NON–PARAMETRIC AND PARAMETRIC METHODS
Methods Advantages Disadvantages

Non-parametric Simplicity Potentially reduced accuracy

Computational efficiency

Minimal user expertise required

Parametric Improved parsimony Increased complexity

Potentially increased accuracy Computationally involved

Increased user expertise required



and a Frequency Response Function (FRF) based method. For both methods the

excitation and/or vibration response signals are segmented into K non–overlapping

sections, each of length L, and Welch type spectral estimation is employed.

THE POWER SPECTRAL DENSITY (PSD) BASED METHOD

This method tackles damage detection and identification via characteristic changes

in the PSD of the measured vibration signal when the excitation is not available

(response–only case). The method’s characteristic quantity thus is Q = S(ω) (ω

designates frequency). Damage detection is based on confirmation of statistically

significant deviations (from the nominal/healthy) in the current structure’s PSD func-

tion at some frequency [1]. Damage identification may be achieved by performing

hypotheses testing similar to the above separately for damages of each potential type.

THE FREQUENCY RESPONSE FUNCTION (FRF) BASED METHOD

This is similar to the previous method, except that it requires the availability of

both the excitation and response signals and uses the FRF magnitude as its charac-

teristic quantity, thus Q = |H(jω)| with j =
√
−1. Damage detection is based

on confirmation of statistically significant deviations (from the nominal/healthy) in

the current structure’s FRF at one or more frequencies through a hypothesis testing

problem (for each ω) [1]. Damage identification may be achieved by performing hy-

potheses testing similar to the above separately for damages of each potential type.

Parametric methods. Parametric methods are those in which the characteristic quan-

tity Q is constructed based on parametric time series representations (models) [5] (for

details see [1] and the references therein). They are applicable to both the response–

only and excitation–response cases, as each situation may be dealt with through the

use of proper representations. The parametric methods reviewed in this study are the

TABLE III. OVERVIEW OF TIME SERIES METHODS FOR SHM
Method Principle Test Statistic

PSD based Su(ω)
?
= So(ω) F = Ŝo(ω)/Ŝu(ω)

FRF based δ|H(jω)| = |Ho(jω)| − |Hu(jω)| ?
= 0 Z = δ|Ĥ(jω)|/

√
2σ̂H

Model parameter δθ = θo − θu
?
= 0 χ2

θ = δθ̂
T
(2P̂ θ)

−1δθ̂

Residual variance σ2
oo

?

≥ σ2
ou F = σ̂2

ou/σ̂2
oo

Residual likelihood θo
?
= θu χ2

N = Nσ̂2
ou/σ2

oo

Residual uncorr. ρ[τ ]
?
= 0 χ2

ρ = N(N + 2)
∑r

τ=1
(N − τ)−1ρ̂2[τ ]

†S(ω): Power Spectral Density (PSD) function; |H(jω)|: Frequency Response Function (FRF) magnitude

σH : standard deviation of |Ĥo(jω)|; θ: model parameter vector; P θ: covariance of θo

σ2

oo: variance of residual signal obtained by driving the healthy structure signals through the healthy model

σ2

ou: variance of residual signal obtained by driving the current structure signals through the healthy model

ρ[τ ]: residual normalized autocovariance; N : signal length in samples

Estimators/estimates are designated by a hat.

The subscripts “o” and “u” designate healthy and current (unknown) structural state, respectively.



model parameter based method and certain residual based methods.

THE MODEL PARAMETER BASED METHOD

This method attempts damage detection and identification using a characteristic

quantity Q that is function of the parameter vector θ of a parametric time series model.

In this method the model has to be re–estimated during the inspection phase based on

signals from the current (unknown) state of the structure. Damage detection is based

on testing for statistically significant changes in the parameter vector θ between the

nominal and current structures through a hypothesis testing problem [1]. Damage

identification may be based on multiple hypotheses testing problems comparing the

current parameter vector to those corresponding to different damage types.

RESIDUAL BASED METHODS

These methods [1] attempt damage detection and identification using characteris-

tic quantities that are functions of residual sequences obtained by driving the current

structural excitation and/or response signals through suitable pre–determined models

corresponding to a particular state of the structure (healthy and damaged structure

under specific damage types).

A first method is based on the fact that the model matching the current state of the

structure should generate a residual sequence characterized by minimal variance. A

second method is based on the likelihood function evaluated for the current signal(s)

under each one of the considered structural states. The hypothesis corresponding to

the largest likelihood is selected as true for the current structure. A third method is

based on examination of the residual series uncorrelatedness. The model matching

the current state of the structure should generate a white (uncorrelated) residual se-

quence. These methods use classical tests on the residuals and offer simplicity and

no need for model estimation in the inspection phase.

EXPERIMENTAL RESULTS

A comparative assessment of the statistical time series methods is now presented.

The non–parametric methods’ details are presented in Table IV, while those of para-

TABLE IV. NON–PARAMETRIC METHODS DETAILS
Method Segment length (L) Non-overlapping segments (K) Window type

Welch 2048 samples 15 Hamming

TABLE V. PARAMETRIC METHODS DETAILS
Method Estimated Model Dimension of θ Max. Lag r

Model parameter ARX(103, 103) 207 parameters –

Residual variance ARX(103, 103) 207 parameters –

Residual likelihood function ARX(103, 103) 207 parameters –

Residual uncorrelatedness ARX(138, 138) 277 parameters 25 samples

ARX(na, nb) stands for AutoRegressive model with eXogenous excitation of orders (na, nb)
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Figure 3. Non–parametric damage detection results: (a) PSD based method, and (b) FRF

based method (3 test cases per method; critical points at the α = 10−5 risk level shown as

dashed horizontal lines; damage is detected if the test statistic exceeds the critical points).
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Figure 4. Non–parametric damage identification results – test statistics for the damage I and

damage II hypotheses: (a) actual damage is of type I (PSD method); (b) actual damage is of

type II (PSD method); (c); actual damage is of type I (FRF method); (d) actual damage is of

type II (FRF method). A damage type is identified when its test statistic does not exceed the

critical points (critical points at the α = 10−7 risk level shown as dashed horizontal lines).

metric methods in Table V.

Figures 3 and 4 present typical non–parametric damage detection and identifica-

tion results, respectively, by using the PSD and FRF based methods. A summary

of the results for all available experiments is presented in Table VI. For damage de-

tection a single healthy data set is considered as the reference (baseline) set for the

healthy structure, while the remaining ones are considered as corresponding to un-

known states of the structure. Similarly, in the damage identification task, one data

set for each damage type is considered as the reference (baseline) set, while the re-

maining ones are considered as corresponding to unknown states of the structure. As

suggested by the results (Table VI), both methods achieve effective damage detec-

tion and damage type identification. The false alarm and missed damage numbers are

very small, and so are the damage misclassification numbers as well. The PSD based

method seems to exhibit somewhat better performance than the FRF based method,
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Figure 5. Parametric damage detection results: (a) model parameter, (b) residual variance,

(c) likelihood function, and (d) residual uncorrelatedness based methods (3 test cases;

critical points at the α = 10−8 risk level shown as dashed horizontal lines; damage is

detected if the test statistic exceeds the critical point).
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Figure 6. Parametric damage identification results – test statistics for the damage I and

damage II hypotheses. Two test cases per method: actual damage I (left part), actual damage

II (right part). (a) Model parameter, (b) residual variance, (c) likelihood function, and (d)

residual uncorrelatedness based methods. A damage type is identified when its test statistic

does not exceed the critical points (critical points at the α = 10−12 risk level shown as

dashed horizontal lines).

which proved to be slightly more prone to damage misclassification.

Figures 5 and 6 present typical parametric damage detection and identification

results, respectively, obtained by the model parameter, residual variance, likelihood

function, and residual uncorrelatedness based methods. Notice the logarithmic scale

on the vertical axis of Figure 5, which presents damage detection results by all four

parametric methods. Figure 6 presents typical parametric damage identification re-

sults. The test statistics for the damage I and damage II hypotheses are shown, while

two test cases per method are included: the case of actual damage of type I (left part)

and actual damage of type II (right part).



TABLE VI. DAMAGE DETECTION AND IDENTIFICATION SUMMARY RESULTS

Method Damage Detection (α = 10−5) Damage Identification (α = 10−7)

False alarms Missed damage Damage misclassification

actual actual actual actual

damage I damage II damage I damage II

PSD based 0/39 0/32 0/32 0/31 0/31

FRF based 1/39 0/32 0/32 0/31 2/31

CONCLUDING REMARKS

An experimental assessment of non–parametric and parametric vibration–based

time series methods for SHM was presented. Non–parametric methods are generally

simpler, requiring little user expertise, and were shown to achieve effective damage

detection and identification.

Parametric methods, on the other hand, are more elaborate and have the poten-

tial of offering increased accuracy, along with more effective tackling of the damage

detection and identification subproblems. Nevertheless, accurate modelling seems

necessary, while the methods may be more prone to experimental and modelling un-

certainties. In this study parametric methods were somewhat more sensitive, and also

exhibited increased numbers of false alarms and damage misclassifications. Overall,

the results of the study confirmed the high potential and effectiveness of the vibration–

based statistical time series methods for SHM.
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