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Abstract— The problem of identifying stochastic systems identified models would be of suboptimal accuracy. This is
under multiple operating conditions, by using excitation —re-  due to two reasons. The first is the violation of the principle
sponse signals obtained from each condition, is addresseach  f gtatistical parsimony (model economy) as a large number
operating condition is characterized by several measurakel f del d b df 4 h Thi
variables forming a vector operating parameter. The problen of moaels WQU € usea for rEpreS?nt'ng the system. IS
is tackled within a novel framework consisting of postulatel Would result in a large number of estimated parameters, and
Vector dependent Functionally Pooled ARX (VFP-ARX) mod- thus reduced accuracy. The second is the ineffective use of
els, proper data pooling techniques, and statistical para®ter  the information available in the totality of the data record
estimation. Least Squares (LS) and Maximum Likelihood (ML) |nqeed, not all available information would be extracted,

estimation methods are developed. Their strong consistends theint lati the diff ¢ d Id b
established, and their performance characteristics are agssed as theinterrelationsamong the difrerent records wou e

via a Monte Carlo study. ignored as a result of separating the problem into seemingly
unrelated subproblems.
|. INTRODUCTION This work aims at the postulation of a proper framework

identification a mathematica"fmd methods for effectively tackling the problem of ideptif
g stochastic systems undeultiple operating conditions
his is to be based upon three important entities:

In conventional system
model representing a system at a specific operating conditi
is identified based upon a single data record of excitatio

— response signals. Yet, in many applications, a system (@ A novel, Functionally Pooled (FP) stochastic

may operate under different operating conditions in differ model structure that explicitly allows for system
ent intervals of time, maintaining one such condition in modelling undemultiple operating conditions via
each interval. These operating conditions affect the ayste a single mathematical representation. This repre-
characteristics, and thus its dynamics. Typical examples sentation uses parameters thatctionally depend
include physiological systems under different environtakn upon the operating condition. It also uses a stochas-
conditions, mechanical systems under different load or lu- tic structure that accounts for tistatistical depen-
brication conditions, systems under different configuradi denciesamong the different data records.

hydraulic systems operating under different temperatares (b) Data poolingtechniques (see [1]) for combining
fluid pressures, material and structures (civi-mechénica and optimally treating (as one entity) the data
aerospace) under different environmental (such as temper- obtained from the various experiments.

ature and humidity) conditions, and so on. (c) Statistical techniques for model estimation.

In such cases it is of interest to identify*global” model
describing the system undany operating condition, based The resulting framework is referred to as a statistieahc-
upon excitation — response data records available from eatbnal Pooling frameworkand the corresponding models as
condition. stochasticFunctionally Pooled (FP) modelsA schematic
representation is provided in Fig. 1.

It could be, perhaps, argued that this may be handled The only essential practical condition for using this frame
by using conventional mathematical models and customajyork and identifying “global” system models is that each
identification techniques that could artificially split theob-  gperating condition corresponds to a specific value of a
lem into a number of seemingly unrelated subproblems a"l?sjeasurable variable, henceforth referred to asofperating
derive a model based upon a single data record at a timgarameter The case of ascalar operating parameter (for
Nevertheless, such a solution would be both awkward anfstance operating temperature) is treated in a companion
statistically suboptimal. Awkwardness has to do with th@gaper [2]. The present paper focuses on the casevettor
fact that a potentially large number of seemingly unrelategperating parameter (consisting of two or more scalars, for

models (one per operating condition) would be obtainegnstance operating temperature and humidity).

Statistical suboptimality has to do with the fact that thease It should be also noted that early versions of the Functional
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Fig. 1. Schematic representation of the problem showingofierating points on th¢k', k2) plane, an excitation-response data set corresponding to
one particular point, and the VFP-ARX model structure.

Il. THE DATA SET wy[t] ~ iidN (0,02 (k) keR? 2)

Excitation — response data records from different operat- »
ing points corresponding to various values of the (vector) , A a Gk bi(k) 2 b Gk (3
operating parameter are used (k) =2 ais - Gs(k), bik) = bij-Gi(k) ()

ZVVINE 2 L ypfi] | R 2 KR with e =1, N,
Kle (k.. kb b K2 e (K. R

In this expression designates normalized discrete time (the
corresponding analog time belng T with T standing
for the sampling period)k = [k' &*|" the operating |
parameter (without loss of generality assumed to be twos
dimensional), andc[t], y[t] the excitation and response
signals corresponding tb N stands for the signal length
(in samples) corresponding to each single experiment (e
k).

E{wg, ,[t] - wr,, [t = 71} = Yolkij kmal 0[] (4)

with na, nb designating the AutoRegressive (AR) and eX-
ogenous (X) orders, respectively,[t], y.[t] the excitation
and response signals, respectively, ang ] the distur-
ance (innovations) signal that is a white (serially uneorr
ated) zero-mean with variane€, (k) and potentially cross-
correlated with its counterparts correspondmg to differe
a&ﬁperlments The symbdl{-} designates statistical expec-
ion,d[r] the Kronecker delta (equal to unity fer= 0 and

. equal to zero forr # 0), M (-,-) Gaussian distribution with
A total of M, x MQ_ experiments (one fer each el.ement Ofthe indicated mean and variance, and iid stands for iddlytica
k) are performed, with the complete series covering the r

?ndependently distributed.

qu12|red ]r;nge Ofaeatlﬁz ch(l:?;tpear? (;r:;te 4 gi%”]; Fmaa] kalnd As (3) indicates, the AR and X parametetsk), b;(k)

[ “&“Z:’Q m‘;{”g] k‘;‘ kQI H 'zal h_ 12 Mlh are modelled as explicit functions of the vectobelonging
andr” = ki, k..., Fg,- FENCE eac experiment IS chal, a p-dimensional functional subspace spanned by the
acterized by a specific value &f, say k = [k}, k?]. This

h(mutually independent) functionS; (k), G2(k),...,Gp(k)
(functional basis The functional basis consists of polynomi-
als of two variables (vector polynomials) obtained as cross
products from univariate polynomials (of the Chebyshev,
Legendre Jacobi and other families [5]). The constants

Ill. THE VFP-ARX MODEL STRUCTURE a; j, b; ; designate the AR and X, respectively, coefficients
The Vector dependent Functionally Pooled AutoRegresf projection. Defining:

sive with eXogenous excitation (VFP-ARX) model structure

vector is, for simplicity of notation, also designated ase t
dupletk; ; = (k} , k7) (the first subscript of; ; designating
the value ofk! and the second that éf).

postulated for treating this problem is of the form: AlB, K] A, i":ai B, BIB.k| A "bei(k B
[t]+ ) ai(k)yg bi(k)-wp [t—i]+wp[t] (1)
; Z where A[B, k], B[B, k| are the AutoRegressive (AR) and

. . . .
1 ower case/capital bold face symbols designate vectorikngantities, eXogeAnous (X) p0|ynomlals in the backshift oPerd&(B .
respectively. ug[t] = ug[t — j]), the VFP-ARX representation of (1) is



rewritten as:

A[B, k| - ylt] = BIB, k| - 2 [t] + wp[t]. (%)

As already mentioned, the innovations sequenogst]
corresponding to different operating conditions maycba-
temporaneously correlatedthat is E{wy, , [tlws, ;[t]} =

oo (ki) and E{wg, ; [tJwy,, . [t]} = Y[k, km,n]. Defin-

ing the VFP-ARX model'scross-section innovations vector

as:
wit] £ [wi,, [ wp o (1) - W (8 Wk 0]

with covariance matrix: ©
Twy = E{wltlw’ [} @)

o2 [k1.1] Ywlki,1, Ky, as)

Yo [kny, My s k1,1] o2 [kary ,a,)

IV. MODEL ESTIMATION

A VFP-ARX model corresponding to the true system of
(1) — (4) may be expressed as:

[t]—i—Zai( Zb

e [t] ~ IIdN(O,Je

p
A
k)2 ai;-Gjk),
i=1

Efen, ,[t] - ex,, . [t = 71} = Yelki g km.n] - O[7]

with ey, [t] designating the model’'s one-step-ahead prediction
error or residual (corresponding t@g[t]) with variance

o? (k).

In the general case the model's one-step-ahead pre-
diction error (residual) sequences,[t] may be con-
temporaneously correlated, that B{ey, ;[tlex, [t]} =

Ype [t —1] ) wp[t—il+eglt] (11)

k € R?

p

> bij-Gj(k) (13)

Jj=1

) (12)
bi(k) 2

(14)

then the covariance matrix corresponding to the time instar?z [ki.;] and E{ex, ; [tlex,, .[t]} = velkij, km.n], with the

t=1,...,N is given by:

with ® designating Kronecker product [6, chap. 7].
In the case ofross-sectionally uncorrelateshnovations
sequences witldifferent varianceso?2 [k1.1] # 02 [k1 2] #
.. # 02 [k, ), groupwise heteroscedasticifyhe covari-
ance matrix is given by:

Ui,[kl,l]IN 0

Fw = 9)

0 Ui[kM],Mz]IN

In the simpler case otross-sectionally uncorrelateih-
novations sequences witequal variances(o?[ki1] =
o2lkio] = ... = o2lkm, .m,] = o2, groupwise ho-
moscedasticify the covariance matrix is given bl =
o2 I nar m, With Ty, ar, indicating the unity matrix.
The representation of equations (1) —

(4) is referred to as a

model residual cross-section vector defined | =

(ki [t] - gy any [F HT The cross-section vector covari-
ance then is:
Fe[t] = E{e[t]eT [t]}
o2[k1,1] Yelk1,1, knry 1]
Yelkary ay, k1,1] o2k, )
and the covariance matrix for the time instahts 1,..., N
is given as:

Fe =Tey @ In.

The VFP-ARX model estimation problem may then
be stated as follows: “Given the excitation-response data
records select an elememt (0) from the VFP-ARX model
set:

M2 {M()
Yoo [Ki j» Km,n] =

ALB, By lt) =
E{ek [t 0]€k

BB, k,6]-x[t]+eg[t, 0]|
601, Vi, j,m,n }

VFP-ARX model of ordergn,, n;) and functional subspace that best fits the measured data.”

dimensionalityp, or in short a VFP-ARXn,, ny), model. It
is parameterized in terms of the parameter vector:

1>

6 [O‘iyj bij E'Yw[ki-,ja Em. n] ]T (10)

Vi, j,m,n

W|th ’Y’w[ l]akl 7] - 02 [k 7]]

The model identification problem is usually distinguished
into two subproblems: the parameter estimation subproblem
and the model structure selection subproblem. The present
paper focuses on the parameter estimation part, while the
model structure selection subproblem is treated in a forth-
coming paper [7].

The VFP-ARX representation is assumed to satisfy tha. A Functionally Pooled Linear Regression Framework

following conditions:

Al. Stability conditionThe poles of the AR polynomial (see

(5)) lie inside the unit circle for all operating parametérs

A2. Irreducibility  condition The  polynomials
A[B, k], B[B,k] are coprime (have no common factoks)
k.

A3. The input signal, [t] is stationary, ergodic and persis- g(k)

tently exciting with E{zy,, | [t]wy,, .[t]} =0 Vi, j,m,n.

The VFP-ARX model (11) may be rewritten as:

yilt] = [prltl@g” (k)] -0+ep[t] = ¢p[t]-0+eg[t] (15)
with:
erll 2 [l =10 —uplt—naliag ] xk[tfnb]]T
£ [Gilk) ... Gyp()]"
0 = |:a1,1 N anaﬁpf bo}l e bnbyp]T.



Pooling together the expressions of the VFP-ARX modekhile the final residual covariance matrix is estimated as:

[Equation (15)] corresponding to all operating parameters

N
E (ki1,k12,...,ky, ) considered in the experiments f‘m"[f] — ize[tvéww] 0",
(cross-sectional pooling) yields: N~
Uiy 4 [1] ¢£1 t] er, [t In the case oftross-sectionally uncorrelateresidual se-
. _ . 0+ . . Quences withdifferent variances(o?[ky 1] # o02lk12] #
. N 5 .. 2k, o ise heteroscedasticitthe residual
- # o¢ k], groupwise he
Ykt ar, 1] Phrr, iy [t] Chnry 1z 1] covariance matri@’y for all k has the same form as (9).
_ As the variances are practically unavailable, they may be
ylt] = @[] - 0 +elt]. consistently estimated as [9]:
Then, following substitution of the data for=1,..., N the 1 N
following expression is obtained: 52 (k, 67" Ze (20)
y=® - 0+e (16) =1
with: for all &, with 2 [ OLS] designating the residual sequences
y[1] ®[1] e[l] obtained by applylng OLS. Th@ estimator is then given
g2 . 32 . o 2 . by (19). The final residual variance is estimated as:
y[N] P[N] e[N] AWLS AWLS

B. Least Squares (LS) Based Estimation Methods

52 (k) = 62k,

e

Z

=1

(21)

Uning the above linear regression framework the simplest In the simpler case afross-sectionally uncorrelate@sid-
possible approach to estimate the projection coefficientsal sequences witbqual variancego2[k1 1] = o2[k1 2] =

vector @ is based upon minimization of the Ordinary Least ..

Squares criterion:

JOLS(g, ZN MMz al ¥ Z e

which leads to thérdinary Least Squares (OL$stimator:

0°° = [@7®] ' [@7y]. (17)

A more appropriate criterion for theontemporaneously

= 02[km, m,] = 02, groupwise homoscedastlc)tyhe
covariance matrix |sI‘w = o—wI Ny M, With I ar,
designating the unit matrix. In this case the WLS estimator
coincides with its OLS counterpart. The residual variarsce i
estimated by (21).

C. The Maximum Likelihood (ML) Estimation Method

The complete parameter vectBris estimated as:
~ML

6 =2 argmax L (0, Ty /€)
correlated residualcase is (in view of the Gauss-Markov 0
theorem [8]) the Weighted Least Squares (WLS) criterion:yith 7,(.) the natural logarithm of the conditional like-
1N 1 lihood function [10], [11]. In the general case afor-
JWLS (g, ZNMM2y & > el[tTyyelt] = €' Tye  mally distributedand contemporaneously correlategsid-
N N ualseg[t] V k [10, p. 198] we have:

with Ty, Tw given by (7) and (8), respectively. This leads

to the Weighted Least Squares (WL&timator:
AWLS —1 _
[Ty y].

6" = [@"Ty, @] (18)

As the covariance matriK'yy is practically unavailable, it — 1
may be consistently estimated by using the Ordinary Least 2

Squares (OLS) estimator, thus:

N
~OLS _ % Ze[tvéOLs] T[t éOLs]
t=1

Loy

with e[t,6°"") designating the residuats] for 6 = 6

Then:
~OLS ~OLS
I‘w = I"w[t] Q Ip.

The estimator in (18) is then expressed as:

~0LS

T @' (T ) 'yl

9"~ [@7(T,") ]

6 =[2" (19)

N
L(0, Ty /elt1], ., eltn]) = In [ p(e[t]/6, Tawpy))
=1

NM M, In 27T—E Indet{Tqw }
2 2
(22)
with p(-) designating the Gaussian probability density func-
tion. By setting:

e’ [ty eltl—

N
0)2 < w2l (23)
(22) becomes:
N _ N
L(6, Ty /e) = — ?TTA(O)I‘wl[t]—?lndet{rw[t]}
N M, M,

— ———In2n

) (24)



The first derivative of (24) with respect 1.y, leads to:

=T L AT} —_r; !

2 T wi wi] 9T wi]
and equating it to zero yieldByy) = A(0).
It is proven [10] thatL (8, Ty /e) is maximized with
respect toT'qyy for Ty = A(6) and the maximum
likelihood estimate ofA(0) is given by (23) for the optimum
value of@ that has to be determined. By replacibg,;) with

A(0) in (24) yields:
 NMM,
2

Maximizing equation (25) with respect ®leads to theML
estimator

L(8/e) = (In2m+1)— g Indet{A(0)}. (25)

~ML

6 2 arg moin det{A(0)} (26)

and fw[t] = A(éML)
. .. ~ML
tice that obtainingd
mization techniques [10].
In the heteroscedasticase we have:
Indet{A(0)} 1n(cr§[/€171, 0)-.... 03[/{1\41_’1\42,0])
1110'3[/{171, 0] + ...+ 1110'3[/{1\,{171\,{2,0]

% Zivzl e[t’ éML]eT[ta éML]- No-

1 2
krey K,

> ) nol(k,0).

kl=Fk! k2=k2

(27)

Maximizing (25) with respect t@ leads to the optimal value
of 8 (as in (26)) and:

N
~ 1 ~
2(k, 0" = NE:ei[t,HML]. (28)
t=1

In the homoscedasticase we have:
Indet{A(8)} = In[02(0)] """ = M, My In02(6) (29)

and the final residual variance is given by (28).

V. CONSISTENCY ANALYSIS

The consistency of the OLS, WLS and ML estimators OF
the previous section is examined. For simplicity, the cas

of cross-sectionally uncorrelated innovations sequendts
different variancesheteroscedastic capés considered. The

estimated model is assumed to have the exact structure
the true system, with the latter and the excitation signalts
satisfying the assumptions Al, A2 and A3 of section Il

The proofs of the theorems are provided in [7].

For the Least Squares (LS) estimators of the previo

section we have the following theorem:

Theorem 1: Least Squares estimator consistehey.o,
be the true projection coefficient vectawy, [t] a white zero
mean process With{w?c[t]} = o2 (k) for every operating
point, andE{¢r[t]¢r” [t]} @ nonsingular matrix. Then:

ALS a.s,

6y — 0, (N — 0)

requires the use of iterative opti-

with a.s. designating convergence in the almost sure sense
[9, pp. 18-19]. 0

Note that, using the Kolmogorov theorem [9, p. 32], it is
easily seen that:

62 (k,N) 2% o2 (k) (N — o0)

as well.
Theorem 2: Maximum Likelihood estimator consistency.

Let 6, (01 : y,[kij, kmn]] be the true parameter
vector,wy, [t] a normally distributed zero mean white process
with E{wir[t]} o2 (k) for every operating point, and
E{¢x[tl¢r" [t]} a nonsingular matrix. Then:

ML, o
oy — 6, (N — 0).

VI. MONTE CARLO STUDY

The effectiveness of the OLS, WLS and ML estimators
for VFP-ARX models is now examined via a Monte Carlo
study. It is noted that the ML estimator is initialized by the
WLS estimates, and makes use of the Gauss—Newton non-
linear optimization scheme [10] (maximum number of iter-
ations 500; maximum number of function evaluations 5000;
termination tolerance of the loss functiad—2; termination
tolerance of the estimated parametgds '2).

The study is based upon a VFP—ARX(4,2nodel with
zero delay § # 0 in the eXogenous polynomial) and AR, X
subspaces consisting of the cross-products of the firse thre
(hence functional dimensionality = 9) shifted Chebyshev
polynomials of the second kind [5]. It includes 500 runs,
in each one of which the first scalar operating parameter
takes 16 valuesi{ € [1,16]) and the second scalar operating
parameter takes 20 valuesf-(e [1,20]). Thus, each run
includes excitation—-response signals (of length equal te
1024 samples) fromM; x Ms = 320 operating conditions.

Each response is corrupted by random noise atltie
standard deviation level in accordance with the ARX struc-
ture expression (innovations standard deviation over the
oise—free response standard deviation equal to 0.10). The
nnovations sequences corresponding to different operati
Conditions are cross-sectionally uncorrelated, but chiara
ized by different variances (groupwise heteroscedaglicit
Sgme of the true system coefficients of projection (out of a
Blal of 54) are indicated in the second column of Table I.
Monte Carlo partial estimation results by the Ordinary
‘Least Squares (OLS), the Weighted Least Squares (WLS)
and the Maximum Likelihood (ML) methods are presented
Y5 Table | (mean estimates standard deviations). Some of
these results are pictorially depicted in Fig. 2 (AR/X coeffi
cient of projection estimate$5% confidence intervals). As
may be readily observed, the results are all very accurate.
All three methods provide essentially unbiased estimates,
with the WLS and ML methods expectedly providing better
accuracy for the coefficients of projection (smaller stadda
deviations, thus narrower confidence intervals).



TABLE |
INDICATIVE MONTE CARLO ESTIMATION RESULTS FOR THEVFP-ARX(4,2), MODEL (SELECTED PARAMETERS500RUNS PER METHOD MEAN
ESTIMATE £ STANDARD DEVIATION).

COEFF. TRUE OLS ESTIMATE WLS ESTIMATE ML ESTIMATE
ai,1 -0.0459  -0.04602+ 0.00038  -0.04599t 0.00024  -0.04598t 0.00024
ai,7 -0.0058 -0.00579 0.00018 -0.00578t 0.00012 -0.00579t 0.00012
a2,1 -0.3869  -0.3869Gt 0.00032 -0.38692+ 0.00021  -0.38692: 0.00021
az.5 0.0235 0.02356t 0.00022 0.02349t 0.00015  0.02349t 0.00015
as,3 -0.0533  -0.05333t 0.00024 -0.05334t 0.00016 -0.05334t 0.00016
as,s 0.0179 0.0179Gt 0.00018 0.01788t 0.00012  0.01788: 0.00012
as,1 0.6046 0.60466t 0.00030 0.60467 0.00022  0.60467 0.00022
a4,9 -0.0013 -0.00133t 0.00015 -0.00135+ 0.00011 -0.00135t 0.00011
bi,1 0.7453 0.74526+ 0.00061 0.7452°# 0.00042  0.74524 0.00042
bis 0.2484 0.24843t 0.00079 0.24844f 0.00035  0.24844+ 0.00035
ba3 -0.1987  -0.1987H- 0.00082  -0.1987H 0.00043  -0.1987H 0.00043
b2 .6 0.1682 0.16815+ 0.00084  0.1682Gt 0.00045  0.16827A 0.00045

Fig. 3 finally depicts the true system'’s frequency response
magnitude versus frequency and the first scalar operating
parameterk! (for setk?) along with their mean estimated

-0.045|

5:' —04046’5’ 5 B

-0.045|

5:- —0.04G’H’ E E
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-0.01
0 L] -
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(by the OLS, WLS and ML methods) counterparts. The . o
agreement between each estimate and the true frequency & sHBE iy °‘°53H*BE 5,0_5535—%55
response magnitude is excellent. 78 0.0529 ~0.054
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