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ABSTRACT

The problem of vibration–based fault detection and assessment (localization and
magnitude estimation) in a scale aircraft skeleton structure is addressed. The faults
considered are of various magnitudes and occurrence locations, and are simulated by
small masses added at various locations on the aircraft wing. The method postulated
for tackling the problem is based upon novel Vector dependent Functionally Pooled
AutoRegressive with eXogenous excitation (VFP-ARX) models, each one being ca-
pable of representing faults of all possible magnitudes and locations along a geomet-
rical axis. The method generalizes the recently introduced Functional Model Based
Method (FMBM), eliminating its limitations on fault occurrence location. It also al-
lows for simultaneous fault detection, localization and magnitude estimation, for the
accounting of uncertainties, and for operation even on a single pair of measurements.
Its effectiveness and accuracy are illustrated via a series of laboratory experiments.

INTRODUCTION

The interest in the ability to monitor a structure and detect damage at an early
stage is pervasive throughout the mechanical, aerospace and civil engineering com-
munities. In fact, the combined problems of early detection, identification (local-
ization) and magnitude estimation of faults are of paramount importance, as prompt
detection may lead to better dynamic performance, increased safety and proper main-
tenance [1].

3rd European Workshop on
Structural Health Monitoring (SHM 2006)

Granada, Spain, July 2006

Vibration-based time series type methods for fault detection and assessment are
among the most accurate and effective [1–4]. They offer a number of potential advan-
tages, such as no requirement for visual inspection, “automation” capability, “global”
coverage (in the sense of covering large areas of the structure), and the ability to work
at a “system level”. Nevertheless, and despite the fact that they generally tend to
treat fault detection effectively, problems are frequently encountered when it comes
to fault identification (localization) and magnitude estimation.



Figure 1. The aircraft skeleton structure and the experimental set-up: The force excitation
(Point A) the vibration measurement positions (Points C and D), and the first fault location

(Point B).

This paper addresses the combined problem of fault detection, identification and
magnitude estimation in a prototype scale aircraft skeleton structure, with the em-
phasis being placed on the last two subproblems. This problem was recently tackled
by the second author and his co-worker [5] via a Functional Model Based Method
(FMBM). The objective of the present paper is a fresh look and re-tackling via an
important generalization of the FMBM, which is now based upon novelVector de-
pendent Functionally Pooled AutoRegressive with eXogenous excitation (VFP-ARX)
models[6]. These allow for the extension of the notion offault modeto include
faults not only of all possible magnitudes, but also, for the first time, of all possible
locationsalong a geometrical axis. This results in straightforward fault localization
and magnitude estimation, eliminating previous limitations on fault occurrence loca-
tion. In addition, the method tackles the fault detection, identification and magnitude
estimation subproblems within a unified framework, accounts for experimental and
measurement uncertainties, and may operate even on a single pair of measurements.

THE EXPERIMENTAL SET-UP

The Structure. The scale aircraft structure considered was designed by ONERA in
conjunction with the GARTEUR SM-AG19 Group, and manufactured at the Univer-
sity of Patras. It represents a typical aircraft design, and consists of six solid beams
with rectangular cross sections representing the fuselage (1500× 150× 50 mm), the
wing (2000× 100× 10 mm), the horizontal (300× 100× 10 mm) and vertical stabi-
lizers (400 × 100 × 10 mm), and the right and left wing tips (400 × 100 × 10 mm).
All parts are constructed from standard aluminium, and are jointed together via steel
plates and screws. The total mass of the structure is approximately 50 kg.

The Faults. The faults considered are represented by small masses, which simu-



late local elasticity reductions, attached to nine successive locations (at distances of
10 cm) starting from Point B and moving left-wise along the right wing of the air-
craft (Figure 1). The complete series covers the range of[0, 80] cm along the wing.
Each added mass weights approximately8.132 gr, while up to 10 masses are used
(representing different fault magnitudes), covering the range of[0, 81.32] gr. Each
fault is designated asFX

k1,k2, with X indicating the fault mode (faults of all possible
magnitudes and locations along an axis; presently the “right wing” fault mode is con-
sidered),k1 the specific fault magnitude (gr of added mass) andk2 the exact fault
location (distance in cm from Point B). The healthy structure is designated asF0.

The Experiments.Fault detection, identification and magnitude estimation are based
upon vibration testing of the structure, which is suspended through a set of bungee
cords under free-free boundary conditions.

The excitation is broadband random stationary Gaussian force applied vertically at
the right wing tip (Point A, Figure 1) via an electromechanical shaker equipped with a
stinger. The actual force exerted on the structure is measured via an impedance head,
while the resulting vertical acceleration responses are measured at Points C and D
(Figure 1) via lightweight (0.7 gr) accelerometers. The force and acceleration signals
are driven through a conditioning charge amplifier into the data acquisition system
based on two SigLab measurement modules.

A number of experiments are carried out, initially with the healthy structure and
subsequently with the faulty, for each fault location and for the range of fault mag-
nitudes. The acquired signals are digitized at 256 Hz (effective bandwidth 4-80 Hz),
scaled (brought to common range), and mean-corrected. Each resulting signal is
N = 1000 samples long.

THE VFP-ARX MODEL BASED METHOD

TheVector dependent Functionally Pooled ARX (VFP-ARX)model based method
for combined fault detection, identification and magnitude estimation consists of two
phases: (a) Thebaseline phase, which includes modelling of the fault modes con-
sidered (for the continuum of fault magnitudes and locations) via the novel class of
stochastic VFP-ARX models. (b) Theinspection phase, which is performed periodi-
cally during the structure’s service cycle, and includes the functions of fault detection,
identification and magnitude estimation.

Baseline Phase.A single experiment is performed, based upon which an interval
estimate of a discrete-time dynamical model (or an array of models in the case of sev-
eral vibration response measurement locations) representing the healthy structure’s
dynamics is obtained via standard identification procedures [7]. In the present study
an array of two single-excitation single-response AutoRegressive with eXogenous ex-
citation (ARX) models are used (each one for each vibration measurement location
– Points C and D, Figure 1). This step is not strictly required, but it is customarily
performed as it facilitates (providing approximate model orders) the subsequent step
of fault mode modelling.



The modelling of the structure for a specific fault mode via VFP-ARX models
involves consideration of all admissible fault magnitudes occurring at predetermined
locations on a specific part of the structure (right/left wing, horizontal stabilizer, and
so on). For this reason a total ofM1 × M2 experiments is performed (physically
or via simulation). Each experiment is characterized by a specific fault magnitude
k1 and a specific fault locationk2, with the complete series covering the required
range of each variable, say[k1

min, k1
max] and [k2

min, k2
max], via the discretizations

k1 = k1
1, k

1
2, . . . , k

1
M1

andk2 = k2
1, k

2
2, . . . , k

2
M2

(it is tacitly assumed, without loss
of generality, that the healthy structure corresponds tok1 = 0).

For the identification of a model corresponding to a specific fault mode the vector
parameterk is defined as:

k
∆
= [k1

i k2
j ]

T ⇐⇒ ki,j, i = 1, . . . , M1, j = 1, . . . , M2 (1)

with ki,j designating the state of the structure corresponding to thei-th fault magni-
tude and thej-th fault location.

The above procedure yields a series of excitation – response signal pairs (each of
lengthN ):

xk[t], yk[t] with t = 1, . . . , N, k1 ∈ {k1
1, . . . , k

1
M1
}, k2 ∈ {k2

1, . . . , k
2
M2
} (2)

with t representing normalized discrete time.
A proper mathematical description of the structure for the considered fault mode

may be then obtained in the form of a VFP-ARX model. In the case of several vi-
bration measurement locations, an array of such models may be obtained, with each
scalar model corresponding to each measurement location and being designated as
FXY

k (X indicating the fault mode and Y the vibration measurement location).
The VFP-ARX model structure [6] postulated is of the form1:

yk[t] +
na∑
i=1

ai(k) · yk[t− i] =
nb∑
i=0

bi(k) · xk[t− i] + ek[t] (3)

ek[t] ∼ iidN (
0, σ2

e(k)
)

k ∈ R2 (4)

ai(k)
∆
=

p∑
j=1

ai,j ·Gj(k), bi(k)
∆
=

p∑
j=1

bi,j ·Gj(k) (5)

with na, nb designating the AutoRegressive (AR) and eXogenous (X) orders, respec-
tively, xk[t], yk[t] the excitation and response signals, respectively, andek[t] the
model’s one-step-ahead prediction error (residual) sequence, that is a white (serially
uncorrelated), Gaussian, zero-mean sequence with varianceσ2

e(k) (hence iid, that is
identically independently distributed, sequence), which is potentially cross-correlated
with its counterparts corresponding to different experiments.

As Eq. (5) indicates, the AR and X parametersαi(k), bi(k) are explicit functions
of the vectork by belonging to a p-dimensional functional subspace spanned by the
(mutually independent) functionsG1(k), G2(k), . . . , Gp(k) (functional basis). The

1Lower case/capital bold face symbols designate vector/matrix quantities, respectively.



functional basis consists of polynomials of two variables (vector polynomials) ob-
tained as tensor products from univariate polynomials (of the Chebyshev or other
families). The constantsai,j, bi,j designate the AR and X, respectively, coefficients
of projection.

The VFP-ARX model of Eqs. (3)-(5) is parameterized in terms of the parameter

vector (to be estimated from the measured signals)θ̄
∆
= [ αi,j

... bi,j
...σ2

e(k) ]T ∀ k ∈
R2 and is re-written as:

yk[t] =
[
ϕT

k[t]⊗ gT (k)
] · θ + ek[t] = φT

k[t] · θ + ek[t] (6)

with:
ϕk[t] ∆=

[
−yk[t− 1] . . . − yk[t− na]

...xk[t] . . . xk[t− nb]
]T

[(na+nb+1)×1]

g(k) ∆=
[
G1(k) . . . Gp(k)

]T

[p×1]

θ
∆=

[
a1,1 . . . ana,p

... b0,1 . . . bnb,p

]T

[(na+nb+1)p×1]

andT designating transposition and⊗ Kronecker product.
Pooling together the expressions of the VFP-ARX model [Eq. (6)] corresponding

to all parameter vectorsk (k1,1, k1,2, . . . , kM1,M2), and following substitution of the
data fort = 1, . . . , N , the following expression is obtained [6]:

y = Φ · θ + e. (7)

The projection coefficient vector may be then estimated via a Weighted Least

Squares (WLS) criterion,JWLS
∆
= 1

N
eTΓ−1

e e, which leads to the Weighted Least
Squares estimator [6]:

θ̂WLS =
[
ΦTΓ−1

e Φ
]−1[

ΦTΓ−1
e y

]
. (8)

In these expressionsΓe designates the residual covariance matrix which is practically
unavailable. Nevertheless, it may be consistently estimated by applying (in an initial
step) Ordinary Least Squares (details in [6]). Onceθ̂WLS has been obtained, the
residual variance final estimate is obtained asσ̂2

e(k, θ̂WLS) = 1
N

∑N
t=1 e2

k[t, θ̂WLS].

Inspection Phase.Let x[t], y[t] (t = 1, . . . , N) represent the excitation and response
signals, respectively, obtained from the structure in acurrent(unknown) state.

Fault detection and assessment may be based upon the re-parameterized, in terms
of k, σ2

e(k) (keeping the projection coefficients at their previously estimated values),
VFP-ARX model of any fault mode:

M(k, σ2
e(k)) : y[t] +

na∑
i=1

ai(k) · y[t− i] =
nb∑
i=0

bi(k) · x[t− i] + e[t] (9)

The estimation of the currently unknown parametersk, σ2
e(k) based upon the current

excitation – response signals may be achieved via the Nonlinear Least Squares (NLS)
and the variance estimators:

k̂
∆
= arg min

k

N∑
t=1

e2[t] , σ2
e(k̂) =

1

N

N∑
t=1

e2[t, k̂] (10)



the first one realized via a hybrid optimization scheme based on Genetic Algorithms
and constrained nonlinear optimization (sequential quadratic programming).

The first estimator may be shown (similarly to [5]) to be asymptotically Gaussian
distributed, with mean equal to the truek value and covariance matrixΣk (k̂ ∼
N (k,Σk)) coinciding with the Cramer–Rao lower bound. Since the healthy structure
corresponds tok1 = 0 (zero fault magnitude), fault detection may be based upon the
hypothesis testing problem:

H0 : k1 = 0 (healthy structure)

H1 : k1 6= 0 (faulty structure)

Under the null (H0) hypothesis, the following statistic followst−distribution with
N − 2 degrees of freedom [3]:

t =
k̂1

σ̂k1

∼ t(N − 2) (11)

with σ̂k1 being the positive square root of the first diagonal element ofΣ̂k (estimated
standard deviation ofk1). This leads to the following test at theα risk level (proba-
bility of false alarm, or type I error, that is acceptingH1 althoughH0 is true, being
equal toα):

tα
2
(N − 2) ≤ t ≤ t1−α

2
(N − 2) =⇒ H0 is accepted (healthy structure)

Else =⇒ H1 is accepted (faulty structure)

with tα designating thet distribution’sα critical point.
Once fault occurrence has been detected, current fault mode determination is

based upon the successive estimation and validation of the re-parameterized VFP-
ARX models. The procedure stops as soon as a particular model is successfully vali-
dated, with the corresponding fault mode identified as the current (as in [5]).

Fault identification (localization) and magnitude estimation are then based upon
the interval estimates ofk2 andk1, respectively, which are constructed based on the
k̂, Σ̂k estimates obtained from the corresponding re-parameterized VFP-ARX model
(of the form of Eq. (9)) of thecurrent fault mode. Thus, using Eq. (11), the interval
estimates ofk1 (fault magnitude) andk2 (fault location) at theα risk level are:

ki interval estimate:
[
k̂i + tα

2
(N − 2) · σ̂ki , k̂i + t1−α

2
(N − 2) · σ̂ki

]
(12)

with i = 1 for fault magnitude andi = 2 for fault location, whileσ̂ki is the positive
square root of thei-th diagonal element of̂Σk.

Bivariate confidence bounds fork = [k1 k2]T may be also obtained by observing
that the quantity:

(k̂ − k)TΣk
−1(k̂ − k) ∼ χ2(2) (13)

(follows chi-square distribution with two degrees of freedom). Thus the probability
that:

(k̂ − k)TΣk
−1(k̂ − k) ≤ χ2

1−α (14)
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Figure 2. Fault detection, localization and magnitude estimation results for six test cases (the
correct fault indicated above the plot; for the first test case the confidence bound of only the

fault magnitude is depicted; for the other test cases the bivariate confidence bounds are
depicted at theα = 0.05 risk level [+: true values,¦: point estimates]).

is equal to1 − α (χ2
1−α designating theχ2 distribution’s1 − α critical point). The

above expression represents the area inside an ellipsoid on the(k1, k2) plane, which
defines the(k1, k2) bivariate confidence bound at theα risk level (notice that in prac-
tice Σk is replaced by its estimate, which is currently assumed to be of negligible
variability).

EXPERIMENTAL RESULTS

Baseline Phase.Fault mode modelling, for the single fault mode (designated asFA
k1,k2

or FA

k ) defined as the union of faults (attached masses) of all possible magnitudes at
the right wing of the aircraft, is based upon signals obtained from a total ofM1×M2 =
99 experiments. 9 of these correspond to the healthy structure (k1 = 0 gr) and 90 to
the faulty structure (1–10 masses being placed at each one of the 9 locations on the
right wing). The mass and location increments used areδk1 = 8.132 gr andδk2 = 10
cm, and the ranges of[0, 81.32] gr and[0, 80] cm (starting from Point B and moving
left-wise; Figure 1) are covered.

Two VFP-ARX fault mode models, based on the vibration measurement at Points
C and D and designated asFAC

k , FAD

k , respectively, are constructed. The VFP-ARX
modelling procedure based upon the N=1000 sample-long excitation–response sig-
nals leads to a VFP-ARX(52, 52) model with functional basis consisting ofp = 12
Chebyshev Type II vector polynomials (selected via a Genetic Algorithm) for point
C, and a VFP-ARX(51, 51) model with functional basis consisting ofp = 16 vector
polynomials for point D.

Inspection Phase. Six test cases, one corresponding to the healthy structure (F0)
and five to faults characterized by added masses attached to various locations on the
right wing (not necessarily coinciding with those used in the baseline phase) are con-
sidered. The corresponding fault detection, identification and magnitude estimation
results are pictorially presented in Figure 2. The first three test cases are based on



theFAC

k fault mode model, whereas the latter three are based on theFAD

k fault mode
model.

In the first case (healthy structure,F0) the interval estimate of only the fault mag-
nitude (gr) is depicted. Evidently, no fault is detected as the interval estimate at the
α = 0.05 risk level (shaded strip) includes thek1 = 0 value (this is equivalent to
described test; notice that the dashed vertical line designates the true fault magni-
tude while the middle line the point estimate and the left and right vertical lines the
lower and upper confidence bounds, respectively). In the rest of the cases the bivari-
ate(k1, k2) confidence bounds (at theα = 0.05 risk level) are depicted. A fault is,
in each of these cases rightly detected as the fault magnitude’s interval estimate does
not include thek1 = 0 value (vertical axis). It should be further observed that very
accurate estimates of the fault magnitude and location, characterized by narrow con-
fidence bounds, are obtained.
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