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of degradation in battery health which usually manifests as a reduction in the fully-
charged capacity over time due to repeated usage) [2]. 

It is a true detriment to the field that the practical implementation of high-energy 
battery systems is still extremely challenging due to the lack of a field-deployable, yet 
affordable, BMS that can reliably and accurately monitor SoH [3]. While a range of 
measurement methods exist, most in-operando techniques are electrically-based and 
rely on measurement of the cell terminal voltage from a remote, centralized data 
acquisition unit. These methods are simple and work reasonably well for SoC estimation 
because of the highly-correlated SoC-voltage relationship, but they can be inaccurate 
and unreliable, particularly for SoH estimation [3]. 

The authors [4] and similar efforts in the field [5, 6] have recently introduced an 
ultrasound-based method for probing SoC and SoH of Li-ion batteries. These methods 
exploit the fact that mechano-electrochemical coupling is present when batteries 
undergo charging, discharging, and aging, which is detectable via ultrasound. In 
particular, we have shown that it is feasible to estimate battery SoC and SoH with 
ultrasonic guided waves using low-profile, built-in networks of piezoelectric actuators 
and sensors (Figure 1). This demonstrates that the technique can be made scalable and 
deployable in practical battery applications. 

A continuation of our work is presented in this paper where special emphasis is 
given to the formulation of a systematic framework for estimating and providing 
prognosis of battery health. This paper explores how features extracted from ultrasonic 
signals may be used in a systematic framework to assess the internal state variables of 
a battery system as well as to perform prognostics of the remaining useful life (RUL). 
The ultrasonic features serve as indirect measurements where, together with the 
knowledge of a system’s anticipated transition and historical data, inference and state 
estimation techniques may be applied to predict its state and remaining life. 

The second contribution of this paper is the application and validation of the 
proposed prognostic framework on battery-integrated structures. The concept of 
multifunctional energy storage composites (MESC) was previously proposed by the 
authors [7]. MESC encapsulate lithium-ion battery materials inside high-strength 
carbon-fiber composites allowing batteries to contribute to mechanical load carrying 
capabilities. Here, the guided wave technique will be employed to estimate and provide 
prognosis of SoC and SoH as well as mechanically-induced electrical damage in MESC. 
The obtained results will be useful for validating the robustness of the framework in 
response to changing degradation mechanisms over the battery lifetime. 

 
Figure 1. Schematics of ultrasonic guided-wave propagation in Li-ion battery substrate, using surface-

mounted low-profile piezoelectric transducers. 



PROBLEM STATEMENT 

This study considers Li-ion batteries and battery-integrated structures with attached 
arrays of piezoelectric actuators and sensors (Figure 1).  Given changes in sensor signals 
with respect to battery SoC and SoH, the goal of this study is to formulate an algorithm 
for extracting features from the ultrasonic signals and performing state estimation and 
prognostics of SoC and SoH. The specific objectives of this study are to: 

1. Establish a systematic framework for encapsulating ultrasonic data into the state 
estimation and prognostics of battery SoC and SoH. 

2. Generalize and validate the framework on MESC battery-integrated structures 
which involve mechanically-induced electrical degradation. 

METHOD OF APPROACH 

We first experimentally gather ultrasonic guided wave data at various SoC and SoH 
from the indicative Li-ion cells and MESC with surface-mounted piezoelectric 
transducer. A feature extraction scheme is proposed and established which allows in-
operando ex-traction of a truncated set of predictive features that correlate with SoC and 
SoH. Finally, an SoC and SoH state estimation and prognostic model is developed 
which makes use of the extracted ultrasonic features and is validated for off-the-shelf 
Li-ion batteries as well as MESC. 

EXPERIMENTS 

Off-the-shelf Li-ion Pouch Batteries 

Pitch-catch guided wave propagation experiments are performed on 3,650mAh off-
the-shelf Li-ion pouch batteries (graphite/NCM chemistry) (AA Portable Power Corp.) 
(Figure 2 (A-B)). Guided wave signals are gathered at various battery SoC and SoH 
from surface-mounted, small-footprint piezoelectric disc transducers (6.35mm-
diameter PZT-5A in the SMART Layer format; Acellent Technologies, Inc.) at the 
locations shown in Figure 2B. One of the piezoelectric discs can be chosen as an actuator 
to generate acousto-ultrasonic guided waves. The other piezoelectric disc then serves as 
a receiver to record the transmitted guided wave signals. The so-called “pitch-catch” 
experiments use five-peak Gaussian-windowed tone bursts with center frequencies 
between 100 to 200 kHz. The piezoelectric transducers are actuated and sensed using 
anultrasonic data acquisition system (ScanGenie II; Acellent Technologies, Inc.). 
Ultrasonic measurements are taken every 1 minute during electrical cycling. 

The ultrasonic data acquisition is synchronized with the battery analyzer (BST8-3; 
MTI Corporation), which performs battery cycling. The cells are electrically discharged 
at an elevated temperature of 45°C with a constant current rate of 3,000 mA from 4.2V 
(100% SoC) to 3.0V (0% SoC). A total of 200 discharge cycles are performed. The 
remaining capacity for each cycle, which is our definition of SoH, was calculated by 
evaluating the cycle discharge capacity normalized with respect to the value from the 
first cycle. The cycle-to-cycle terminal voltage of a representative cell and its capacity 
fading (SoH degradation) characteristics are shown in Figure 2 (C-D). 



 
Figure 2. Experiment setup and results from 3,650 mAh batteries. (A) schematics of pitch-catch guided 
wave propagation. (B) experimental pouch cell with built-in piezos. (C) discharge curves during cycle 

life aging. (D) capacity retention plot. 

MESC I-Beams with Mechanical Fatigue-induced SoH Aging 

Structural battery I-beams consisting of 3 MESC cells are fabricated with the 
geometry shown in Figure 3 (readers are referred to [8] for further details regarding 
MESC I-beam architecture). The battery cells, each with a nominal capacity of 1.5 Ah, 
are integrated into the web of the I-beam and share a common electrolyte-encapsulating 
frame as shown. The web laminates (C-channels, T800/3900-2, [±45]s layup) 
simultaneously act as facesheets for batteries. The flanges ([02] layup) are then attached 
to the I-beam via secondary bonding. Each battery in the I-beam is equipped with two 
piezoelectric transducers at the locations shown in Figure 3A. In addition to cycle life 
aging, The multi-cell MESC systemsalso undergo a mechanical fatigue test, which 
accelerates electrical degradation. 

Figure 3 (C-D) show cycling data of Cell 1 in a representative MESC I-beam where 
the I-beams undergo 1C-rate cycle life aging at 50 °C for 100 cycles. At Discharge 
Cycle 50, the beam is subjected to mechanical fatigue by introducing a three-point-
bending load for 1,000 cycles with a maximum load amplitude of 8,800 N (Figure 3B). 
Figure 3C shows the progression of the discharge curves due to electrical life cycle 
aging and mechanical fatigue. The discharge curves of the first 50 cycles before 
mechanical fatigue are shown in progressive shades of green, while those of the latter 
50 cycles following the mechanical fatigue are shown in progressive shades of red. A 
noticeable shift is seen between Cycles 50 and 51 due to the mechanically-induced 
electrical damage from the mechanical fatigue as well as any inherent aging due to, for 
instance, storage during that period. This corresponds to the capacity fading behavior 
presented in Figure 3D, which also compares the capacity fading of the test cell to the 
nominal aging behavior of MESC cells that undergo the same accelerated cycle life 
aging, but not mechanical fatigue. 



 
Figure 3. MESC I-beam with a surface-mounted network of piezoelectric transducers. (A-B) schematic 
of MESC I-beam and setup of fatigue experiment. (C-D) electrical data from cycle life aging – (green) 

pre-fatigue; (red) post-fatigue. 

SIGNAL PROCESSING AND FEATURES EXTRACTION 

An efficient strategy for signal processing and feature extraction based on the 
matching pursuit (MP) technique was presented in our previous work [9]. The proposed 
method decomposes complex waveforms into constituent ‘atoms’, allowing the time-
frequency information of the signals to be mined. MP finds the best matching 
projections of the guided wave signals onto the span of a redundant dictionary of 
waveforms or atoms. We employ MP using the Gabor dictionary (a collection of scaled, 
translated, and modulated versions of Gaussian-windowed tone bursts) to decompose 
the guided wave responses into a linear expansion of constituent tone-burst atoms 
(Figure 4A). 

At a given state, each atom m out of the total M extracted atoms can be represented 
by three parameters: (am, bm, um); m = [1, 2, …, M], which describe amplitude, phase, 
and speed of the tone burst. We then monitor the evolution of (am, bm, um) with reference 
to changing SoC and SoH throughout the experiment. The Gabor parameters that 
encompass the entire range of SoC and SoH within the experiment are analyzed 
collectively. As an example, these results are shown in Figure 4B for a representative 
3,650 mAh cell. 



 
Figure 4. Feature extraction. (A) behavior of Gabor atoms due to the changes in SoH. (B) Gabor 

parameters (am, bm, um) of the first three atoms as a function of SoC & SoH. 

STATE ESTIMATION AND PROGNOSTICS 

Model Identification 

SoH degradation due to aging is associated with a decrease in the maximum 
available capacity, also referred to as capacity fading. Cycle life is an important 
parameter signifying the number of times a battery can be discharged before its 
maximum available capacity or SoH fades below an acceptable end-of-life (EoL) 
threshold. A sum of two exponential functions may be used to empirically model these 
non-linear capacity fading processes of many different batteries undergoing a variety of 
aging conditions [10, 11]. For a discrete-time process at time step k, this is written as: 

 𝑆𝑜𝐻𝑘 =
𝑄𝑘
𝑄0

= 𝐶1,𝑘𝑒−𝜆1𝑘 + 𝐶2,𝑘𝑒−𝜆2𝑘 (1) 

where Q is the current battery capacity (Ah), Q0 is the initial (pristine) battery capacity 
(Ah), C1 and C2 are parameters governing the initial capacity (%), λ1 and λ2 represent the 
aging rate (s-1). Two nominally identical battery cells may not share the same set of 
parameters due to their inherent variabilities.  

Once the SoH degradation model is established, the SoC can be expressed in 
differential form to take into account the instantaneous SoH. For a constant-current 
discharge process with a known input current, a discrete-time approximate recurrence 
can be written as: 

 𝑆𝑜𝐶𝑘 = 𝑆𝑜𝐶𝑘−1 − 
𝑖∆𝑡

𝑆𝑜𝐻𝑘𝑄0
 (2) 

where i is the instantaneous electrical current (positive for discharge) (A) and Δt is the 
time increment at time step k (s).  

SoH, SoC, C1, λ1, C2, and λ2 form the state vector of interest. Representative aging 
curves (SoH -vs- cumulative run time) of nominally identical batteries subjected to the 



same usage are obtained. The relevant aging parameters C1, λ1, C2, and λ2 of each 
training cell are identified. The mean and variance of these parameters can then be 
calculated to indicate the expected behavior and the spread of the behavior of this type 
of battery undergoing this particular aging process. 

The measurement update model was constructed from the functional relationships 
between the measurements (Gabor parameters of the constituent ultrasonic atoms (i.e. 
Figure 4B) as well as cell voltage) and SoC and SoH. Herein, statistical regression was 
used to generate representative response surfaces (measurement -vs- SoC and SoH). A 
5th-order polynomial surface fit was chosen for its simplicity to model the response 
surfaces with respect to SoC and SoH. The measurement response surfaces can be 
expressed as follows: 

 �̅� = ℎ𝜒(𝑆𝑜𝐶, 𝑆𝑜𝐻) =  ∑∑𝐴𝜒 𝑝,𝑞(𝑆𝑜𝐶)𝑝
𝑃−𝑝

𝑞=0

(𝑆𝑜𝐻)𝑞
𝑃

𝑝=0

 (3) 

where �̅� is the model predicted value of the measurements 𝜒 which include cell 
voltage, and the Gabor parameters; i.e. 𝜒 can be V, am, bm, um (m = 1, 2, …, M; where 
M = number of atoms extracted and utilized in prediction), P is the degree of the 
polynomial (P = 5, in this case), 𝐴𝜒 𝑝,𝑞 are the corresponding polynomial coefficients. 

State Estimation Formulation 

Here, the concept is demonstrated using Bayesian techniques which are known to 
provide a general formal framework for dynamic state-estimation problems such as 
those with batteries [10, 11]. Special emphasis is on the particle filter (PF) approach 
which is regarded as an umbrella technique that can take into account non-linear systems 
with non-Gaussian noise. PF can estimate a probability density function (PDF) of the 
state using a recursive Bayesian filter with a Monte Carlo simulation. The construction 
of the PDF is based on all available measurement information which together contain 
the prediction uncertainty. Therefore, PF is chosen as an agnostic benchmark 
framework to compare typical cell voltage measurement to the performance of 
ultrasonic data. The state transition and measurement update of the PF framework can 
be constructed from the parametric models above (Equations (1), (2), and (3)). Then, 
we can write the dynamics of the system as a first-order Markov process: 

 
State Transition: 

 𝑿𝑘

{
 
 
 
 
 

 
 
 
 
 𝐶1: 𝑥1,𝑘 =  𝑥1,𝑘−1 + 𝜔1,𝑘∑                              

𝜆1: 𝑥2,𝑘 =  𝑥2,𝑘−1 + 𝜔2.𝑘∑                              

𝐶2: 𝑥3,𝑘 =  𝑥3,𝑘−1 + 𝜔3.𝑘∑                              

𝜆2: 𝑥4,𝑘 =  𝑥4,𝑘−1 + 𝜔4.𝑘∑                               

  𝑆𝑜𝐶: 𝑥5,𝑘 =  𝑥5,𝑘−1 −
𝑖∆𝑡
𝑥6,𝑘𝑄0

+ 𝜔5.𝑘                             

  𝑆𝑜𝐻: 𝑥6,𝑘 = 𝑥1,𝑘𝑒−𝑥2,𝑘𝑘 + 𝑥3,𝑘𝑒−𝑥4,𝑘𝑘 + 𝜔6.𝑘∑  

 (4) 



 
Measurement Update: 

 𝒀𝑘

{
 
 
 
 
 
 
 

 
 
 
 
 
 
   𝑉: 𝑦1,𝑘 =  ∑∑𝐴𝑉 𝑝,𝑞(𝑥5,𝑘)

𝑝
𝑃−𝑝

𝑞=0

(𝑥6,𝑘)
𝑞

𝑃

𝑝=0

+ 𝜐1,𝑘 

  𝑎1: 𝑦2,𝑘 =  ∑∑𝐴𝑎1 𝑝,𝑞(𝑥5,𝑘)
𝑝

𝑃−𝑝

𝑞=0

(𝑥6,𝑘)
𝑞

𝑃

𝑝=0

+ 𝜐2,𝑘 

              

 

  𝑏1: 𝑦3,𝑘 =  ∑∑𝐴𝑏1 𝑝,𝑞(𝑥5,𝑘)
𝑝

𝑃−𝑝

𝑞=0

(𝑥6,𝑘)
𝑞

𝑃

𝑝=0

+ 𝜐3,𝑘               

 
⋮
 

  𝑢𝑀: 𝑦3𝑀+1,𝑘 =  ∑∑𝐴𝑢𝑀 𝑝,𝑞(𝑥5,𝑘)
𝑝

𝑃−𝑝

𝑞=0

(𝑥6,𝑘)
𝑞

𝑃

𝑝=0

+ 𝜐3𝑀+1,𝑘

 (5) 

where k is the time index, X denotes the state vector, Y is the output or measurement 
vector, and ω and ν are the state and measurement noise as sampled from independent 
noise distributions. The initial values x1,0, x2,0, x3,0, and x4,0 are set to be the mean C1, λ1, 
C2, and λ2 values obtained from the least-squares fit of Equation (1) using the SoH 
degradation trends from a separate group of training cells. Therefore, ω1,0, ω2,0, ω3,0, and 
ω4,0 encapsulate the cell-to-cell variability that may be present, as well as the error 
inherent to the regression task. The SoC and SoH estimates at time step k are calculated 
from x5,k and x6,k.  

The PF algorithm approximates the PDF of the filtering distribution by a set of N 
weighted samples, or ‘particles’, {(𝑤𝑘𝑖 , 𝑿𝑘𝑖 ) ∶ 𝑖 = 1, 2, … ,𝑁}, where 𝑤𝑘𝑖  is the 
importance weight of each particle 𝑿𝑘𝑖  [12]. The crux of PF is to predict the probability 
density function (PDF) the particle distribution and the associated weights using: 

 𝑝(𝑿𝑘|𝒀0:𝑘) ≈∑𝑤𝑘𝑖
𝑵

𝒊=𝟏

𝜹(𝑿𝑘𝑖 − �̂�𝑘) (6) 

where δ(·) is the Dirac delta function and the state mean �̂�𝑘, or the state estimate, can 
be shown to be: 

 �̂�𝑘 =∑𝑤𝑘𝑖
𝑵

𝒊=𝟏

𝑿𝑘𝑖  (7) 

Here, the sampling importance resampling (SIR) is used which reduces the recursive 
weight updating to: 

 𝑤𝑘𝑖 = 𝑤𝑘−1𝑖 𝑝(𝒀𝑘|𝑿𝑘𝑖 ) (8) 



The weights 𝑤𝑘𝑖  are then normalized to sum to 1. SIR also allows resampling to be 
performed when all but a small subset of particles have nearly zero importance weights. 
Resampling is done by drawing a new set of particles with 1/N weights from the discrete 
approximation of the posterior distribution when the effective number of particles  
𝑁𝑒𝑓𝑓 =

1
∑ (𝑤𝑘

𝑖 )2𝑁
𝑖=1

 falls below a certain threshold. The flowchart of the model 

identification and prediction process is shown in Figure 5. 
 

 
Figure 5. Flowchart of PF offline identification and online prediction. 

STATE ESTIMATION AND PROGNOSTIC RESULTS 

Off-the-shelf Li-ion Pouch Batteries 

Figure 6 shows the SoH estimation and EoL prognostic results. Subfigures A, B, C, 
and D correspond to the models with M = 0, 1, 2, and 3, respectively (increasing number 
of ultrasonic Gabor atoms). The green crosses represent the measured SoC, while the 
solid black line shows the PF tracking. Here, the PDFs represent the projection of 
particle distribution until SoH hit the predetermined EoL threshold. The prediction 
points are at Cycles 10, 50, and 90, which correspond to the red, green, and blue asterisks 
and PDFs respectively. The EoL threshold is set to SoH = 96.5% which corresponds to 
the actual EoL at Cycle 209 (red cross). 

At every prediction point, the mean EoL predictions of the M = 0 model (cell voltage 
only) miss the actual EoL by approximately 100 cycles. The addition of ultrasonic 
features is shown to dramatically improve the PF performance by landing the PDFs 
more precisely on the actual EoL and with a higher confidence level. With M = 3, the 
mean EoL predictions miss the actual value by only 3-6 cycles at any prediction point. 
he standard deviation of the estimated EoL is also reduced to only 2-3 cycles as opposed 
to ∼35 cycles when only cell voltage is used. This demonstrates the effectiveness of 
ultrasonic data, which are more strongly correlated with SoH than cell voltage 
measurements, in improving the SoH estimation and EoL prognostics. 
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Figure 6. EoL (SoH) prognostic results on the test 3,650 mAh cell. (A), (B), (C), and (D) comparison of 

EOL PDFs obtained from PF models with M = 0, 1, 2, and 3, respectively. 

MESC I-Beams with Mechanical Fatigue-induced SoH Aging 

The prognostic results on the test MESC cell are shown in Figure 7. Subfigures A, 
B, and C correspond to the models with M = 0, 1, and W3, respectively. There are 
prediction points both before and after mechanical fatigue. The pre-fatigue prediction 
points are at Cycles 20 and 40 which correspond to green and dark green asterisks and 
EoL PDFs, whereas post-fatigue predictions are made at Cycles 60 and 80 which are 
represented by red and dark red asterisks and PDFs. The EoL threshold is set to 80%, 
which corresponds to an actual EoL at Cycle 93 for the damaged cell (red cross) and at 
Cycle 135 for nominal MESC cells that do not undergo mechanical fatigue (green 
cross). 

The PF which uses cell voltage cannot discern the effect of mechanical fatigue 
resulting in an EoL prediction that does not adapt to the varying aging rates and capacity 
drops. On the other hand, the addition of ultrasonic features allows PF to more 
accurately track the SoH progression as well as allow the aging parameters to be updated 
correctly according to the pre- and post-fatigue stages. This can be seen from a change 
of course of PF tracking immediately following the mechanical fatigue which tracks the 
new fading curve precisely after several cycles. The pre- and post-fatigue EoL PDFs are 
also clearly segregated as a result of the coefficients in the aging equation being updated. 



 
Figure 7. EoL (SoH) prognostic results on test MESC I-beam showing adaptability of PF to fatigue-

induced electrical damage. (A) PF model which uses only cell voltage as predictor showing poor 
segregation of EoL PDFs between pre-fatigue (green PDFs) and post-fatigue (red PDFs). (B) and (C) PF 

models which, in addition to cell voltage, include Gabor parameters from 1 and 3 atoms, respectively. 

CONCLUSION REMARKS 

An acousto-ultrasonic system was developed which uses built-in, low-profile 
piezoelec-tric sensors to propagate guided waves for monitoring of battery SoC and 
SoH. While traditional cell voltage measurements are not sensitive to SoH, guided wave 
signals were found to strongly correlate with the changes in electrodes mechanical 
properties during both cycling and aging. This allows in-operando estimation and 
remaining useful life prognostics to be performed for SoC and, particularly, SoH with 
significantly better accuracy than using voltage measurements. 

An MP-based feature extraction algorithm was proposed as an efficient means to 
perform signal analysis and condense high-dimensional guided wave data into a reduced 
set of important predictive features. A waveform is decomposed into constituent Gabor 
atoms whose descriptive parameters form functional relationships with respect to SoC 
and SoH. A PF framework was formulated to provide real-time estimation and RUL 
prognostics of SoC and SoH. This framework utilizes the extracted ultrasonic features 
as additional measurements in order to better contain the prediction uncertainty. Finally, 
the concept was demonstrated on MESC I-beams which the ultrasonic system was also 
effective in tracking and adapting to electrical damage induced by mechanical loading. 
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