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Abstract

In this work, a novel data-based stochastic “global” identification framework is introduced for
aerospace structures operating under varying flight states and uncertainty. In this context, the term
“global” refers to the identification of a model that is capable of representing the structure under
any admissible flight state based on data recorded from a sample of these states. The proposed
framework is based on stochastic time-series models for representing the structural dynamics and
aeroelastic response under multiple flight states, with each state characterized by several variables,
such as the airspeed, angle of attack, altitude, temperature, etc., forming a flight state vector. The
method’s cornerstone lies in the new class of Vector-dependent Functionally Pooled (VFP) models
which allow the explicit analytical inclusion of the flight state vector into the model parameters
and, hence, system dynamics. This is achieved via the use of functional data pooling techniques for
optimally treating –as a single entity– the data records corresponding to the various flight states.
In this proof-of-concept study the flight state vector is defined by two variables, namely the air-
speed and angle of attack of the vehicle. The experimental evaluation and assessment is based on a
prototype bio-inspired self-sensing composite wing that is subjected to a series of wind tunnel ex-
periments under multiple flight states. Distributed micro-sensors in the form of stretchable sensor
networks are embedded in the composite layup of the wing in order to provide the sensing capabil-
ities. Experimental data collected from piezoelectric sensors are employed for the identification of
a stochastic global VFP model via appropriate parameter estimation and model structure selection
methods. The estimated VFP model parameters constitute two-dimensional functions of the flight
state vector defined by the airspeed and angle of attack. The identified model is able to successfully
represent the wing’s aeroelastic response under the admissible flight states via a minimum number
of estimated parameters compared to standard identification approaches. The obtained results
demonstrate the high accuracy and e↵ectiveness of the proposed global identification framework,
thus constituting a first step towards the next generation of “fly-by-feel” aerospace vehicles with
state awareness capabilities.
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Important conventions and symbols

Definition is indicated by :=. Matrix transposition is indicated by the superscript T .
Bold-face upper/lower case symbols designate matrix/column-vector quantities, respectively.
A functional argument in parentheses designates function of a real variable; for instance P (x) is a
function of the real variable x.
A functional argument in brackets designates function of an integer variable; for instance x[t] is a
function of normalized discrete time (t = 1, 2, . . .). The conversion from discrete normalized time
to analog time is based on (t� 1)T

s

, with T

s

designating the sampling period.
A hat designates estimator/estimate; for instance b✓ is an estimator/estimate of ✓.

Acronyms

AoA : Angle of attack
AR : Autoregressive
ARMA : Autoregressive moving average
ARMAX : Autoregressive moving average with exogenous excitation
ARX : Autoregressive with exogenous excitation
BIC : Bayesian information criterion
CFD : Computational fluid dynamics
CMOS : Complementary metal-oxide-semiconductor
FEM : Finite element model
FP : Functionally pooled
FRF : Frequency response function
GA : Genetic algorithm
HALE : High altitude long endurance
iid : identically independently distributed
LCO : Limit-cycle oscillation
LPV : Linear parameter varying
MA : Moving average
MEMS : Micro-electro-mechanical systems
NLS : Nonlinear least squares
OLS : Ordinary least squares
PCB : Printed circuit board
PE : Prediction error
PZT : Lead zirconate titanate
RSS : Residual sum of squares
RTD : Resistive temperature detector
SACL : Structures and composites laboratory
SHM : Structural health monitoring
SPP : Samples per parameter
SQP : Sequential quadratic programming
SSS : Signal sum of squares
UAV : Unmanned aerial vehicle
VFP : Vector-dependent functionally pooled
WLS : Weighted least squares
X : Exogenous
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1. Introduction

The next generation of intelligent aerospace structures and aerial vehicles will be able to
“feel”, “think”, and “react” in real time based on high-resolution state-sensing, awareness, and
self-diagnostic capabilities. They will be able to sense and observe phenomena at unprecedented
length and time scales allowing for real-time optimal control and decision making, significantly
improved performance, adaptability, autonomous operation, increased safety, reduced mission and
maintenance costs, and complete life-cycle monitoring and management. One of the main chal-
lenges of the current state-of-the-art research is the development of technologies that will lead
to autonomous “fly-by-feel” aerial vehicles inspired by the unprecedented sensing and actuation
capabilities of biological systems. Such intelligent air vehicles will be able to (i) sense the external
environment (temperature, air pressure, humidity, etc.) [1, 2], (ii) sense their flight and aeroelastic
state (airspeed, angle of attack, flutter, stall, aerodynamic loads, etc.) and internal structural con-
dition (stresses, strains, damage) [3, 4, 5], and (iii) e↵ectively interpret the sensing data to achieve
real-time state awareness and health monitoring [6, 7, 8, 9, 10, 11, 12, 13]. Towards this end, novel
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data-driven approaches are needed for the accurate interpretation of sensory data collected under
varying flight states, structural conditions, and uncertainty in complex dynamic environments.

The most critical challenge for the postulation of a complete and applicable data-driven state-
awareness framework for aerospace vehicles and structures is the e↵ective modeling and interpre-
tation of sensory data obtained under constantly changing dynamic environments, multiple flight
states and varying structural health conditions. Evidently, all these di↵erent operating conditions
have a significant impact on the vehicle dynamics and aeroelastic response. When it comes to
the aeroelastic behavior, dynamic aeroelastic e↵ects resulting from the interaction of the aero-
dynamic, elastic, and inertial forces require careful consideration throughout the design phase of
the air vehicle and pose a major safety-critical factor in the qualification of aircraft into service
[14, 15, 16, 17, 18, 19, 20]. Accurate modeling and prediction of the aeroelastic response is a
complex and challenging task with the undesirable e↵ects including significant vibrations (for pas-
sengers and/or crew), airframe fatigue, loss of control, degraded performance, or even complete
destruction of the vehicle itself. It is therefore evident that the flight states and operating condi-
tions –characterized by one or more variables, such as airspeed, angle of attack (AoA), altitude,
temperature, humidity, icing, and so on– may vary over time, and consequently a↵ect the system
dynamics and aeroelastic response. In such cases, the problem of identifying a “global” model of
the system that is capable of representing the dynamics under any admissible operating condition
and multiple equilibria points based on available response and/or excitation data records poses a
major challenge that needs to be properly addressed.

In the context of aerospace structures, aeroelastic analysis and modeling, this challenge is
typically tackled via multi-model approaches that correspond to the identification of a number of
distinct models, via the use of acceleration or dynamic strain data, with each model corresponding
to a single flight state. Usually, the flight state is defined by a set airspeed for a specific altitude and
therefore one model is identified for each constant airspeed resulting to an array of models covering
the required airspeed range. The models employed are time-series autoregressive moving average
(ARMA) or state-space representations in the time or frequency domains [16, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36], frequency-domain time-varying models with additional
exogenous excitation within the bandwidth of interest [37, 38], or Linear Parameter Varying (LPV)
models [39, 40, 41, 42, 43, 44, 45, 46]. The latter are dynamical models with parameters expressed
as functions of the variable(s) –referred to as scheduling variable(s)– that designate the operating
condition. The LPV model identification is based on the so-called local approach [46] that splits
the problem into two distinct subproblems: (i) first, a number of local (or else frozen) models –each
corresponding to a single flight state for which response signals are available– are estimated using
conventional identification techniques [47, 48], and (ii) second, the parameters of the identified
models are interpolated in order to provide a single global model [46]. For example, a flutter
suppression control system for the X-562 aircraft was developed in [42] based on an LVP-based
method utilizing data from 7 flight conditions and corresponding state-space models with the
aircraft velocity being the scheduling variable. In addition, an LPV-based method for data-based
flutter modeling and prediction was developed in [41] where the model parameters from 21 distinct
flight conditions were modeled as a polynomial fit function of the dynamic pressure.

The LPV-based approach is a straightforward extension of classical identification when the
goal is the estimation of a global model of the system dynamics. Yet, when viewed within a

2X-56 is modular experimental research aircraft designed by Lockheed Martin under contract for the Air Force
Research Laboratory (AFRL).
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stochastic framework in which the response signals are random in nature (stochastic), it may
lead to suboptimal accuracy in terms of parameter estimation and representation of the system
dynamics. The intuitive explanation is based on the fact that the signals are not treated as a single
data entity generated from the same dynamical system, but rather in complete isolation from each
other within a seemingly unrelated context in the process of obtaining each local model. This not
only does neglect potential cross-correlations among the signal pairs, thus resulting into loss of
data information, but additionally leads to an unnecessarily high number of estimated parameters,
thus neglecting the principle of statistical parsimony [47, p. 492]. In addition, this may further
lead to increased estimation variance and thus reduced accuracy (lack of e�ciency in statistical
terminology) [47, pp. 560–562]. Finally, additional loss of accuracy and potentially increased error
is involved in the subsequent interpolation of the obtained local models when constructing the LPV
(global) model. This identification process leads to a global, but suboptimal, model of the system.

In an e↵ort to address the drawbacks of the LPV-based approach the novel class of stochastic
Functionally Pooled (FP) time-series models has been recently introduced [49, 50, 51]. The FP
model structure allows modeling of dynamical systems under multiple operating conditions via a
single and global mathematical representation based on data recorded from a sample of these con-
ditions. This representation is characterized by parameters that functionally (explicitly) depend
on the operating state and additionally includes proper data cross-correlation terms. A comparison
and assessment of traditional multi-model and FP-model approaches with respect to the identifica-
tion of the structural dynamics of a composite beam under varying temperatures can be found in
[52]. So far, the FP model structure has been mainly used within the context of structural health
monitoring (SHM) and damage detection, localization and quantification [13, 49, 53, 54]. In these
studies FP models are employed to represent the structural dynamics in continuous structural
topologies under varying health states (damage locations and/or magnitudes) in order to enable
a unified solution to the problem of damage detection, localization and quantification via a global
structural model. Moreover, FP models have been also used for modeling the structural dynamics
of a composite beam and tackling damage detection under various temperatures [55]. Finally, in
the context of aircraft fault detection and identification, early versions of nonlinear FP models
have been used to model the relationship “pilot action-aircraft attitude” under varying altitudes
and airspeeds in order to detect elevator and aileron faults [56].

The aim of the present study is the introduction and experimental evaluation of a “global”
identification framework for aerospace structures operating under varying flight states and uncer-
tainty based on the novel class of Vector-dependent Functionally Pooled (VFP) models [49, 50].
The VFP model structure belongs to the greater family of FP models [51, 57] and is presently
used –for the first time– within the context of flight state awareness and aeroelastic response. The
unique characteristic of the VFP model structure is that the model parameters and residual co-
variance series (noise sequences) are explicit functions of the flight state that may be defined by
several variables; in this study the flight state is defined by a vector consisting of the airspeed and
AoA. This functional dependency is achieved via the projection of the VFP model parameters onto
appropriately selected functional subspaces spanned by mutually independent basis functions of the
flight state vector. The class of VFP models resembles that of LPV, with some critical di↵erences:
(i) the signals are treated as a single entity and potential cross-correlations are accounted for to
increase the modeling accuracy and estimation e�ciency, (ii) the number of estimated parameters
is minimal compared to multi-model and LPV approaches (parsimonious representation), and (iii)
the estimation is accomplished in a single step (instead of two subsequent steps) for achieving
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Figure 1: Stochastic “global” identification framework. The stochastic global identification framework
utilizing noise-corrupted data records obtained under a sample of all the admissible flight states for the estimation
of a VFP model capable of representing the dynamics and aeroelastic response of the structure.

optimal accuracy.
The rest of the paper is organized as follows: The problem statement is presented in Section 2.

The stochastic global identification framework is presented in Section 3. The bio-inspired stretch-
able sensor networks and the integration with the composite wing are briefly outlined in Section
4. The wind tunnel experiments are described in Section 5, while the wind-tunnel experimental
results and the discussion are presented in Section 6. Finally, the conclusions and future work are
summarized in Section 7.

2. Problem Statement

The problem statement of this work is as follows: Given dynamic noise-corrupted response-only
data records collected from a sample of the admissible flight states, with each state characterized
by a specific airspeed and AoA and kept constant for the duration of the data collection, identify a
“global” VFP time-series model that is capable of accurately representing the aeroelastic response
for all the admissible flight states under uncertainty. The VFP model results are compared with
a conventional multi-model approach based on AutoRegressive (AR) models. Special emphasis
is placed on the successful modeling, monitoring, and representation of the critical aerodynamic
phenomena of stall and flutter. Figure 1 depicts a schematic representation of the proposed global
identification framework3.

In order to achieve the experimental evaluation and assessment of the proposed framework, a
prototype proof-of-concept self-sensing composite UAV wing was designed and fabricated [3, 5].
The wing is outfitted with bio-inspired stretchable sensor networks [1, 2, 58, 59, 60, 61] consisting
of distributed micro-sensors that enable its self-sensing capabilities. The sensor networks are em-
bedded inside the composite layup of the wing, comprising carbon fiber and fiberglass plies, leaving

3The morphing aerial vehicle shown in Figure 1 is based on artist’s rendering of the 21st Century Aerospace
Vehicle as envisioned by NASA for a morphing aircraft of the future. See https://www.dfrc.nasa.gov/Gallery/

Photo/Morph/index.html.
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a minimal parasitic footprint on the mechanical properties. In this work, piezoelectric sensors are
used to sense the aeroelastic response (vibration) of the wing and allow the stochastic global iden-
tification under varying flight states, as well as the early detection of incipient dynamic flutter and
stall. A series of 266 wind tunnel experiments, with each corresponding to a distinct AoA and air-
speed (also referred to as freestream velocity) pair, are conducted for collecting data under a broad
range of flight states. The obtained data are used for the identification of a global VFP time-series
model and a number of conventional AR models for implementing a multi-model approach, and
the subsequent analysis, comparison and assessment of the model identification e↵ectiveness and
accuracy.

The main novel aspects of this study include:

(a) Introduction of a novel data-based stochastic “global” identification framework for modeling
the aeroelastic response of aerial vehicles under varying flight states characterized by several
variables. In this work the flight states are characterized by varying airspeed and AoA, while
each flight state remains constant during data collection (slow evolution in the dynamics is
assumed).

(b) Proof-of-concept experimental assessment based on an intelligent composite wing with em-
bedded bio-inspired distributed sensor networks subjected to a series of 266 wind tunnel
experiments under varying flight states.

(c) Experimental stochastic identification and accurate “global” modeling of the wing dynamics
and aeroelastic response for all admissible flight states.

(d) Accurate identification and monitoring of the dynamic flutter and stall phenomena under
varying flight states.

(e) Experimental statistical analysis of the piezoelectric signal energy under varying flight states
and correlation with the aerodynamic stall for monitoring and early detection.

3. Stochastic Global Identification under Multiple Flight States

In this section the “global” identification of the structural dynamics and aeroelastic response
is addressed via the use of stochastic Functionally Pooled (FP) models, and specifically via the
Vector-dependent Functionally Pooled AutoRegressive (VFP-AR) model structure [49, 50]. These
models are capable of representing the system dynamics for the complete range of flight states
(airspeeds, AoA, altitudes, etc.) based on data records obtained under a sample of these states.
The problem is important in a number of practical applications and is tackled within the recently
introduced FP framework [49, 50, 51]. This proof-of-concept study focuses on the case of flight
states characterized by two variables, namely the airspeed and AoA of the wing.

3.1. Baseline modeling under a single flight state

The baseline modeling under a single flight state is an initial step performed in order to facilitate
–in the sense of providing approximate model orders– the subsequent step of the global modeling
under all admissible flight states.

A single data set under a specific flight state is obtained –either via actual flight testing, ap-
propriately designed wind tunnel experiments, or calibrated high-fidelity computational aeroelastic
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models– based on which an interval estimate of a discrete-time model (or a vector model or an
array of models in the case of several response measurement locations) representing the system
dynamics is obtained via standard identification procedures [47, 48]. In this study, response-only
AutoRegressive (AR) models are employed, as the wind tunnel airflow excitation signal is not
measurable. However, in the case where the excitation signal can also be recorded via the use
of appropriate sensors, the excitation-response AutoRegressive with eXogenous excitation (ARX)
model structure may be a more appropriate representation that could potentially o↵er increased
modeling accuracy [13]. Alternatively, depending on the properties and nature of the system dy-
namics, response signals and corrupting noise, more elaborate representations, such as the generic
AutoRegressive Moving Average with eXogenous excitation (ARMAX) may be used [47, 48, 62].

An AR(n) model is of the following form [47]:

y[t] +
nX

i=1

a

i

· y[t� i] = e[t] e[t] ⇠ iidN
�
0,�2

e

�
(1)

with t designating the normalized discrete time (t = 1, 2, 3, . . . with absolute time being (t� 1)T
s

,
where T

s

stands for the sampling period), y[t] the measured vibration response signals as generated
by the piezoelectric sensors of the wing, n the AR polynomial order, and e[t] the stochastic model
residual (one-step-ahead prediction error) sequence, that is a white (serially uncorrelated), Gaus-
sian, zero mean with variance �

2
e

sequence. The symbol N (·, ·) designates Gaussian distribution
with the indicated mean and variance, and iid stands for identically independently distributed.

The model is parameterized in terms of the parameter vector ¯✓ = [a1 . . . a

n

... �2
e

]T to be
estimated from the measured response signals [47]. Model estimation may be achieved based on
minimization of the Ordinary Least Squares (OLS) or Weighted Least Squares (WLS) criteria [47].
The modeling procedure involves the successive fitting of AR(n) models for increasing order n until
an adequate model is selected [63]. Model order selection is based on the Bayesian Information
Criterion (BIC) and the residual sum of squares normalized by the signal sum of squares (RSS/SSS).
Final model validation is based on formal verification of the residual (one-step-ahead prediction
error) sequence uncorrelatedness (whiteness) hypothesis [47, pp. 512-513].

3.2. Global modeling under multiple flight states

The VFP representation allows for complete and precise modeling of the global dynamics under
multiple flight states with each state defined –within this study– by a specific airspeed and AoA
that form the flight state vector k. The VFP model structure allows the functional dependence
of model parameters and residual series covariance on both the airspeed and AoA (flight state
vector k). Furthermore, the interrelations and statistical dependencies between the data records
corresponding to the di↵erent flight states are also taken into account within this structure.

The VFP-AR representation belongs to the recently introduced broader class of stochastic FP
models, which makes use of functional data pooling techniques for combining and optimally treating
(as one entity) the data obtained from various experiments corresponding to di↵erent structural
states, and statistical techniques for model estimation [49, 50, 51].

The global modeling via a VFP-AR model involves consideration of all admissible flight states,
i.e. airspeeds and AoA, that define the flight envelope. A total of M1 ⇥ M2 experiments are
performed (physically or via coupled fluid-structure interaction computational models and corre-
sponding simulations), with M1 and M2 designating the number of experiments under the various
airspeeds and AoA, respectively. Each experiment is characterized by a specific airspeed k

1 and
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Figure 2: Grid of flight states for VFP model identification. Schematic representation of data collection for
the identification of a VFP model under di↵erent flight states characterized by varying airspeed and AoA.

a specific AoA k

2, with the complete series covering the required range of each variable, say
[k1

min

, k

1
max

] and [k2
min

, k

2
max

], via the discretizations {k11, k12, . . . , k1
M1

} and {k21, k22, . . . , k2
M2

}. For
the identification of a global VFP model the flight state vector k containing the airspeed and AoA
components, is formally defined as:

k = [k1
i

k

2
j

]T () k

i,j

, i = 1, . . . ,M1, j = 1, . . . ,M2 (2)

with k

i,j

designating the flight state of the wing corresponding to the i-th airspeed and the j-th
AoA. This procedure yields a pool of response signals (each of length N):

yk[t] with t = 1, . . . , N, k

1 2 {k11, . . . , k1M1
}, k2 2 {k21, . . . , k2M2

}. (3)

A schematic representation of the data collection process for the identification of the global
VFP model is presented in Figure 2.

A proper mathematical description of the global dynamics under varying flight states may be
then obtained in the form of a VFP-AR model. In the case of several response measurement
locations an array of such models (or else a vector model) may be obtained, with each scalar model
corresponding to each measurement location.

The VFP-AR(n)
p

model is of the following form [49]:

yk[t] +
nX

i=1

a

i

(k) · yk[t� i] = ek[t] (4)

ek[t] ⇠ iidN
�
0,�2

e

(k)
�

k 2 R2 (5)

E{e
ki,j [t] · ekm,n [t� ⌧ ]} = �

e

[k
i,j

, k

m,n

] · �[⌧ ] (6)

with n designating the AR order, yk[t] the piezoelectric sensor’s response signal, and ek[t] the
model’s residual (one-step-ahead prediction error) sequence, that is a white (serially uncorrelated)
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zero mean sequence with variance �2
e

(k). This may potentially be cross-correlated with its counter-
parts corresponding to di↵erent experiments (di↵erent k’s). The symbol E{·} designates statistical
expectation, �[⌧ ] the Kronecker delta (equal to unity for ⌧ = 0 and equal to zero for ⌧ 6= 0), N (·, ·)
Gaussian distribution with the indicated mean and variance, and iid stands for identically inde-
pendently distributed. The covariance of the residual series is designated as �

e

[k
i,j

, k

m,n

], with
�

e

[k
i,j

, k

i,j

] = �

2
e

[k
i,j

]. All information in terms of interrelations among the data records s incorpo-
rated into the parameter estimation phase to obtain statistically optimal models.

The uniqueness of the VFP model structure is that the model parameters a

i

(k) are modeled
as explicit functions of the flight vector k (which contains the airspeed and AoA components):

a

i

(k) =
pX

j=1

a

i,j

·G
j

(k). (7)

As equation (7) indicates, the AR parameters a
i

(k) are functions of the flight vector k by be-
longing to p-dimensional functional subspace spanned by the mutually independent basis functions
G1(k), G2(k), . . . , Gp

(k) (functional basis). The functional basis consists of polynomials of two
variables (bivariate) obtained as tensor products from their corresponding univariate polynomials
(Chebyshev, Legendre, Jacobi, and other families [49, 50]). The constants a

i,j

designate the AR
coe�cients of projection to be estimated from the measured signals.

Using the backshift operator Bi

�
B · x[t] := x[t � i]

�
the VFP-AR model may be expressed as

follows:
A[B,k] · yk[t] = ek[t], (8)

with A[B,k] designating the AR k-dependent polynomial operator:

A[B,k] := 1 +
nX

i=1

a

i

(k)Bi

. (9)

The VFP model identification is divided into two subtasks: (i) model parameter estimation
and (ii) model structure estimation. The VFP identification process is schematically presented in
Figure 3.

3.2.1. Model parameter estimation

The VFP-AR model of equations (4)–(7) is parameterized in terms of the parameter vector to
be estimated from the measured signals:

¯✓ = [ a1,1 a1,2 . . . a

i,j

... �2
e

(k) ]T 8 k (10)

and may be written in linear regression form as:

yk[t] =
⇥
'T

k[t]⌦ gT (k)
⇤
· ✓ + ek[t] = �T

k[t] · ✓ + ek[t] (11)

with:

'k[t] :=
h
�yk[t� 1] . . . � yk[t� n]

i
T

[n⇥1]
(12a)

g(k) :=
h
G1(k) . . . Gp

(k)
i
T

[p⇥1]
(12b)

✓ :=
h
a1,1 a1,2 . . . a

n,p

i
T

[(np⇥1]
(12c)
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Figure 3: Stochastic VFP identification subtasks. The VFP model identification is divided into two subtasks:
(i) model parameter estimation and (ii) model structure estimation. Model structure estimation addresses the model
order and functional basis dimensionality selection.

and T designating transposition and ⌦ Kronecker product [64, Chap. 7].
Pooling together the expressions of equation (11) of the VFP-AR model corresponding to

all flight vectors k (k1,1, k1,2, . . . , kM1,M2) considered in the experiments (cross-sectional pooling)
yields:

2

64
y

k1,1 [t]
...

y

kM1,M2
[t]

3

75 =

2

64

�T

k1,1
[t]

...
�T

kM1,M2
[t]

3

75 · ✓ +

2

64
e

k1,1 [t]
...

e

kM1,M2
[t]

3

75 =) y[t] = �[t] · ✓ + e[t]. (13)

Then, following substitution of the data for t = 1, . . . , N the following expression is obtained:

y = � · ✓ + e (14)

with

y :=

2

64
y[1]
...

y[N ]

3

75 , � :=

2

64
�[1]
...

�[N ]

3

75 , e :=

2

64
e[1]
...

e[N ]

3

75 . (15)

Using the above linear regression framework the simplest approach for estimating the projection
coe�cients vector ✓ is based on minimization of the Ordinary Least Squares (OLS) criterion:

J

OLS =
1

N

NX

t=1

eT [t]e[t]. (16)

A more appropriate criterion is (in view of the Gauss-Markov theorem [65]) the Weighted Least
Squares (WLS) criterion:

J

WLS =
1

N

NX

t=1

eT [t]��1
e[t]e[t] =

1

N

eT��1
e e (17)
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which leads to the Weighted Least Squares (WLS) estimator:

b✓
WLS

=
⇥
�

T

�

�1
e �

⇤�1⇥
�

T

�

�1
e y

⇤
. (18)

In these expressions �e = E{eeT } (�e = �e[t]⌦I
N

, with I
N

designating the N⇥N unity matrix)
designates the residual covariance matrix, which is practically unavailable. Nevertheless, it may
be consistently estimated by applying (in an initial step) Ordinary Least Squares (details in [49]).

Once b✓
WLS

has been obtained, the final residual variance and residual covariance matrix estimates
are obtained as:

b�2
e

(k, b✓
WLS

) =
1

N

NX

t=1

e

2
k[t,

b✓
WLS

], b
�e[t] =

1

N

NX

t=1

e[t, b✓
WLS

]eT [t, b✓
WLS

]. (19)

The estimator b✓
WLS

may, under mild conditions, be shown to be asymptotically Gaussian
distributed with mean coinciding with the true parameter vector ✓o and covariance matrix P✓ [49]:

p
N(b✓

N

� ✓o) ⇠ N (0,P✓) (N �! 1) (20)

based on which interval estimates of the true parameter vector may be constructed [49, 50].

3.2.2. Model structure estimation

The problem of VFP-AR model structure estimation (structure selection) for a given family of
basis functions (such as Chebyshev, Legendre, and so on) refers to the model order determination
for the AR polynomial and the determination of the corresponding functional subspace. Usually,
the AR model order is initially selected via customary model order selection techniques (BIC, RSS,
frequency stabilization diagrams) [47]. On the other hand, the functional subspace dimensionality
may be selected via a similar BIC-based process in the case of “complete” (that is including all
consecutive basis functions up to the specified degree) functional subspace [49, 50], or via the use
of a hybrid Genetic Algorithm (GA) procedure in the case of “incomplete” (that is not necessarily
including all consecutive basis functions up to the specified degree) functional subspace [49, 50]. For
the latter approach, initially the maximum functional subspace dimensionality is selected, which
defines the search space of the functional subspace estimation subproblem. The determination
of the exact subspace dimensionality is achieved via the use of GAs based on minimization of
the BIC with respect to the candidate basis functions. In the current study, the estimation of
the functional subspace dimensionality is achieved via the use of the BIC criterion for increasing
functional subspace dimensionality. The functional basis consists of bivariate Chebyshev Type II
polynomials [66, 67, 68].

4. The Bio-inspired Self-sensing Composite Wing

The prototype bio-inspired self-sensing composite wing was designed and fabricated at Stanford
University. It is outfitted with micro-fabricated multi-modal distributed sensor networks that have
been embedded between the carbon-fiber and fiberglass layers of the top composite skin of the wing
structure. The composite wing with the embedded micro-sensor networks constitutes a self-sensing
structure that with the integration of appropriate algorithms and corresponding software is able
to achieve high-resolution state and structural awareness along with self-diagnostic capabilities.
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Figure 4: Bio-inspired stretchable sensor networks. (A) A 16-node sensor network on a wafer can be
expanded up to 1, 057% in each dimension after release. (B) Close-up of the sensor node demonstrating the design
of the microwires. (C) A sensor network with 169 nodes before expansion. (D) An expanded 5041-node network is
shown in contrast to a hand, which illustrates the flexibility of the membrane. (E) Network before release on a 100
mm wafer. (F) A fabricated 256-node network on polyimide is easily held by hand without damaging the network.
It is characterized by 16 µm wide, 50 µm thick microwires.

4.1. Bio-inspired stretchable sensor networks

The bio-inspired stretchable sensor networks used in this study are developed via the use
of nonstandard micro/nano-fabrication CMOS (complementary metal-oxide-semiconductor) and
MEMS (micro-electro-mechanical) processes. They consist of various sensor types (piezoelectric
[58, 69], strain [58, 61], temperature [1, 58, 60, 61], and pressure sensors) and can be installed
monolithically into host materials, either embedded between the layers of composite materials or
mounted on metallic or composite structures [1, 2, 58, 59, 60, 61, 69]. Figure 4 presents some
indicative bio-inspired network designs fabricated at Stanford University. The network used in this
study corresponds to the 256-node design shown in Figure 4E.

In this work, four stretchable multi-modal sensor networks consisting of distributed piezoelectric
lead zirconate titanate (PZT) sensors, strain gauges, and resistive temperature detectors (RTD)
have been designed and fabricated [1, 2, 58, 60, 61, 69] so that they can be embedded inside
the composite layup of the top skin of the wing. Each of the four sensor networks contains 8
piezoelectric sensors (disc PZT 3.175 mm in diameter), 6 strain gauges, and 24 RTDs. The total
number of embedded sensors in the composite wing is 148. Stretchable wires connect the network
nodes and serve as signal communication channels. Before stretching, the network dimensions are
52.8 mm by 39.6 mm, while after the stretching process expands to 140 mm by 105 mm yielding a
700% total surface area increase [61]. After the stretching process takes place, the outer network
pads are connected to a surrounding flexible PCB that facilitates the connection with the data
acquisition system.
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Figure 5: Self-sensing intelligent composite wing. The composite wing design, layers, flexible PCBs, and
four networks with a total of 148 (32 piezoelectric, 24 strain gauges, and 92 RTDs) micro-sensors embedded in the
composite layup.

4.2. The self-sensing composite wing

The prototype wing was designed, constructed and tested at Stanford University. Analyzing a
prototype model with construction typical of that of an operational UAV wing allows the compari-
son of the aeroelastic behavior, structural dynamics, and performance characteristics with existing
systems, as well as enables a scaling analysis. The wing design is based on the cambered SG6043
high lift-to-drag ratio airfoil with a 0.86 m half-wingspan, 0.235 m chord, and an aspect ratio
of 7.32. Table 1 presents the wing geometry and dimensions. In order to achieve the successful
fabrication of the wing prototype, an appropriate network-material integration process had to be
developed for embedding the micro-fabricated sensor networks inside the composite materials.

In order to tackle the wing-network integration challenges related to the micro-scale and fragile
nature of the network nodes and wires, a new multi-stage process had to be developed for the
transfer, electrical interfacing and insulation of the network components based on multilayer flexible
PCBs and epoxy armoring. The composite wing structure was manufactured from carbon fiber and
fiberglass laminated composites. The wing skin layup consists of carbon fiber (CF) plain weave
fabric 1K T300 and fiberglass (FG) plain weave fabric 18 gr/m2 infused with Araldite LY/HY5052
epoxy. The stacking sequence of the layers is [0o FG, 0o CF, 45o CF, 45o CF, 0o CF, 0o FG]. The
wing design, layers, flexible PCBs, and sensor networks are shown in Figure 5. The four networks
are embedded between the two top layers at 0o of the layup (near the wing surface) during the
lamination process. The fiberglass was employed due to its transparency, so that the embedded

Table 1: Self-sensing composite wing geometry.

Semispan b 0.86 m

Chord c 0.235 m

Area S 0.2 m2

Aspect Ratio 7.32

Airfoil SG6043
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Figure 6: Wing and sensor locations. The wing airfoil and the locations of 8 piezoelectric and 20 strain sensors.

stretchable sensor networks are visible to the naked eye. The supporting wing structure consists
of basswood spars and ribs upon which the composite skin is adhesively mounted.

5. The Wind Tunnel and the Experiments

5.1. The wind tunnel

The prototype composite wing was tested in the open-loop low-turbulence wind tunnel facility
at Stanford University. The wind tunnel has a square test section of 0.84 ⇥ 0.84 m (33 ⇥ 33 in)
and can achieve continuous flow speeds up to approximately 40 m/s. A custom basis was designed
and fabricated to support the wing and permit adjustments in the AoA. The wing was mounted
horizontally inside the test section using an aluminum rod (2.54 cm diameter) that connected the
wing with the basis (see Figure 6). The aluminum rod is an expansion of the main wing spar and
are glued together so that the axis of rotation coincides with the quarter of the wing chord. Figure
6 shows the design of the wing basis and presents the locations of 8 piezoelectric and 20 strain
sensors on the composite wing.

5.2. Experiments under varying flight states

A series of wind tunnel experiments were conducted for various angles of attack and freestream
velocities U1. For each AoA, spanning the range from 0 degrees up to 18 degrees with an incre-
mental step of 1 degree, data were sequentially collected for all velocities within the range 9 m/s
to 22 m/s (incremental step of 1 m/s). The above procedure resulted in a grid of flight state data
sets corresponding to 266 di↵erent experiments covering the complete range of the considered flight
states. The experimental flight states along with the corresponding Reynolds numbers are outlined
in Table 2.

5.3. The signals

For each experiment the vibration response was recorded at di↵erent locations on the wing
via the embedded piezoelectric sensors (initial sampling frequency f

s

= 1000 Hz, initial signal
bandwidth 0.1�500 Hz). The signals were recorded via a National Instruments X Series 6366 data
acquisition module featuring eight 16-bit simultaneously sampled analog-to-digital channels. After
a preliminary investigation, the response signal bandwidth for the parametric analysis is selected
as 0.1� 80 Hz. The initial signals are low-pass filtered (Chebyshev Type II) and sub-sampled to a
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Table 2: The flight states considered in the wind tunnel experiments. For each constant AoA within the range of
[0� 18] degrees, a series of data sets was recorded corresponding to freestream velocities [9� 22] m/s.

Re (⇥103) 124 155 171 187 202 217 233 248 264 280 295 311 326 342

U1 (m/s) 9 10 11 12 13 14 15 16 17 18 19 20 21 22

AoA: 0 – 18 degrees; Total number of experiments: 266

resulting sampling frequency f

s

= 200 Hz. Table 3 summarizes the piezoelectric data acquisition,
signal, and pre-processing details.

6. Results and Discussion

6.1. Numerical simulations

In order to investigate the theoretical aerodynamic behavior of the fabricated composite wing
based on which the experimental results could be interpreted and assessed, a series of numerical
simulations was conducted using XFOIL, an interactive software developed at MIT for the design
and analysis of subsonic isolated airfoils [70]. Figures 7a and Figure 7b present the lift coe�cient
versus the AoA and lift-to-drag coe�cient ratio C

L

/C

D

results of the SG6043 airfoil, respectively,
for various Reynolds numbers (U1 = 7, 10, 12 and 15 m/s; see Table 2). It may be readily observed
that the wing exhibits stall (loss of lift shown as shaded area in Figure 7a) starting from an AoA
of approximately 12 degrees for a Reynolds number of Re = 100, 000. As the Reynolds number
increases (for increasing freestream velocity) stall occurs for an increasingly higher AoA up to a
value of 16 degrees. Moreover, observe that the maximum C

L

/C

D

ratio is obtained for angles
between 4 and 8 degrees (shaded areas in Figure 7b).

6.2. Signals and statistical energy analysis

Figure 8 presents indicative wind tunnel signals obtained from piezoelectric sensor 2 (see Figure
6 for the sensor location) under various angles of attack and freestream velocities of U1 = 11 m/s
(top subplot) and U1 = 15 m/s (bottom subplot). Observe the stochastic (random) nature of
these signals, which is due to the wind tunnel airflow actuation and the aeroelastic response of the
wing. In addition, it is evident that for higher angles of attack and as the wing approaches stall,
the signal amplitude (voltage) increases. In the case of U1 = 11 m/s (top subplot) in Figure 8, the
maximum signal amplitude for AoA of 13 and 15 degrees seems to be similar as there is no evident
further increase. For this freestream velocity and based on Figure 7, stall occurs at an AoA of
approximately 13 degrees. In the case of U1 = 15 m/s (bottom subplot) in Figure 8, stall occurs

Table 3: Piezoelectric data acquisition, signal, and pre-processing details.
Number of sensors: 8
Sampling frequency: fs = 1000 Hz
Signal length: N = 90, 000 samples (90 s)
Initial Bandwidth: [0.1� 500] Hz
Filtering: Low-pass Chebyshev Type II (12th order; cut-o↵ frequency 80 Hz)
Filtered Bandwidth: [0.1� 80] Hz
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Figure 7: CFD simulation results. Indicative simulation results: (a) lift coe�cient CL (left subplot) and (b)
lift-to-drag coe�cient ratio CL/CD (right subplot) versus AoA for the SG6043 airfoil and various Reynolds numbers.

Figure 8: Piezoelectric signals. Indicative signals obtained from piezoelectric sensor 2 under various angles
of attack: (a) freestream velocity U1 = 11 m/s (top subplot) and (b) freestream velocity U1 = 15 m/s (bottom
subplot).

at approximately 15 degrees, and it may be readily observed that there is an obvious increase in
the signal amplitude from 13 to 15 degrees AoA.

In order to further investigate the signal amplitude of the sensors with respect to varying
AoA and airspeed we conducted the statistical signal energy analysis based on the wind tunnel
experiments. The initial signal of 90 s (N = 90, 000 samples) was split into signal windows of 0.5 s
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Figure 9: Signal energy statistical analysis for increasing AoA. Indicative signal energy versus AoA wind-
tunnel results for piezoelectric sensor 1 and freestream velocities U1 = 11 m/s (left) and U1 = 15 m/s (right). The
mean values of the signal energy are shown as red lines. The 99% confidence bounds are shown as green shaded
areas.

(N = 500 samples) each. Then, for each signal window the mean value and the standard deviation
of the signal energy (time integration of the squared signal V 2 within the time window) were
estimated. Figure 9 presents indicative signal energy results obtained from piezoelectric sensor 1
during the wind tunnel experiments. The AoA is varied between 0 and 15 degrees for constant
freestream velocities of U1 = 11 m/s (left subplot) and U1 = 15 m/s (right subplot). The goal is
to correlate the signal energy in the time domain with the airflow characteristics and aeroelastic
properties in order to identify and track appropriate signal features that can be used for the wing
vibration monitoring, the localization of the flow separation over the wing chord, and the early
detection of stall under various flight states. Figure 9 presents the mean value of the vibrational
signal energy along with the 99% confidence bounds.

For the case U1 = 11 m/s (left subplot in 9) as the AoA exceeds the value of 12 degrees
the signal energy significantly increases and reaches the maximum value as it approaches stall
(AoA of 13 degrees). Then, it slightly decreases after stall has occurred (14 and 15 degrees). The
sudden increase in the signal energy is caused by the stall-induced oscillations (or stall flutter
phenomenon). The statistical analysis of the wind tunnel signals for the various sensors indicated
that for velocities in the range of 10 m/s to 12 m/s the stall angle lies within 12 to 13 degrees,
whereas for higher velocities the stall AoA may exceed the 15 degrees. The right subplot of Figure
9 presents similar statistical energy results for freestream velocity U1 = 15 m/s. These results are
in agreement with the trend of signals in Figure 8 as in both cases the signal amplitude/energy is
maximized within the stall range of the wing. Also, the results are in agreement with the numerical
simulations presented in Figure 7.

Indicative signal energy statistical analysis results for increasing airspeed are presented in Figure
10. The left subplot corresponds to an AoA of 1 degree, while the right subplot to an AoA of 9
degrees. Observe the quadratic increase in the signal energy with respect to increasing airspeed,
which is in agreement with the basic aerodynamic lift formula that implies quadratic lift increase
for increasing airspeed at a constant AoA. Moreover, observe that as the airspeed increases the
confidence bounds also increase. Finally, in agreement with the analysis of Figure 9, the signal
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Figure 10: Signal energy statistical analysis for increasing airspeed. Indicative signal energy versus airspeed
wind-tunnel results for piezoelectric sensor 1 and an AoA of 1 degree (left) and 9 degrees (right). The mean values
of the signal energy are shown as red lines. The 99% confidence bounds are shown as green shaded areas.

energy is significantly higher, in fact approximately double, in the case of the 9-degree AoA (right)
when compared with the corresponding of 1 degree (right subplot).

6.3. Non-parametric analysis

Non-parametric identification is based on 90, 000 (90 s) sample-long response signals obtained
from the embedded piezoelectric sensors (see Table 3). A 5096 sample-long Hamming data win-
dow (frequency resolution �f = 0.24 Hz) with 90% overlap is used for the Welch-based spectral
estimation (MATLAB4 function pwelch.m).

Figure 11 presents indicative non-parametric power spectral density (PSD) Welch-based esti-
mates of the piezoelectric response signals obtained from sensor 1 for increasing AoA and freestream
velocity U1 = 13 m/s (Re = 202, 000). Notice that as the AoA increases the PSD amplitude in
the lower frequency range of [0.1� 12] Hz significantly increases as well. More specifically, as the
AoA approaches the critical stall range of [13 � 15] degrees, the low frequency vibrations become
dominant and thus indicating the proximity to the stall of the wing. From this Figure it is evident
that by monitoring the identified lower frequency bandwidths that are sensitive to increasing AoA
we may have a strong indication of stall. All the embedded piezoelectric sensors of the wing exhibit
a similar performance, but for the sake of brevity the results are presently omitted.

Similarly, Figure 12 presents indicative non-parametric power spectral density (PSD) Welch-
based estimates obtained from piezoelectric sensor 1 for increasing airspeed and a constant AoA of
0 degrees within the [0.5�30] Hz frequency range. Again, notice that as the airspeed increases, the
PSD amplitude in the lower frequency range slightly increases as well. In this case, it is expected
that as the airspeed increases for a constant AoA the wing will approach flutter which will be
triggered by the coupling of aeroelastic modes. In this case the coupling occurs in the [0.5�15] Hz
frequency range. By carefully observing Figure 12 it may be seen that the frequency at approxi-
mately 5 Hz increases with increasing airspeed and approaches the frequency at approximately 9

4In this work Matlab version R2015b has been used.
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Figure 11: Non-parametric spectral estimates vs AoA. Indicative non-parametric Welch-based PSD estimates
(piezoelectric sensor 1) versus AoA for U1 = 13 m/s (Re = 202, 000) freestream velocity.

Figure 12: Non-parametric spectral estimates vs airspeed. Indicative non-parametric Welch-based PSD
estimates (piezoelectric sensor 1) versus airspeed for an AoA of 0 degrees.

Hz, thus providing an indication of incipient flutter. This observation will be clarified by the global
parametric modeling results of Section 6.5.

6.4. Baseline parametric identification

Conventional AR time-series models representing the wing dynamics are obtained through
standard identification procedures [47, 48] based on the collected piezoelectric response signals
(MATLAB function arx.m). The response signal bandwidth is selected as 0.1 � 80 Hz after the
initial signals were low-pass filtered (Chebyshev Type II) and sub-sampled to a resulting sampling
frequency f

s

= 200 Hz (initial sampling frequency was 1000 Hz). Each signal resulted in a length
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Figure 13: AR order selection criteria. Order selection criteria for AR(n) type parametric models: (a) BIC and
(b) RSS/SSS.

Figure 14: AR stabilization diagram. Stabilization diagram for AR(n) type parametric models.

of N = 4, 000 samples (20 s) and was subsequently sample mean corrected (Table 4). Indicative
baseline parametric modeling results are presented for piezoelectric sensor 1 and for a flight state
corresponding to an airspeed of 11 m/s and an AoA of 3 degrees.

The modeling strategy consists of the successive fitting of AR(n) models (with n designating
the AR order) until a suitable model is selected. Model parameter estimation is achieved by
minimizing a quadratic prediction error (PE) criterion leading to a least squares (LS) estimator
[47, p. 206]. Model order selection, which is crucial for successful identification, may be based on
a combination of tools, including the Bayesian information criterion (BIC) (Figure 13a), which is
a statistical criterion that penalizes model complexity (order) as a counteraction to a decreasing
quality criterion [47, pp. 505–507], monitoring of the RSS/SSS (residual sum of squares/ signal sum
of squares) criterion (Figure 13b), monitoring of the residual autocorrelation function (MATLAB
function autocorr.m) [47, p. 512], and use of “stabilization diagrams” (Figure 14) which depict the
estimated modal parameters (usually frequencies) as a function of increasing model order [47, 48].

An approximate plateau in the BIC and RSS/SSS sequences is achieved for model order n > 50
(Figure 13), while the BIC value is minimized for order n = 72. The AR(72) model exhibits a very
low RSS/SSS value of 0.7 % demonstrating the accurate identification and successful dynamics
representation by the specific model. Furthermore, as indicated by the frequency stabilization
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Figure 15: VFP model structure selection criteria. Functional basis dimensionality selection for VFP-AR(72)
model and increasing number of basis functions p (Chebyshev Type II bivariate polynomials): (a) BIC and (b)
RSS/SSS.

diagram of Figure 14, model orders of n > 60 are adequate for most natural frequencies to stabilize.
Notice the vertical color bar in Figure 14, which presents the damping ratios for each estimated
frequency for increasing model order. It may be observed that for the specific data set used in the
baseline modeling process higher damping ratios are found within the 0.5� 15 Hz range.

The above identification procedure leads to an AR(72) model. This model is used as reference
and for providing approximate orders for the identification of the global VFP-AR model and the
multi-model AR approach of the next section.

6.5. Global identification under multiple flight states

The parametric VFP-based identification of the wing dynamics is based on signals collected
from the piezoelectric sensors under a series of wind tunnel experiments shown in Table 2. The
global modeling of the composite wing is based on signals obtained from a total of M1⇥M2 = 144
experiments. Airspeeds up to 17 m/s and AoA up to 15 degrees were considered for the VFP-based
modeling procedure. The airspeed and AoA increments are �k

1 = 1 m/s and �k

2 = 1 degree,
respectively, covering the corresponding intervals of [9, 17] m/s and [0, 15] degrees.

Model order selection starts with the same order selected for the conventional AR models
representing the wing dynamics for a constant indicative flight state. The final model order n = 72
presently selected is based on the process outlined in the previous subsection and appropriate model
validation techniques, such as checking the whiteness (uncorrelatedness) and the normality of the
model residuals (MATLAB functions acf.m and normplot.m, respectively) [47]. The functional
subspace is selected via a similar approach based on the BIC and RSS/SSS criteria for increasing
functional basis dimensionality (Figure 15). An extended functional subspace consisting of 36
Chebyshev Type II bivariate polynomial basis functions[49, 66] is initially considered with the

Table 4: Piezoelectric signal pre-processing for the parametric identification.

Sampling frequency: f

s

= 200 Hz (after filtering and sub-sampling)
Final bandwidth: [0.1� 80] Hz
Digital filtering: Low-pass Chebyshev Type II
Signal length: N = 4, 000 samples (20 s)
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Table 5: Comparison between conventional multi-model AR and global VFP-AR approaches.
Conventional multi-model AR approach Global VFP-AR approach

Number of data sets (flight states) 144 144
Signal samples per data set 4000 4000
Selected model AR(72) VFP-AR(72)25
Number of models 144 1
Number of estimated parameters 10, 368 1800
Samples per parameter (SPP) 55.55 320
RSS/SSS (%) mean value: 1.8502 0.0047

min value: 0.0325
max value: 4.3792

optimal functional basis subset selected based on minimization of the BIC criterion [49]. From
Figure 15a it is evident that the minimum value of the BIC corresponds to a basis dimensionality
of p = 25 functions. Figure 15b indicates that the RSS/SSS value for the selected functional
subspace is in the order of 4.7 · 10�3 % indicating the extremely accurate representation of the
wing dynamics by the VFP model. Hence, the VFP model identification stage results in a VFP-
AR(72)25 model.

6.5.1. Comparison of global VFP with multi-model AR identification approach

Table 5 presents the comparison between the global VFP-AR identification approach with the
conventional multi-model approach that is based on the distinct identification of separate AR mod-
els, i.e. one AR model identified for each flight state (data record). Evidently, in order to model the
wing dynamics for all the 144 considered flight states, the multi-model approach requires the iden-
tification of 144 AR(72) models with a total number of 10, 368 estimated parameters and a sample
per parameter (SPP) value of 55.55 (the higher the SPP value the more accurate the estimated
parameters; as a rule of thumb for achieving adequate accuracy in the estimated parameters, the
SPP value should be larger than 15). On the other hand, the global identification framework leads
to a global VFP-AR(72)25 model with a total number of 1, 800 estimated parameters and a SPP
value of 320. Furthermore, the RSS/SSS value, that demonstrates the goodness of fit and parame-
ter estimation accuracy, for the multi-model approach has a mean value of 1.8502 % across the 144
AR models, with the minimum and maximum values being 0.0325 % and 4.3792 %, respectively.
On the other hand, the corresponding RSS/SSS for the VFP-AR model is 0.0047 %, which is three
orders of magnitude smaller than the mean multi-model value and one order of magnitude smaller
than the minimum multi-model value.

The VFP-AR RSS/SSS estimation takes into account all the residual series from all the data
sets corresponding to the 144 di↵erent flight states that are used in the identification process. It
may be observed that the RSS/SSS value of the global VFP model is significantly lower when
compared to the corresponding RSS/SSS value of the baseline AR modeling stage and the multi-
model AR identification approach (Table 5). This is to be expected, as one of the major advantages
of the VFP model structure when compared to the multi-model approach (see Section 1) is that
it takes into account the data cross-correlations between all the sets that are used in the model
identification process. This additional information, that is neglected in the multi-model modeling
approach, results in significantly improved parameter estimation accuracy and is reflected in the
lower estimated variance of the residuals sequences. In summary, the VFP model achieves a
significantly more accurate representation of the 144 flight states when compared to the multi-
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Figure 16: VFP model predictions. Indicative VFP-AR(72)25 one-step-ahead prediction results for set airspeed
of 15 m/s and AoA 0 (top plot) and 13 (bottom plot) degrees.

model approach by using 82.64 % less estimated parameters.

6.5.2. Global VFP model identification results

The predictive capability of the selected VFP-AR(72)25 model is presented via indicative one-
step-ahead prediction results for set airspeed of 15 m/s and AoA 0 (top plot) and 13 (bottom
plot) degrees in Figure 16. The recorded signal points are shown as red circles (o), while the VFP-
mode-based predictions are depicted as blue asterisks (⇤). In both cases, the VFP model shows
remarkable predictive capabilities, a fact that is also demonstrated by the very low RSS/SSS value
(see Figure 15).

Indicative VFP-model-based frequency response function (FRF) magnitude results obtained
from the VFP-AR(72)25 global model are depicted as functions of frequency and airspeed for set
AoA k

2 = 0 and k

2 = 13 degrees in Figure 17. The frequency resolution is 0.01 Hz, while the
airspeed resolution is 0.1 m/s. The desired resolution can be completely defined based on the
identified analytical functional dependence of the flight state vector with the model parameters
and the corresponding functional subspaces (see Equation 7). In the case of AoA k

2 = 0 degrees
(left plot) observe how the wing mode at 4.5 Hz for airspeed 9 m/s gradually increases with the
increasing airspeed until completely coupled with the mode at 8.5 Hz at approximately 16 m/s
(the two modes are indicated with horizontal arrows). This behavior of the aeroelastic modes
of the wing, as identified by the VFP-AR model, corresponds to the generation of the dynamic
flutter phenomenon. It may be readily observed that the results of the left plot in Figure 17 (AoA
k

2 = 0 degrees) are, as expected, extremely accurate when compared to the corresponding non-
parametric Welch-based analysis of Figure 12. It is also worth mentioning that the non-parametric
results of Figure 12 have been obtained using a significantly longer signal of 90 seconds, whereas
the VFP-based parametric results are based on 20-second-long signals.

The right plot of Figure 17 presents the VFP-model-based FRF magnitude results for AoA
k

2 = 13 degrees, which lies within the critical AoA stall range of the wing (see also Figure 7). It
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Figure 17: Parametric VFP-based FRF magnitude versus airspeed. Indicative parametric FRF magnitude
results based on the VFP-AR(72)25 global model for set AoA k2 = 0 (left) and k2 = 13 (right) degrees). The FRF
magnitude is depicted as a function of frequency and airspeed. The two dashed vertical lines indicate the airspeeds
k1 = 13 m/s and k1 = 17 m/s that correspond to the plots of Figure 18.

may be readily observed that the FRF magnitude (red indicates higher FRF magnitude, whereas
blue indicates lower magnitude) is much higher than that of k

2 = 0 degrees (left plot) in the
frequency range [0.1� 13] Hz due to the high-amplitude wing vibrations that are generated during
the stall phenomenon. Furthermore, it may be also observed that the aeroelastic dynamic behavior
of the wing in this frequency range it is more complicated: for airspeeds lower than 12 m/s there are
two dominant aeroelastic modes; between 12 m/s and 15 m/s an additional mode shows up that is
coupled with the mode at 8 Hz for airspeeds higher than 15 m/s. This complex dynamic behavior
for AoA 13 degrees is caused by the simultaneous occurrence of di↵erent aeroelastic phenomena,
such as stall and flutter and potential corresponding non-linearities, such as limit-cycle oscillations
(LCOs) [16]. Via the use of such a global VFP model structure it is possible to enable aircraft
control schemes in order to suppress, minimize, and even predict dynamic flutter via appropriate
real-time monitoring techniques.

The vertical dashed lines in Figure 17 indicate airspeeds k

1 = 13 m/s and k

1 = 17 m/s for
which the VFP-model-based FRF magnitude curves obtained via the VFP-AR(72)25 global model
are depicted as functions of frequency and AoA in Figure 18. The frequency resolution is 0.01 Hz,
while the AoA resolution is 0.1 degrees. The airspeed of 13 m/s (left plot in Figure 18) is before the
occurrence of flutter and the wing exhibits two distinct aeroelastic modes, indicated with horizontal
arrows, within the [5� 10] Hz range (compare with the corresponding cross-section defined by the
vertical dashed lines in Figure 17). On the other hand, for the airspeed of 17 m/s (right plot in
Figure 18) the aforementioned modes have been coupled due to the existence of flutter (compare
with Figure 17) and a single aeroelastic mode at 8.5 Hz is dominant.

In addition, by observing the frequency evolution versus the AoA it may be assessed that
the amplitude of the VFP-based FRF magnitude increases for lower frequencies (< 15 HZ) with
increasing AoA as the wing approaches stall. More specifically, the FRF magnitude exhibits a
sharp increase for AoA higher than 13 degrees in which stall occurs (compare with Figure 7). This
is evident in both plots of Figure 18, k1 = 13 m/s (left) and k

1 = 17 m/s (right), and the critical
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Figure 18: Parametric VFP-based FRF magnitude versus AoA. Indicative parametric FRF magnitude
results based on the VFP-AR(72)25 global model for set airspeeds k1 = 13 m/s (left) and k1 = 17 m/s (right). The
FRF magnitude is depicted as a function of frequency and AoA. The dashed rectangular areas indicate the critical
AoA stall range.

Figure 19: 2D VFP model parameters versus airspeed. Indicative VFP-AR(72)25 model parameters along
with their 99% confidence intervals versus airspeed for set AoA of k2 = 6 degrees.

AoA stall range is indicated within the dashed rectangular areas. Also, in the case of 17 m/s (right
plot in Figure 18) it may be also observed the occurrence of complex dynamics for AoA higher
than 13 degrees, in which both stall, flutter and corresponding non-linearities take place.

By comparing the VFP-based parametric FRF magnitudes with the corresponding non-parametric
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Figure 20: 2D VFP model parameters versus AoA. Indicative VFP-AR(72)25 model parameters along with
their 99% confidence intervals versus AoA for set airspeed k1 = 17 m/s.

Welch-based spectral estimates of Figure 11 it may be concluded that high accuracy is achieved by
the global modeling approach which also employs a significantly shorter signal length (see Table
3).

Indicative 2-dimensional (2D) AR model parameters of the VFP-AR(72)25 model as functions
of the airspeed and AoA are depicted in Figures 19 and 20, respectively. The corresponding 99%
confidence intervals are also shown in red. In most of the cases, as shown in the various subplots,
it may be readily observed that the confidence intervals are extremely narrow, which demonstrates
the accuracy of the parameter estimation approach. In cases of increased uncertainty that may
be reflected in the recorded signals, the stochastic identification approach will compensate by
increasing the parameter estimation uncertainty and hence, leading to wider parameter confidence
intervals.

The VFP model parameters (Equation 7) are projected into functional subspaces spanned by the
selected basis functions consisting of bivariate polynomials parametrized in terms of airspeed and
AoA. Therefore, the VFP model parameters constitute explicit functions of both the airspeed and
AoA. Figure 21 presents indicative 3D VFP-AR(72)25 model parameters as functions of both the
airspeed and AoA. This is an alternative representation of Figures 19 and 20 showing the variation
of the model parameters with respect to the varying flight states of the wing characterized by
multiple airspeeds and AoA.

7. Concluding Remarks

The objective of this work was to introduce a novel data-based stochastic “global” identifica-
tion framework for flight and aeroelastic state awareness of aerospace structures. The proposed
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Figure 21: 3D VFP model parameters versus airspeed and AoA. Indicative VFP-AR(72)25 model parameters
as functions of both airspeed and AoA.

framework is based on the novel class of stochastic functionally pooled models for representing
the system dynamics under varying flight states and uncertainty. In the context of aeroelastic
state awareness, the authors introduced for the first time the use of Vector-dependent Functionally
Pooled (VFP) models characterized by explicit functional dependencies between the flight states,
model parameters, and the model residual sequences. The developed approach allows modeling of
the aeroelastic response via a single and global VFP time-series model. The class of VFP mod-
els resembles the form of LPV models, with some critical di↵erences: (i) the signals are treated
as a single entity and potential cross-correlations are accounted for, (ii) the number of estimated
parameters is minimal, (iii) and the estimation is accomplished in a single step (instead of two
subsequent steps) for achieving optimal accuracy.

For the experimental assessment and evaluation of the proposed stochastic framework, a pro-
totype intelligent composite UAV wing was designed and fabricated at Stanford University. The
composite wing was outfitted with bio-inspired distributed networks consisting of 148 micro-sensors
embedded inside the composite layup. A series of wind tunnel experiments was conducted un-
der various airspeeds and AoA for collecting data under multiple flight states (multiple equilibria
points). A total of 266 wind tunnel experiments covering the complete range of the considered con-
ditions were conducted. The postulated data-based stochastic identification approach, that is based
on the novel VFP time-series model structure, achieved the accurate representation of the wing
dynamics and aeroelastic behavior for all the admissible flight states and enabled the monitoring
and detection of the dynamic stall and flutter phenomena. In addition, the VFP-based identifica-
tion results were compared with a conventional multi-model approach based on AR models. It was
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shown that the accuracy of the VFP approach was significantly higher and resulted in three orders
of magnitude smaller residuals, in a RSS sense, when compared to the mean multi-model value,
and one order of magnitude smaller compared to the minimum multi-model value. In summary,
the obtained results demonstrated the e↵ectiveness and accuracy of the stochastic “global” iden-
tification framework as a first step towards the next generation of “fly-by-feel” aerospace vehicles
with state-sensing and awareness capabilities.

The current limitation of the VFP model structure (as well as of the LPV approach) is that
the data records used in the identification process need to be recorded from flight states that are
kept constant for the duration of the data collection (equilibrium state), that is a common practice
for the aeroelastic modeling and analysis [39, 40, 41, 42, 44, 45]. Thus, in its current form the
framework may be applied for the identification of aerospace systems with slow-varying dynamics
(varying airspeed, AoA, altitude, temperature, etc.), such as highly flexible high-altitude long-
endurance (HALE) air vehicles [19, 20, 27, 71] and unmanned aerial vehicles (UAV) for various
applications (aerial photography, reconnaissance operations, inspection of infrastructure, environ-
ment/forest/land/wildlife monitoring, humanitarian aid, etc). Air vehicles undergoing aggressive
maneuvering and rapid changes in their attitude cannot be accurately modeled with the proposed
approach. Appropriate extensions to fast-evolving systems with time-varying dynamics are the
subject of ongoing work and will be presented in a future study.

Current and future work addresses:

• Real-time extension and implementation of the proposed identification framework for on-
board state awareness.

• Extension of the global VFP models to account for fast evolving non-stationary dynamic
behavior that is critical for a number of aerospace structural systems.

• Integration with high-fidelity structural and aeroelastic computational models for increased
physical insight, additional data generation under varying flight states and structural con-
ditions for training purposes, and complete structural awareness from the material to the
vehicle-wide level.

• Extension of the developed framework to the case of multivariate global VFP models to
simultaneously account for large numbers of sensors and both spatial and time data cross-
correlation.

• Postulation of appropriate control schemes for flutter suppression and mitigation, early stall
detection and avoidance, gust alleviation, and optimized maneuvering and aeroelastic per-
formance based on global models.
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