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An Adaptive Time Series Probabilistic Framework
for 4D Trajectory Conformance Monitoring
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Abstract—Trajectory conformance monitoring is important for
future air traffic control for reasons associated with optimal
operation, increased safety, and improved efficiency. In this study
conformance monitoring is considered with respect to preas-
signed 4D (space and time) trajectories and their margins (4D
contracts), and an adaptive time series probabilistic framework
is postulated. Two problems are tackled and proper methods
are developed: (a) present conformance monitoring and quality
of conformance evaluation via statistical tools, which leads to
abnormal event detection, and (b) future conformance monitoring
in which conformance is predicted ahead of time allowing for the
early initiation of corrective actions. The framework is based
on Recursive Integrated AutoRegressive (RIAR) modeling of
contract deviations alone, with the underlying dynamics and
non-stationarity accounted for. An initial assessment of the
performance of the framework is based on two simulation
scenarios. Through them, present conformance monitoring is
shown to lead to quality assessment and the declaration of
an alarm immediately following the emergence of an abnormal
event. Future conformance monitoring is shown to lead to an
early non-conformance alarm, with the lead time shown to be
significantly longer than that achieved by a current probabilistic
benchmark scheme.

Index Terms—conformance monitoring, adaptive models, time
series models, quality of conformance, trajectory monitoring

I. INTRODUCTION

Aircraft navigation monitoring is a necessary tool for ensur-
ing the safety, security and efficiency of air traffic operations
[1]-[3]. It involves the creation and assignment of flight
plans to each aircraft with clearances issued by air traffic
controllers given the constraints of the Air Traffic Control
(ATC) system. In future ATC concepts, these clearances
may be based on aircraft-preferred conflict-free trajectories
authorized by a centralized ground unit [4]-[6]. With the
increased use and density of the air space, an automated ATC
function is required to ensure that aircraft adhere to their
assigned trajectories. Therefore, the early detection and/or
prediction of unacceptable deviations is critical in order to
ensure the safe system operation and allow for the initiation
of corrective actions when necessary. This function is referred
to as conformance monitoring [1]-[3].
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Thus far conformance monitoring has been typically per-
formed by ATC comparing radar data with assigned flight
paths [1]. As a result, significant deviations often exist before
aircraft non-conformance may be detected. Such deviations are
due to limited navigational and pilot tracking capabilities, pilot
response and communication issues, surveillance capabilities
(radar, GPS, ADS-B and so on), severe weather, airport clo-
sure, faults in aircraft systems (on-board sensors, controllers,
engines and so on), and other reasons that may cause loss of
situational awareness [1]—[3].

The issue of conformance monitoring has been addressed
in a number of studies [1]-[3], [7]-[10]. The present state
of the art employs relatively simple algorithms where non-
conformance is flagged when the observed deviation of an
aircraft from its assigned trajectory exceeds some predeter-
mined threshold values. Yet, limited attention has been paid
to the task of future conformance monitoring, that is predict-
ing conformance ahead of time. Although several trajectory
prediction approaches have been suggested [11]-[14], very
few studies treat the issue of future conformance monitoring
[15]. Trajectory prediction methodologies may be divided into
three categories: nominal, worst case, and probabilistic [11].
Nominal methods predict the aircraft position by propagating
the aircraft states into the future without taking into account
uncertainties. Worst-case methods assume that an aircraft will
perform any of a set of prescribed maneuvers and the worst
case one is selected for trajectory prediction. Probabilistic
methods predict the future trajectory by taking into account
uncertainties. For a review of these methods the reader is
referred to [11].

The focus of the present study is on the problem of
conformance monitoring with respect to preassigned 4D tra-
jectories (latitude, longitude, altitude, and time) equipped with
corresponding 4D margins. This novel concept, referred to
as 4-dimensional contract (4D contract), was introduced in
recent studies [4]-[6], [16], [17] as a step change in future air
transport operations by providing a radical and environmen-
tally efficient solution to the airspace management problem.
The ground segment of the system is in charge of generating
conflict-free 4D trajectories (4D contracts) and corresponding
margins according to demand, airspace/airport capacity, and
aircraft tracking capabilities. Then, the complete 4D contracts
are assigned to aircraft that have to follow them based on
their piloting and on-board control systems. In this context,
the conformance of any flown 4D trajectory with respect to
the assigned contract has to be continuously monitored by the
ATC and on-board systems.

In the present study two specific problems are considered
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and tackled within a postulated adaptive time series proba-
bilistic framework:

A. Present conformance monitoring in which a flown tra-
jectory is monitored via the on-line calculation of the
along-track, cross-track, and altitude aircraft deviations
with respect to its assigned 4D contract. In this context
the statistical quality of conformance is evaluated and
monitored. This not only provides a statistical measure of
the quality of conformance, but also leads to the prompt
detection of abnormal or hazardous events that may lead
to degraded conformance or loss of conformance.

B. Future conformance monitoring in which trajectory con-
formance is predicted ahead of time allowing for the
initiation of corrective actions prior to the occurrence of
unacceptable deviations. In this context future deviations
are predicted for a proper prediction horizon, while corre-
sponding probabilities of non-conformance are calculated
and continuously provided.

The main elements of the postulated probabilistic framework
are: (i) integrated adaptive time series models capable of
optimally representing the time-varying nature of contract
deviation dynamics under uncertainty, (ii) recursive model
estimation techniques for on-line (in-flight) parameter estima-
tion, (iii) model-based prediction of future deviations, and (iv)
statistical decision making and statistical process control. This
framework accounts for uncertainties, such as environmental
conditions (turbulence, wind, and so on), aircraft navigation
capabilities and tracking errors, and surveillance errors. In
addition, the adaptive time series models are capable of
effectively representing the deviation time—varying dynamics
and accounting for non-stationarity.

A significant feature of the proposed framework lies with
the simplification of the prediction function. Indeed, instead of
predicting the aircraft flown trajectory, the framework is based
on predicting the trajectory deviations, that is the difference
between the assigned (by the ground segment) 4D contract
and the actually flown trajectory. This way there is no need
for using aircraft intent information (such as planned by a
specific aircraft flight trajectory) in the prediction function.

In addition, there is no need for accounting for the aircraft
kinematic equations in the prediction, which would necessitate
the use of elaborate techniques and time consuming algorithms
[8], [10], [13]-[15]. As a result, the postulated framework is
based on compact (small in size) and computationally simple
adaptive time-varying models that can be effectively estimated
on-line. The present work constitutes the extension and refine-
ment of a preliminary study [18] by two of the authors, which
was based on conventional Recursive AutoRegressive (RAR)
models, instead of their presently employed integrated versions
(that is Recursive Integrated AutoRegressive (RIAR) models).
The new models are somewhat more elaborate and lead to
improved modeling and prediction capabilities.

The performance of the present and future conformance
monitoring is assessed via two simulated scenarios employing
a Boeing 737 aircraft. The future conformance monitoring
results are also contrasted to those obtained by a standard
probabilistic method based on trajectory prediction [19], [20].
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Fig. 1.  Schematic representation of the contract bone trajectory and the

contract margins, along with the along-track and cross-track deviations [18].

The paper is organized as follows: A preamble is presented
in Section II, while the conformance monitoring framework is
postulated in Section III. The adaptive time series modeling
framework is presented in Section IV. Simulation results
and assessment are presented in Section V, while concluding
remarks are summarized in Section VL.

II. PREAMBLE
A. The 4D contract

The main element of a 4D contract is the bone trajectory,
which is the element of the contract that should be as close as
possible to the actually flown trajectory [6], [17]. Thus, aircraft
performance, weather, optimized flight procedures, and other
constraining factors need to be taken into account during bone
trajectory generation. The bone trajectory consists of a number
of 4D waypoints (WPs) that define its geometry, along with
corresponding 4D margins. Intermediate points may be also
generated via great circle interpolation.

For short and mid-term time horizons, the different sources
of uncertainty affecting aircraft motion generally cause devi-
ations from the nominal flight path that cannot be neglected.
The aircraft must thus monitor their own conformance, and in
case of conformance loss, request a new contract. Of course,
all contracts involve conflict-free trajectories.

B. Contract deviations

The contract deviations are computed from the distance be-
tween the bone trajectory WPs and the actual aircraft position
for a specific time instant. Without loss of generality, the
present study considers the 3-dimensional case, focusing on
along-track and cross-track deviations, thus neglecting altitude
deviations. Figure 1 presents a schematic representation of
the bone trajectory along with the along-track and cross-
track margins and the corresponding deviations. The distance
between the bone trajectory WP and the actual aircraft position
for a specific time instant is computed and projected onto the
bone trajectory along-track and cross-track axes (Figure 1).
In order to convert the along-track deviation from distance
unit (nmi) to time (s) the nominal bone trajectory velocity
is used based on the relation y,[t] = dq[t]/ug[t], with y,[t]
designating the along-track deviation in seconds (s), d][t]
the along-track deviation in nautical miles (nmi), uy[t] the
nominal bone trajectory ground velocity, and ¢ referring to
normalized discrete time, with the corresponding actual time
being (¢t — 1)7Ts where T stands for the sampling period.
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Fig. 2.
and (d) autocorrelation function of along-track deviation signal.

C. Deviation dynamics

Contract deviations are characterized by three important
features: (i) uncertainty due to surveillance and measurement
errors, (ii) time-varying dynamics due to continuously chang-
ing conditions, such as environmental (such as turbulence,
wind, gusts, and so on) and flight (such as turns, altitude
changes, velocity changes, and so on) conditions, and (iii)
homogeneous non-stationarity due to auto-throttle dynamics.
Furthermore, it should be pointed out that the deviation
dynamics are affected by the aircraft navigational and tracking
capabilities as they are determined by the pilot and/or autopilot
performance characteristics.

Figure 2 presents an indicative along-track deviation signal
y[t] and its preliminary analysis. Figure 2a depicts the signal
versus flight time. It is correlated with the aircraft auto-throttle
dynamics which dominates over its stochastic component. Fig-
ures 2b and 2c present facets of the signal analysis, specifically
y[t] versus y[t — 1] and y[t] versus y[t — 2] correlograms.
Both indicate strong dependencies, and thus dynamics. The
signal’s sample autocorrelation function (ACF) is depicted in
Figure 2d, with its linear pattern indicating homogeneous non-
stationarity.

III. CONFORMANCE MONITORING

A schematic representation of the postulated conformance
monitoring framework is provided in Figure 3.

A. Present conformance monitoring

In the context of conformance monitoring, the aircraft
trajectory deviations (calculated using surveillance techniques,
such as GPS or radar) from the bone trajectory are referred to
as conformance errors or residuals [1]-[3].

B. Statistical quality of conformance monitoring

The quality of conformance (QoC) may be defined as a
statistical measure of the aircraft deviations with respect to an
assigned 4D contract. Monitoring the QoC may lead to the
early detection of abnormal or hazardous events, and may be
also considered as a generic health monitoring function. When
an aircraft experiences abnormal conditions, such as severe
turbulence, winds, or other hazardous events such as system
failures, the mean and/or variance of the contract deviations
are expected to change. This leads to a statistical decrease
in the QoC. Historical flight data for various aircraft types
can be used to establish proper and robust statistical QoC
measures under various environmental and flight conditions.

Sample autocorrelation function
1
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Indicative deviation dynamics: (a) along-track deviation y[t] versus flight time ¢; (b) deviation signal y[t] versus y[t — 1]; (c) y[t] versus y[t — 2];

Towards this end, standard statistical tools such as the
and S control charts [21, pp. 230-241] may be employed to
statistically monitor the sample mean and standard deviation
values, respectively.

As the statistical tools referring to quality assurance require
serially uncorrelated observations [21, p. 203], an assumption
certainly violated in the case of contract deviations, a proper
prior action is necessary. Hence, the measured deviation
signals are modeled via time-varying adaptive time series
techniques using RIAR models (see Section IV). This type
of modeling is necessary to properly account for signal serial
correlation. Following this, the statistical quality assurance
tools are applied on the residuals (one-step-ahead prediction
error) signal e[t+1|¢]] which fulfills the serial uncorrelatedness
assumption.

Using the contract deviation residual signal e[t + 1t]], its
standard deviation o.[t] and mean p.[t] are estimated via a
non-overlapping sliding window of length m. Then the sample
standard deviation &.[t] and the sample mean ji.[t] become
the charted values using an S and Z control chart respectively
[21, p. 230]. The average value of the standard deviation S
may be calculated as S = mean[5:[t]] and in the same way
for Z = mean[u¢[t]]. The upper control limit (UCL), control
limit (CL), and lower control limit (LCL) for the S chart
are defined as UCL = B,S, CL = S and LCL = BsS,
respectively. Similarly, the corresponding Z chart limits are
defined as UCL = T + A3S, CL = Z, and LCL = & —
A3 S. The values of Bs and B, are obtained via the following
relations or directly from the statistical tables [21]:

B3=1—$7 B4=1+$ )]
cg/2(m — 1) cg/2(m — 1)
3 . 4(m —1)
As = th = — " . 2
35 iTm with ¢y = = 2

The control charts constitute a means of evaluating the
statistical QoC. Abnormal deviations beyond the established
limits (UCL) and (LCL) function as alarms for changes
in quality, and are, expectedly, associated with various root
events. It is finally noticed that the control limits based on the
normality assumption may often be successfully used, unless
the population is extremely non-normal [21, p. 203].

C. Future conformance monitoring

Future conformance monitoring, taking uncertainties into
account, is based on the statistical confirmation that the along-
track and cross-track contract future (at time ¢ + h) deviations
shall be smaller than the specified contract margins §;[t + h]
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(> 0), with ¢ a for the along-track and ¢ = c¢ for the
cross-track deviations, in the corresponding direction. This is
properly accomplished through a formal statistical hypothesis
testing problem of the form:

H,: |yt +h]|| <6&[t+h]
H: otherwise

(conformance)
(non-conformance)

3)

As the contract deviations y;[t 4+ h] are not available, their
corresponding h-step-ahead predicted values y; [t+h|t] are em-
ployed instead, with g;[t + h[t] ~ N (y;[t +h], o7 [t + h]) [22,
pp. 131-135]. The variance ai [t 4+ h] is generally unknown,
but may be estimated (see Equation 15). Assuming negligible
variability of the estimated variance 7, [t 4 h|t] this leads
to the following decision making mechanism (conservative
decision with maximum Type I error probability «, that is
probability of accepting the non-conformance hypothesis when
the conformance hypothesis is actually true). Defining:

_ Gt + hlt] = 6t + B)

Z = 4
A Gorlt = I @
ilt + hlt] + &t +h
g Bt HI + 8t 1] s
EAE
decision making is based on:
Za < Zi—oq (it +h|t] >0) = H, is accepted

Zp > Zo (Yi[t + h|t] <0) = H, is accepted  (6)

Else = H; is accepted

with Z;_, designating the standard normal distribution’s «
critical point.

The conditional probability density function of the h-step-
ahead deviation y[t+h] ~ N (g[t+h|t], o3[t +-h|t]) is depicted
in Figure 4, with 0t + h] the specified contract margin. The
estimated probability of non-conformance P(NC) is equal to
the sum of probabilities indicated by the two shaded areas in
Figure 4.

IV. ADAPTIVE TIME SERIES MODELING

The time-varying nature of the deviation signal characteris-
tics necessitates the use of an appropriate integrated adaptive
model structure. The model parameters should continuously
adapt to the underlying dynamics, and compensate for non-
stationarity. In view of the above, an adaptive scheme that
is based on the Recursive Integrated AutoRegressive (RIAR)
modeling of the contract deviations is postulated. The adapt-
ability of the parameters is achieved via the time-dependent
recursive model structure. The homogeneous non-stationarity

Schematic representation of the adaptive time series probabilistic framework for present and future conformance monitoring.

is compensated by the integrated part, which corresponds to
an initial differencing of the signal [22].
An RIAR model is of the following form:

(1= B)" - A(B,1) - y[t] = elt], elt] ~ N(0,07[1])

A(B7t) =1 +a1[t] -B+ ag[t] . 82 + ... +ana[t} . gne (7

with y[t] being the along-track or cross-track deviation sig-
nal modeled, and e[t] an (unobservable) uncorrelated (white)
innovations sequence with zero mean and variance o2[t]. B
designates the backshift operator, defined such that B° - yt]
y[t — i, a;[t] the i-th AR parameter at time t, and na
the AutoRegressive (AR) order (assumed to be invariant).
A(B,t) represents the AR polynomial and N(-,-) stands for
Normally Independently Distributed with the indicated mean
and variance. The (1 — B)d term corresponds to the integrated
part (d represents the integration order) that accounts for the
homogeneous non-stationarity. This model is designated as
RIAR(na,d).

The RIAR model structure (that is the orders na and d) may
be predetermined based on historical data for various aircraft
types. This is accomplished via a modeling strategy consisting
of the successive fitting of models to aircraft-specific historical
flight data until a candidate model structure is selected.

The estimation of the model parameter vector 6|[t]
[a1[t] az[t] ana[t]]T is based on minimization of the
weighted least squares criterion [23, pp. 363-368], [24, p.
324]:

~

t
0[t] = arg minz M7 e2[r,07 Y, with

H[t] T=1

®)

In

—3[t+h] +6[t + h]

0 gt + hlt
conformance

non-conformance

Fig. 4. Conditional probability density function of the h-step-ahead deviation
y[t + h] with mean value y[t + h|t] and variance O’%[t + h|t]. The future
probability of non-conformance P(NC) is the sum of probabilities indicated
by the shaded area. §[t + h] designates the specified contract margin.
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elt, 0" = eftlt—1] = A(B,t)-ylt] = g[t]*Zavz[t]'g[t*ﬂ
= ©)

designating the model’s one-step-ahead prediction error (resid-
ual) for which the prediction is computed using the model
parameters at time ¢ — 1. Note that the hat designates esti-
mator/estimate, arg min the minimizing argument, and y[t] =

(1- B)d -y[t] is the differenced signal. Bold face upper/lower
case symbols designate matrix/column vector quantities, re-
spectively.

The term \'~7 is a weighting function that, for A € (0, 1)
(A is referred to as the forgetting factor), assigns more weight
to more recent deviations. A decreasing value of A results
in an increasing adaptability of the estimator (its ability to
track the evolution in the dynamics). Yet, at the same time,
estimation accuracy decreases, as the estimator covariance
increases [23, pp. 381-382]. Therefore, the selection of A is
crucial, as it represents the basic trade-off between tracking
ability in the dynamics and achievable parameter accuracy.
The minimization of (8) leads to the Recursive Least Squares
(RLS) algorithm (Matlab function rarx.m) [23, pp. 363-369]:

O[t] = B[t — 1) + k[t] - e[|t — 1] (10)
eltlt — 1) = y[t] — gltlt — 1] = ylt] — @7 [] - Bt — 1] (1)
Klf] = Plt —1]- ¢[t] (12)
A+ [t]- Plt—1]- ¢[1]
P[ﬂl(P[tuP[tu ol ¢Tm'P[t11>
A A+o"[t]- Plt—1]- ¢[1]

(13)
with y[t|t — 1] indicating one-step-ahead prediction of the
signal at time ¢ made at time ¢ — 1 and the term e[t[t — 1] =

elt, B[t — 1]] is the corresponding prediction error. kt] stands
for the adaptation gain and P[t] for the model parameter co-
variance matrix. @[t] = [Ly[t— 1]yt —2] ... y[t — na]]T
is the regression vector. The time-varying innovations variance
o2[t] may be estimated via a window of length m that slides
over the prediction error sequence, that is:

t
1
==Y tt—1.
m

t—m

At each time instant ¢ the estimated RIAR(na,d) model
parameter vector 0[t] is employed for the estimation of the
h-step-ahead prediction y[t + h|t] of the contract deviations
signal, with g[t + hlt] ~ N(y[t + h],05[t + h]) [22, pp.
131-135]. Once the predicted value of the signal y[t + hlt]
is available, the prediction error variance is:

ZG2 2[1]

where e[t + h|t]] is the prediction error sequence, o2[t] is the
residual variance estimated as in (14), and G,[t] the time-
varying Green’s function coefficients [25, pp. 314-325]:

G(B,t) = Go[t]+G1[t]- B+Ga[t]- B>+

(14)

oo [t + hlt] = Varle[t + ht]] (15)

.=1/A(B,t) (16)

TABLE I
SIMULATION DETAILS

Aircraft type Boeing 737-500 (JSBSim simulator)
Flight duration | 7999 s
Cruise speed 0.74 Mach
Turbulence high
TABLE II
THE 4D CONTRACT
Number of WPs 23
WPs altitude FL300
WPs distance 349.2 s (40 nmi)
Heading hold 36.5°

Along-track margin
Cross-track margin

0q = 25 s (early/late margins)
0c = 1.49 nmi (left/right margins)

where (1 — B) - A(B,t) :== A(B, ). 17)

It is important to mention that due to the time-varying
model parameters, the Green’s function coefficients are cal-
culated considering that the backshift operator obeys a non-
commutative (“skew”) multiplication algebra (“o), defined
such that Bio B/ = Biti, Bioy|t] = y[t—i|-B’. For details the
reader is referred to [26]. Using the above skew multiplication
operation:

Gy [t] = 1, Gy [t] = a1 [t] . Go[ﬂ

: (18)
Gilt] = at—(G -] -Gj-alt]+ ...
+ &na[t - (] - na)] : Gj—nam-

The interval predictions of y[t 4+ k] made at time ¢ are then
(at the « risk level):

Jlt + hlt] £ Z1_s - G,[t + hlt] (19)

with Z;_ ¢ designating the normal distribution’s 1 — & critical
point.

V. SIMULATION RESULTS & ASSESSMENT

An initial assessment of the postulated framework is based
on two simulation scenarios for a Boeing 737 (B737) aircraft
flying in the cruise regime. The simulations are conducted
using the JSBSim flight simulator, which is an open source
non-linear flight dynamics environment [27]. The simulation
details and the 4D contract are presented in Tables I and II,
respectively. The obtained results are compared with those
based on a benchmark nominal probabilistic trajectory predic-
tion method [19], [28]. In this method the predicted aircraft
position is calculated by propagating the current aircraft state
vector into the future along a single trajectory and inserting
pre-specified confidence intervals based on historical data and
Monte Carlo simulations [19], [28].

In the context of the postulated framework the selection of
both the along-track and cross-track deviation RIAR model
structures is based on the Error Sum of Squares/Signal Sum
of Squares (ESS/SSS) criterion that describes the predictive
ability of the model for a prediction horizon of h = 36
(36-step-ahead or 180 s). This is selected as an appropriate
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TABLE III
ADAPTIVE MODEL ESTIMATION DETAILS

Prediction horizon h =1 (present) h = 36 (future)
Along-track model RIAR(15, 1) A =0.999 A =0.999
Cross-track model RIAR(30, 1) A =0.999 A =0.999
Sampling period Ts =55

Residual variance estimation Moving window length m € [2, 60]
RLS estimation method [23, pp. 363-369].

Cross—track ESS/SSS criterion

—— RIARQ3,1)
st —e— RIARQ4,1) |
RIAR(25,1)
1ot —— RIARQ6.1) |4

RIAR(27,1)
——— RIAR(28,1)
——+—— RIAR(29,1)
—o— RIARGO,D) | |

120

105 F

100 -

95¢-

ESS/SSS (%)

90 £

85,

80

75 . . . .
0.99 0.992 0.994 0.996 0.998 1
Forgetting factor A

Fig. 5. Cross-track deviation RIAR modeling: model structure selection
criterion for a prediction horizon of 180 s (h = 36).

mid-term horizon, providing good prediction accuracy and
sufficient reaction time (in case the latter is needed). It may be
modified, bearing in mind that (for all prediction algorithms)
accuracy improves for shorter horizons, but deteriorates for
longer ones [22]. The ESS/SSS criterion (for h = 1 the ESS
coincides with the Residual Sum of Squares—RSS) is employed
in an off-line procedure using historical flight data. AR orders
na up to 30 and forgetting factor values A € [0.93,0.999]
(incremental step of 0.001) are presently considered. Figure
5 depicts the ESS/SSS criterion for various combinations of
A and na, indicating the model which provides the best fit
(achieves the minimum ESS/SSS value). The selected RIAR
models and estimation details are presented in Table III.

A. Simulation scenario A

The scenario involves a cruise flight complying with its
contract when an fault in the heading controller occurs at
tq = 5945 s causing a constant heading bias. This results
in non-conformance at time ¢, = 6166 s when the cross-track
margin d. = 1.49 nmi is exceeded.

1) Adaptive time series modeling: For this simulation sce-
nario, RIAR(15,1) and RIAR(30,1) models have been used
for modeling the along-track and cross-track deviation signals,
respectively (Table III). During the simulations the structural
form (model order and forgetting factor) of these models
is kept constant, while their parameters are being estimated
recursively throughout the flight.

2) Present conformance monitoring: Figure 6 presents the
along-track and cross-track deviations. The vertical dashed
lines indicate the time instants ¢4 and ¢, in which the heading
deviation is initiated and the contract is violated, respectively.
It is evident that the cross-track contract margin is exceeded
at time ¢ = 6166 s. Notice that the along-track deviation stays
less than 4 s, which is significantly lower than the horizontal

Along—track deviation
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Fig. 6.  Scenario A: present conformance monitoring. Aircraft contract
deviations evolution: (a) along-track deviation in seconds and (b) cross-track
deviation in nautical miles, depicted in blue. The horizontal red dashed line
designates the cross-track contract margin.
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Fig. 7. Scenario A: statistical quality of conformance monitoring and event
detection via the (a) S-chart and (b) Z-chart (m = 8).

margin, throughout the cruise duration. The oscillatory behav-
ior of the cross-track deviation signal is due to the heading
controller dynamics that, evidently, have a significant effect
on the contract deviation dynamics.

3) Quality of conformance monitoring: Figure 7 demon-
strates the ability of the method to indicate that the quality
of conformance has been degraded once the underlying event
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occurs (fault in the heading controller). The results are ex-
cellent, as the method is able to provide an immediate alert
of the cross-track induced conformance quality degradation
and event occurrence. The method is able to provide an alert
within the first 8 seconds (depends on moving window length
m) from the occurrence of the event.

4) Future conformance monitoring: The predicted along-
track and cross-track deviations, obtained by the benchmark
nominal probabilistic method for a prediction horizon of 180
s (h = 36), are depicted in Figure 8. Notice that for the
along-track case the predicted contract deviations cannot track
accurately the actual contract deviation signal, as the actual
heading of the aircraft is used into the computations. Figure 9
presents the adaptive time series RIAR(15, 1) and RTIAR(30, 1)
model based (see Table III) predicted contract deviations for
a prediction horizon of 180 s. By comparing the resulting
predictions obtained by both the methods (Figures 8-9), it
is evident that the prediction errors obtained by the adaptive
RIAR model based method are significantly lower than those
of the nominal probabilistic method.

Finally, the probabilities of non-conformance for a predic-
tion horizon of 180 s are, for both methods, presented in Figure
10. The nominal probabilistic method achieves a cross-track
probability of non-conformance P(NC') = 0.95 at flight time
to.05 = 6404 s. The same probability is achieved by the postu-
lated adaptive time series based method at time £y 95 = 6278
s, that is 126 seconds earlier than the nominal probabilistic
method. Hence, the superiority of the postulated approach over
the benchmark state-of-the-art method is evident.
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Fig. 9. Scenario A: adaptive RIAR model based predictions (prediction
horizon of 180 s): actual versus predicted contract deviations for the (a) along-
track and (b) cross-track deviations. Contract margins are depicted in dashed
red lines.
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Fig. 10.  Scenario A: Probability of non-conformance for the cross-track
contract deviations versus flight time for the nominal probabilistic and adaptive
statistical time series methods (prediction horizon of 180 s).

B. Simulation scenario B

This scenario involves a B737 aircraft during cruise flight
complying with its contract when a linearly increasing heading
deviation and an auto-throttle fault affecting the aircraft ve-
locity occur at t; = 5945 s. This results in non-conformance,
as the along-track and cross-track margins are exceeded at
times 6230 and 6160 seconds, respectively. The contract and
simulation details are presented in Tables II and I, respectively.

1) Adaptive time series modeling: Similarly to Scenario A,
RIAR(15,1) and RIAR(30, 1) models have been used for the
along-track and cross-track deviation signals, respectively.

2) Present conformance monitoring: Figure 11 shows the
along-track and cross-track deviations. It is evident that both
the along-track and cross-track contract margins are exceeded,



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 0, NO. 0, DECEMBER 2015

Along—track deviation

1
160+ ta; ;to
140 1
2
120} i
« 1 1
= 100} i
S i
S g O 11
= [N
L 60F -1
[a) 3500 4000 [
40+ 1
F === === == =X mmmmm i m = -
0 e (@)
1000 2000 3000 4000 5000 6000 7000
Time (s)
Cross—track deviation
2 . - - . .
N (b)
0 i d
o N T [ ——
= ]
g -4
= "
= o1 1
= -6 '
2 005 "
E -8r [
> 0
59 L 1
A ~OF oes "
-2t og Il
1000 1500 2000 2500 3000 3500 I I
_14f ta''t,
[

1000 2000 3000 4000 5000 6000 7000
Time (s)

Fig. 11. Scenario B: present conformance monitoring. Contract deviations for
heading and velocity faults initiated at 1950 s: (a) along-track deviation and
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with the latter occurring first.

3) Quality of conformance monitoring: Figure 12 demon-
strates the ability of the method to indicate that the QoC
has been degraded once the fault occurs for the case of the
along-track deviation. The results are excellent, as the method
is able to provide an immediate alert of the conformance
quality degradation. The method provides an alert within the
first 20 seconds from the initiation of the fault. Also, notice
that the monitored statistical quantity quickly returns inside
the statistical limits, as the adaptive model compensates for
the induced faults and corresponding deviations, and thus the
residual standard deviation decreases. The S and Z control
charts in the case of cross-track deviation present analogous
results and are omitted for the sake of brevity.

4) Future conformance monitoring: The predicted along-
track and cross-track deviations, and their +3 standard devia-
tion (99%) confidence intervals, obtained by the nominal prob-
abilistic method for a prediction horizon of 180 s (h = 36), are
depicted in Figure 13. Figure 14 presents the corresponding
adaptive time series based (see Table III) predicted deviations
for an horizon of 180 s and their +3 standard deviation
confidence intervals. It is evident that the adaptive model
provides significantly narrower confidence intervals for the
predicted deviations in both cases (compare with Figure 13).

By comparing the resulting prediction errors obtained by
both methods (Figures 13—14), it is evident that the prediction
errors obtained by the adaptive RIAR model based method
are significantly lower than the corresponding of the nominal
probabilistic method. The confidence intervals obtained by the
nominal probabilistic method for the along-track are £5 s for
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Fig. 12. Scenario B: along-track statistical quality of conformance monitoring
(QoC) and event detection via the (a) S-chart and (b) Z-chart (m = 20).

—O— Contract deviation t t
X Predicted contract deviation d v

150 — — (+/-) 3 standard deviation
=== == Contract margin

100

50

Deviation (s)

: ! RPN | (a
3000 4000 5000 6000 7000 8000
Time (s)

0 1000 2000

Cross-track predicted deviation

(b)
E
£
c
L2
=
8
> 2
8 10 1000 1100 1200 1300 1400 1500 ||
—©— Contract deviation | | \
-12 x Predicted contract deviation -
— — (+/-) 3 standard deviation 1
-14 = == Contract margin td i i t’b
0 1000 2000 3000 4000 5000 6000 7000 8000
Time (s)

Fig. 13. Scenario B: nominal probabilistic method based deviation predic-
tions (prediction horizon of 180 s): actual versus predicted deviations along
with the corresponding +3 standard deviation confidence intervals (dashed
red lines) for the (a) along-track and (b) cross-track deviations. The vertical
dashed lines indicate the time instants ¢4 and ¢, in which the heading deviation
is initiated and the contract is violated, respectively.

a prediction horizon of 180 s. On the other hand, the adaptive
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time series model gives significantly narrower confidence
intervals at the level of +0.026 s before the deviation occurs.
The confidence intervals for the cross-track predicted deviation
are £0.534 nmi while the corresponding obtained by the
adaptive RIAR model are at the level of £0.003 nmi.

Finally, the probability of non-conformance for a prediction
horizon of 180 s is for both methods presented in Figure
15. The nominal probabilistic method achieves an along-track
probability of non-conformance P(NC) = 0.95 at flight
time tp.95 = 6345 s. The same probability is achieved by
the adaptive time series based method at time ?pg95 = 6126
s, which is 219 seconds earlier. Hence, the adaptive model
based method provides a warning significantly earlier before
violation occurs. On the other hand, the nominal probabilistic
method yields a probability of cross-track non-conformance
P(NC) = 0.95 at time tg95 = 6272 s. This probability is
achieved by the adaptive time series based method at time
to.95 = 6154 s, which is 118 seconds earlier. It is evident from
Figure 15 that the adaptive method is capable of providing
a significantly earlier violation warning than the nominal
probabilistic method, especially for the along-track case where
it issues an alert almost 4 minutes earlier.

VI. CONCLUDING REMARKS

An adaptive time series probabilistic framework for 4D con-
formance monitoring was postulated. The framework is based
on adaptive Recursive Integrated AutoRegressive (RIAR) time

Along—track non—conformance probability P(NC)
1 . . v

.............. + ==l M
1
08l Nominal Probabilistic i B
' = RIAR-based N
P(NC)=0.5 !
= = = P(NC)=0.95 !
G 0.6 ; 4
Z |
< !
A 04 ! 1
1
!
0.2 i 1
tq!
o 1
5000 5500 6000 6500
Time (s)
Cross—track non—conformance probability P(NC)
1 . .
.............. R -4
0.8} Nominal Probabilistic B
. RIAR-based
P(NC) = 0.5
- = = P(NC)=0.95
o6l P(NC) = 0.95
Q
Z
<
&

0.2}

6500

Time (s)

Fig. 15. Scenario B: Probability of non-conformance for the along-track and
cross-track contract deviations versus flight time for the nominal probabilistic
and adaptive statistical time series methods (prediction horizon of 180 s).

series modeling, model based prediction, and statistical deci-
sion making. The RIAR models account for non-stationarity
while effectively exploiting the underlying dynamics. Based on
this framework, methods for present conformance monitoring,
along with quality of conformance monitoring, as well as
future conformance monitoring were developed. Beyond its
inherent accounting of the underlying dynamics and uncertain-
ties, the postulated framework offers a number of advantages,
including conceptual and computational simplicity (no use
of kinematic and related equations), prediction of only the
aircraft deviation signal (instead of the aircraft trajectory),
and no need for incorporating aircraft intent information in
the prediction function. The statistical quality of conformance
unit also serves as a generic health monitoring and abnormal
event detection function.

The performance of the framework was assessed via two
simulation scenarios. In present conformance monitoring, con-
formance quality was shown to be effective and an alarm was
issued immediately following the emergence of an abnormal
event. In future conformance monitoring, the proposed method
was shown to provide a non-conformance alarm significantly
earlier than a nominal probabilistic method. Current research
focuses on various extensions and the complete validation and
assessment of the adaptive time series probabilistic framework
via additional flight scenarios and Monte Carlo simulations.
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