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A vibration model residual-based
sequential probability ratio test
framework for structural health
monitoring
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Abstract
The goal of this study is the introduction and experimental assessment of a sequential probability ratio test framework
for vibration-based structural health monitoring. This framework is based on a combination of binary and multihypoth-
esis versions of the statistically optimal sequential probability ratio test and employs the residual sequences obtained
through a single stochastic time series model of the healthy structure. The full list of properties and capabilities of the
sequential probability ratio test is for the first time presented and explored in the context of vibration-based damage
diagnosis. The approach postulated in this framework is shown to achieve early and robust damage detection, identifica-
tion (classification), and quantification based on predetermined sampling plans, which are both analytically and experi-
mentally compared and assessed. The framework’s performance is determined a priori via the use of the analytical
expressions of the operating characteristic and average sample number functions in combination with baseline data
records. It is shown to require, on average, a minimal number of signal samples in order to reach a decision compared
to fixed sample size most powerful tests. The effectiveness of the proposed approach is validated and experimentally
assessed via its application to a lightweight aluminum truss structure.

Keywords
Structural health monitoring, damage detection, damage identification, statistical time series methods, sequential meth-
ods, vibration-based methods

Introduction

Vibration-based damage detection, identification, and
quantification, also collectively referred to as damage
diagnosis, are of paramount importance for reasons
associated with proper operation, reduced maintenance
costs, increased safety, and improved dynamic perfor-
mance.1–3 The process of implementing a damage diag-
nosis and—in certain cases—prognosis strategy is
referred to as structural health monitoring (SHM). It
involves the online (sometimes periodical) monitoring
of a structure, the extraction of damage sensitive quan-
tities from collected signals (measurements), and the
statistical analysis of these quantities in order to deter-
mine the current health state of the structure and esti-
mate its remaining useful service life.

The need for global damage diagnosis methods that
can be applied to ‘‘real’’ structures has led to the devel-
opment of methods that examine changes in the

structural vibration characteristics. Vibration-based
SHM methods are among the most accurate and effec-
tive.2–7 Statistical time series SHM methods form an
important and rapidly evolving class, within the
broader vibration-based family of methods. Their three
main elements are as follows: (1) random excitation
and/or vibration response signals (time series), (2) sta-
tistical model building, and (3) statistical decision
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making for inferring the health state of a structure.
They offer a number of potential advantages, including
no requirement for physics-based or finite element (FE)
models as they are data-based (inverse type) methods,
no requirement for complete modal models, effective
treatment of uncertainties, and statistical decision mak-
ing with specified performance characteristics.5,6,8–10

Statistical time series methods for SHM are based
on random (stochastic) vibration signals under healthy
and potentially damage structural states, identification
of suitable time series models describing the dynamics
in each state, and extraction of a statistical characteris-
tic quantity characterizing the structural state in each
case (baseline phase). Damage diagnosis is accom-
plished in the inspection phase via statistical decision
making consisting of comparing, in a statistical sense,
the current characteristic quantity with that of each
potential state as determined in the baseline phase.
Non-parametric time series methods are those based on
the corresponding non-parametric time series represen-
tations, such as spectral estimates (power spectral den-
sity (PSD), frequency response function (FRF)).9,11–14

On the other hand, parametric time series methods are
those based on the corresponding parametric time
series representations, such as the autoregressive mov-
ing average (ARMA) models15,16, and their principles
have been used in a number of studies.8,9,17–22 For an
extended overview of the main statistical time series
methods for SHM, the interested reader is referred to
Fassois and Sakellariou,5,6 while experimental assess-
ments of various scalar and vector methods are pro-
vided in Kopsaftopoulos and Fassois.9,23

The vast majority of statistical time series SHM
methods is based on fixed sample size (FSS) hypothesis
testing procedures which are used in the statistical deci-
sion making. FSS hypothesis testing employs a constant
amount of observations, which is determined a priori of
the experimental data acquisition. On the other hand,
sequential methods have the feature that the number of
observations required by the procedure is not deter-
mined in advance of the experiment. The decision to
terminate the experiment depends, at each stage, on the
results of the observations previously made, thus the
number of observations required by the test is not pre-
determined, but a random variable. If samples can be
taken one at a time and the information from them
accumulated, one would expect to be in a better posi-
tion to make decisions than if no attempts were made
to look at the data until a sample of fixed size had been
taken. A merit of the sequential method, as applied to
testing statistical hypotheses, is that test procedures can
be constructed which require, on average, a substan-
tially smaller number of observations than equally reli-
able test procedures based on a predetermined (fixed)
number of observations.24–26 Moreover, a potential

advantage of a damage diagnosis method based on
sequential procedures is its straightforward extension
for online implementation, which may be of great inter-
est with respect to the current SHM application
requirements.

In 1947, Wald24 introduced the sequential probabil-
ity ratio test (SPRT), which is a statistically optimal
test in the sense that it minimizes the expected sample
size (stopping time of the test) both under the null and
under the alternative hypotheses among all tests with
the same or smaller error probabilities and with finite
expected sample sizes under the two hypotheses.25–27

Although the SPRT was introduced over half a century
ago, its engineering applications have been limited to
the surveillance of nuclear power plant compo-
nents,28,29 while some numerical investigations of its
performance with respect to anomaly detection in
nuclear reactor noise signals have been presented in
Schoonewelle et al.30,31 and Glöckler.32 In the context
of vibration-based damage diagnosis and SHM,
preliminary—with respect to the use of an SPRT
scheme—studies include Sohn et al. and Oh and
Sohn,18,33 where the binary form of the SPRT based on
autoregressive (AR)–autoregressive with exogenous
excitation (ARX) model residuals has been applied for
damage detection in a laboratory three-story building
model and an 8-degree-of-freedom mass–spring system,
respectively.

Although often more than two hypotheses are con-
sidered (for instance, corresponding to three different
types of structural damage), thus defining a multihy-
pothesis testing problem, most current SHM methods
treat it via pairwise binary hypothesis tests.9 This is,
obviously, an approximate procedure leading to statis-
tically suboptimal solutions and ineffective use of the
available data records. Proper sequential multihypoth-
esis testing is treated only in a very limited number of
studies in some other technical areas (such as target
detection in multiple resolution radar34 and infrared
systems,35 and signal acquisition in direct sequence
code-division multiple access systems36).

The goal of this study is the introduction and experi-
mental assessment of an SPRT time series–based SHM
framework capable of achieving effective, early, and
robust damage detection, identification (classification),
and quantification under uncertainties. In the context
of this work, ‘‘early’’ damage detection refers to the
ability of the approach to detect damage shortly after
its occurrence—in the current sequential framework,
this is quantified as the number of (sequentially pro-
cessed) data samples needed before a decision is made.
‘‘Robust’’ is used to imply the approach ability to oper-
ate under (the practically inevitable) uncertainties, as
well as its ability to operate properly with sensors that
are either ‘‘local’’ (in the vicinity of) or ‘‘remote’’ (not

360 Structural Health Monitoring 14(4)

 at Stanford University Libraries on June 16, 2015shm.sagepub.comDownloaded from 

http://shm.sagepub.com/


in the vicinity of) to damage. The term ‘‘effective’’
mainly refers to the achieved performance of the
approach in terms of correct damage detections and
classifications. The postulated framework employs a
combination of binary and multihypothesis versions of
the statistically optimal SPRT. Its basis consists of the
residual sequences obtained through a single stochastic
time series model of the healthy structural dynamics.
Moreover, a complete account of properties and cap-
abilities of the SPRT are—for the first time—presented
and explored in the context of vibration-based SHM.
The performance of the developed approach is deter-
mined a priori via the analytical expressions for the
operating characteristic (OC) and average sample num-
ber (ASN) functions in combination with baseline data
records obtained under healthy and various damage
structural states.

The effectiveness of the proposed framework is
experimentally assessed via its application to damage
diagnosis on a lightweight aluminum truss structure.
The results are presented for three distinct vibration
response measurement positions, with a single measure-
ment used at a time, and confirm its ability to operate
based even on a single pair of measured excitation–
response signals. The damage cases considered corre-
spond to the loosening of various bolts connecting cer-
tain of the truss elements. Random force excitation is
provided via an electromechanical shaker, while the
vibration responses are measured at various positions
via dynamic strain gauges. The main features and
operational characteristics of the postulated framework
are discussed along with practical issues, while its effec-
tiveness is demonstrated via various test cases corre-
sponding to different experiments, damage types, and
vibration measurement positions.

The main issues addressed in this article are summar-
ized as follows:

(a) Use—for the first time in the vibration-based
SHM context—of a combination of the binary
and multihypothesis SPRT in order to propose a
complete SHM framework able to achieve effec-
tive, early, and robust damage detection, identifi-
cation, and quantification under uncertainties
using a single stochastic time series model.

(b) The framework’s performance is determined a
priori via the use of the OC and ASN functions,
selected type I (false alarm) and II (missed dam-
age) error probabilities, and available baseline
data records under various structural states.

(c) Assessment of the framework in terms of its dam-
age detection and identification capability under
experimental uncertainties and various damage
scenarios; multiple vibration measurement loca-
tions, which are either ‘‘local’’ or ‘‘remote’’ with

respect to damage location, are employed; large
number of experiments under each scenario (1200
data records for the healthy structure and 900 data
records for each considered damage out of a total
of five types).

The rest of this article is organized as follows: the
SPRT framework for SHM is presented in section ‘‘An
SPRT framework for SHM,’’ while the experimental
setup is presented in section ‘‘The experimental setup.’’
The experimental application and assessment is pre-
sented in section ‘‘Damage detection, identification and
quantification results,’’ while the concluding remarks are
finally summarized in section ‘‘Concluding remarks.’’

An SPRT framework for SHM

Like all statistical time series SHM methods,5,6 the
SPRT time series framework consists of two phases: (a)
an initial baseline phase, which includes modeling of the
healthy structure (modeling of the structure under pre-
determined damage types may sometimes be necessary;
see section ‘‘Damage identification and quantification’’
for details) via a single stochastic time series model,
and (b) the inspection phase, which is performed during
the structure’s service cycle or continuously (online),
and includes the functions of damage detection, identi-
fication, and quantification.

The workframe

Let So designate the structure under consideration in its
nominal (healthy) state, SA, SB, ., the structure under
damage of type A, B, and so on, and Su the structure in
an unknown (to be determined) state. Each damage
type may, generally, include a continuum of damages
characterized by common nature or location, for
instance, damage of various magnitudes in a specific
structural element. Yet this is considered in this study,
thus the broader damage identification problem is pre-
sently treated as a (simpler) classification problem.

The postulated SPRT framework is based on discre-
tized, scalar or vector, excitation x[t], and/or response
y[t] (for t = 1, 2, .) random vibration data records
(note that t refers to discrete time, with the correspond-
ing actual time being (t 2 1)Ts, where Ts stands for the
sampling period). Like before, a subscript (o, A, B, .,
u) is used for designating the corresponding structural
state that provided the signals. Note that all collected
signals need to be suitably pre-processed.5,6,16 This may
include low or bandpass filtering within the frequency
range of interest, signal subsampling (in case the origi-
nally used sampling frequency is too high), sample
mean subtraction, as well as proper scaling (in the linear
dynamics case). The latter is not only used for

Kopsaftopoulos and Fassois 361

 at Stanford University Libraries on June 16, 2015shm.sagepub.comDownloaded from 

http://shm.sagepub.com/


numerical reasons but also for counteracting—to the
extent possible—different operating (including excita-
tion levels) and/or environmental conditions.

Damage detection, identification, and quantification
are based on the residual sequence obtained by driving
the current (unknown) signal(s) xu[t], yu[t] through a
single, predetermined in the baseline phase, model Mo

corresponding to the healthy structural state. Let the
residual sequence obtained by driving the current sig-
nals xu[t], yu[t] through the healthy model Mo be desig-
nated as e[t] and characterized by variance s2. The
general idea is that the residual sequence obtained by a
model that truly reflects the actual (current) structural
state will be characterized by a minimal standard
deviation.

Figure 1 presents a schematic representation of the
SPRT framework.

Baseline phase

Baseline modeling of the structural dynamics. Data records
from the healthy structure are employed for the identi-
fication and validation of appropriate parametric time
series models, which may be scalar (univariate) models
in the case of a single vibration response measurement
position or vector (multivariate) models (or subopti-
mally an array of scalar models) in the case of several
vibration response measurement positions. In the
response-only case, AR or ARMA models may be
employed,37 which may be alternatively set into state-
space form.15,37 In the excitation–response case, ARX
or autoregressive moving average with exogenous exci-
tation (ARMAX) models may be used15,16 or their cor-
responding state-space representations.15

In this study, a single measurement position, and a
corresponding scalar (single excitation and single
response) ARX model, is used at a time. An ARX(na,
nb) model is of the form (lower case/capital bold
face symbols designate vector/matrix quantities,
respectively)15,16

y½t"+
Xna

i = 1

ai # y½t $ i"=
Xnb

i = 0

bi # x½t $ i"+ e½t"

e½t";iid N (0,s2)

ð1Þ

with t designating the discrete time; x[t] and y[t] are the
measured excitation and vibration response signals,
respectively; na and nb are the AR and exogenous (X)
orders, respectively; and e[t] is the stochastic model
residual (one-step-ahead prediction error (PE))
sequence, that is a white (serially uncorrelated),
Gaussian, zero mean with variance s2 sequence, uncor-
related with the excitation x[t]. The symbol N ( # , # )
designates Gaussian distribution with the indicated
mean and variance, and iid stands for identically inde-
pendently distributed.

The model is parameterized in terms of the para-
meter vector u = ½ai

..

.
bi

..

.
s2"T to be estimated from the

measured signals.15,16 Model estimation may be
achieved based on minimization of the ordinary least
squares (OLS) or the weighted least squares (WLS) cri-
teria.15,16 The modeling procedure involves the succes-
sive fitting of ARX(na, nb) models for increasing
orders na and nb, until an adequate model is selected.16

Model order selection, which is crucial for successful
identification, may be based on the Bayesian informa-
tion criterion (BIC), which is a statistical criterion that
penalizes model complexity (order) as a counteraction
to a decreasing quality criterion15,16

BIC= ln ŝ2 + (na + nb)3
lnL

L
ð2Þ

where ŝ2 stands for the estimate of the residual signal
variance and L the signal length (in samples). Other
useful tools in this context include monitoring the resi-
dual sum of squares/signal sum of squares (RSS/SSS),
the residual autocorrelation function,15 and also ‘‘stabi-
lization diagrams’’ which depict the estimated modal
parameters (usually frequencies) as a function of
increasing model order.16 Final model validation is
based on formal verification of the residual sequence
uncorrelatedness (whiteness) hypothesis.15

Inspection phase

Let xu[t], yu[t] (t = 1, 2, .) represent the current exci-
tation and response signals, respectively, obtained from
the structure in an unknown (to be classified) state.
Damage detection, identification, and quantification
are based on the single, predetermined in the baseline

Figure 1. Schematic representation of the SPRT framework.
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phase, time series model of the healthy structure (Mo).
The current excitation and response signals are driven
through this model and estimates of the current residual
series e[t] are obtained. Subsequently, these estimates
are used for tackling the damage detection, identifica-
tion, and quantification tasks.

Damage detection. Damage detection is based on the
binary SPRT introduced in Wald,24 which is used in
order to detect a change in the standard deviation s of
the model residual sequence obtained by driving the
current (unknown) excitation and response signals
through the baseline healthy model Mo. By using the
SPRT, it is possible to specify two values so and s1 for
the residual standard deviation, such as the classifica-
tion of the structure as healthy is considered whenever
s < so, while the classification of the structure as dam-
aged is considered whenever s ˜ s1. The zone between
so and s1 constitutes an uncertainty zone, thus for s
lying within this zone the decision is postponed and
data collection continues.

The probability of classifying the structure as dam-
aged when it is actually healthy should not exceed a
preassigned value a whenever s < so (false alarm or
type I error probability), while the probability of classi-
fying the structure as healthy when it is actually dam-
aged should not exceed a preassigned value b whenever
s ˜ s1 (missed damage or type II error probability).
The values of so and s1 are user defined and express
the increase of the standard deviation ratio q = s1/so

for which the structure is considered to be in a damage
state. For example, a ratio of q = 1.1 means that the
structure is considered damaged whenever there is an
increase of 10% in the standard deviation s of the
current residual sequence compared to a threshold
value so.

Damage detection is based on the following hypoth-
esis testing problem implemented via the SPRT of
strength (a, b), with a, b designating the type I (false
alarm) and II (missed damage) error probabilities,
respectively:

Ho : s < so(null hypothesis$ healthy structure)

H1 : s˜s1(alternative hypothesis$ damaged structure)

ð3Þ

with so, s1 designating the user-defined values.
Under the null hypothesis, the residuals e[t] are iid

zero mean Gaussian with variance s2, hence

UnderHo : e½t";iid N (0,s2), t = 1, 2, . . . ð4Þ

and the probability density function of the residual
sequence e[t] is given by

f e½t"jsð Þ=
1

(2p)
t
2st

exp $ 1

2s2

Xt

l = 1

e2½t"

( )

: ð5Þ

The likelihood ratio is computed at each stage t of
the experiment as follows

L s1je½1", . . . , e½t"ð Þ
L soje½1", . . . , e½t"ð Þ

=

Qt

l = 1

f e½t"js1ð Þ

Qt

l = 1

f e½t"js0ð Þ
=

1

(2p)
t
2st

1

exp $ 1
2s2

1

Pt

l = 1

e2½t"
! "

1

(2p)
t
2st

o

exp $ 1
2s2

o

Pt

l = 1

e2½t"
! " :

Taking logarithms and dividing by (1=2s2
o)$

(1=2s2
1), the logarithm of the likelihood ratio is obtained

L½t"= t # logso

s1
+

s2
1 $ s2

o

2s2
os2

1

#
Xt

l = 1

e2½t": ð6Þ

The basis of the SPRT is the logarithm of the likeli-
hood ratio function with L[t] designating the decision
parameter—or equivalently, the test statistic—of the
method at sample t. Hence, the following test of
strength (a, b) may be constructed

L½t"< log B acceptHo(healthy structure)

L½t"˜ log A acceptH1(damaged structure)

log B\L½t"< log A no decision ismade(continue the test)

ð7Þ

with A = (1 2 b)/a and B = b/(1 2 a),24 and log A,
log B designating the upper and lower, respectively,
critical points (thresholds) of the test.

Following a decision at a stopping time N̂ , it is pos-
sible to continue the test by resetting L½N̂ + 1" to 0 and
continue the experiment by using additional residual
samples. Thus, by using finite vibration response data
records xu[t], yu[t] with t = 1, 2, ., K and the corre-
sponding residual sequences, the SPRT is capable of
making additional decisions (if this is deemed neces-
sary), as the test statistic L resets to 0 after a damage is
detected.

The OC function. For any value of the residual stan-
dard deviation s, the OC function L(s) denotes the
probability that the SPRT for damage detection will
terminate with the acceptance of the null hypothesis Ho

that the structure is in a healthy state. The OC function
is defined as24,38

L(s) =
1$b

a

# $h$1

1$b
a

# $h$ b
1$a

# $h
ð8Þ
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where h is the root of the equation

1ffiffiffiffiffiffi
2p
p

s

sh
o

sh
1

ð+ ‘

$‘

exp $ 1
2s2

1

e2½t"
n o

exp $ 1
2s2

o
e2½t"

n o

0

@

1

A
h

exp $ 1

2s2
e2½t"

! "
de = 1

ð9Þ

and

s =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
so

s1

' (2h

$1

h
s2

1

$ h
s2

o

vuuut : ð10Þ

Using equations (8) and (10), the OC function curve
may be plotted by computing the pair (s, L(s)) for a
sequence of values h, which has to be sufficiently large
in order to obtain enough OC function points.

Figure 2(a) presents the OC function for various
residual standard deviation ratios q = s1/so and con-
stant strength (a, b), while Figure 3(a) presents the OC
function for various strengths (a, b) and constant resi-
dual standard deviation ratio q = s1/so = 1.1. By cal-
culating the OC function for various candidate SPRT
sampling plans using various residual standard devia-
tion ratios q = s1/so (see Figure 2(a)) and strengths
(a, b) (see Figure 3(a)), the user is able to determine
the corresponding probabilities of acceptance of the
null hypothesis Ho (healthy structure) and thus com-
pare in a systematic way the various sampling plans.
Moreover, in the case that a number of baseline healthy
data records is available, the user may estimate the cor-
responding residual standard deviations and check the

probability that the candidate SPRT sampling plans
will determine that they indeed belong to the healthy
structural state. This way, using the available baseline
data records, the behavior of various SPRT sampling
plans may be investigated with respect to damage
detection robustness and potential false alarm rates,
and the sampling plan with the best performance may
be selected for final implementation.

The ASN function. The ASN function represents the
average number of inspection samples required by the
SPRT to reach a decision. As the number of observa-
tions required by a sequential test is not predetermined,
but a random variable, the ASN is an approximation of
the expected value Es{N} of the number of residual
samples required by a sampling plan of strength (a, b)
and residual standard deviations so, s1 in order to
reach a terminal decision.

The expected value of the ASN function may be
obtained as24

EsfNg’
L(s) log b

1$a + 1$ L(s)½ " log 1$b
a

Esfzg
ð11Þ

where

z =

1
s1
exp $ 1

2s2
1

e2½t"
n o

1
so
exp $ 1

2s2
o
e2½t"

n o = log
so

s1
+

1

2

1

s2
o

$ 1

s2
1

) *
e2½t": ð12Þ

Es{z} denotes the expected value of the likelihood
ratio when s is the standard deviation of the residual
sequence, hence
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Figure 2. (a) Operating characteristic (OC) and (b) average sample number (ASN) functions for various residual standard deviation
ratios q = s1/so and constant strength (a, b) = 0.01. The vertical colored dashed lines designate the s1 values for the
corresponding ratios q.
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Esfzg= log
so

s1
+

1

2

1

s2
o

$ 1

s2
1

) *
E e2½t"
+ ,

= log
so

s1
+

1

2

1

s2
o

$ 1

s2
1

) *
s2:

ð13Þ

From equations (8), (10), (11), and (13), the ASN func-
tion for various candidate SPRT sampling plans may
be calculated. This is of great importance in the design
of an SPRT sampling plan for damage detection, as by
pre-specifying the test strength (a, b) and the residual
standard deviation ratio q = s1/so for which the struc-
ture is considered to be in a damage state one may have
an approximation of the expected number of residual
samples that the SPRT needs in order to accept hypoth-
esis Ho or H1 and terminate. Hence, along with the OC
function, the ASN function constitutes an additional
analytical tool that may contribute to the optimal selec-
tion of an SPRT sampling plan. Figure 2(b) shows the
ASN function for various residual standard deviation
ratios q = s1/so and constant strength (a, b), while
Figure 3(b) depicts the ASN function for various
strengths (a, b) and constant residual standard devia-
tion ratio q = s1/so = 1.1.

The SPRT of strength (a, b) minimizes, under Ho

(healthy structure) and H1 (damaged structure), the
expected value Es{N} of the ASN among all tests,
FSS or sequential, for which the type I error (false
alarm) probability is equal or less than a and the type
II error (missed damage) probability is equal or less
than b27,38. Thus, in order to tackle damage detection
and infer the health state of a structure, based on the
adopted sampling plan of the SPRT, the above proce-
dure requires a minimum number of observations for
reaching a terminal decision.

The truncated SPRT. In the case that the expected
number of samples Es{N}, as approximated by the
ASN function, indicates that an increased number of
residual samples is required by the adopted SPRT sam-
pling plan with respect to the available or ‘‘desired’’
number of residual samples to be employed, then a
truncated version of the SPRT may be employed. The
truncated SPRT may also be employed in the case
where the SPRT stopping time N reaches a limit stop-
ping time K (length of the current residual sequence
e[t]) and still needs to continue sampling to reach a ter-
minal decision.

The following truncated SPRT of strength (a, b) is
constructed based on a user-defined stopping time K

L½K"< log
1

2
(A + B) acceptHo(healthy structure)

L½K"˜ log
1

2
(A + B) acceptH1(damaged structure)

ð14Þ

with B = b/(1 2 a) and A = (1 2 b)/a.
The truncation of the SPRT will affect the type I

and II error probabilities a and b, respectively, and as
a result of this the strength (a, b) of the test.
Nevertheless, the size of the impact on the error prob-
abilities depends on the number of samples K based on
which the SPRT is truncated.38 Hence, if the truncation
is implemented for a large value of K, the strength of
the test will be practically unaffected. For small prob-
abilities of type I (false alarm) and II (missed damage)
errors, truncating the SPRT at stopping time K leaves
the SPRT essentially unaffected when the samples are
distributed under Ho (healthy structure) or H1
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Figure 3. (a) Operating characteristic (OC) and (b) average sample number (ASN) functions for various strengths (a, b) and
constant residual standard deviation ratio q = s1/so = 1.1.
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(damaged structure).38,39 Furthermore, the truncated
SPRT compares favorably with the corresponding FSS
most powerful test when the probabilities of error are
small.39

Damage identification and quantification. Although binary
hypothesis testing procedures have been proved to
effectively tackle damage identification,5,6,9,23 they may
nevertheless be considered statistically ‘‘awkward’’ and
suboptimal, as pairwise binary hypothesis testing is
used in order to treat an actual multiple hypothesis
decision problem. For this reason, this work proposes
a multihypothesis sequential test for achieving damage
identification and quantification, which is based on the
Armitage test.25,40

Consider k hypotheses HA, HB, . with each one
belonging to a predetermined, in the baseline phase,
damage type. Then, the multihypothesis test to be
implemented may be expressed as follows

HA : s = sA HypothesisA$ damage is of typeA

HB : s = sB HypothesisB$ damage is of typeB

..

. ..
. ..

.

ð15Þ

with s designating the standard deviation of the resi-
dual series obtained by driving the current excitation–
response signals xu[t], yu[t] through the identified, in the
baseline phase, model Mo representing the structure in
its healthy state. The standard deviation values sA, sB,
. are user-defined values that may be determined
based on the available baseline data obtained from the
structure under damage types A, B, ., respectively. A
typical selection of sA, sB, . could be the mean values
of the residual standard deviations estimated from the
available baseline data records under the corresponding
damage structural states.

By denoting the likelihood under hypothesis Hi (Hi

is true, i = A, B, .) as Li, there are 1=2(k(k $ 1)) log-
likelihood ratios for the various pairs of hypotheses,
with each one expressed in terms of k 2 1 independent
likelihood ratios

Lij½t"= log
Li sije½1", . . . , e½t"ð Þ
Lj sjje½1", . . . , e½t"
# $

= t # logsj

si
+

s2
i $ s2

j

2s2
j s2

i

#
Xt

l = 1

e2½t"

i, j = A,B, . . . , and i 6¼ j:

ð16Þ

Then, the multihypothesis test termination is defined
by the pair (N, d), with N indicating the stopping time
and d the final decision25

N̂ =min
j

inf t : Lij½t"˜ log Aij 8i 6¼ j, i\j
+ ,

ð17Þ

d̂ = arg min
j = 1, ..., k$1

N : ð18Þ

Let aij be the probability of accepting Hi when in
fact Hj is true (error probabilities), that is,
aij = P(d = Hi/Hj), i6¼j, and let aii be the probability
of accepting Hi when in fact Hi is true (correct decision
probabilities), that is, aii = P(d = Hi/Hi). The error
probabilities aij may be controlled via suitable selection
of the Aijs as aij<A$1

ij ,25,40 thus

aii = 1$
X

i 6¼j

aij˜1$
X

i6¼j

A$1
ij : ð19Þ

The upper bounds Aij of the likelihood ratios are
obtained via equation (19) by selecting the matrix of error
probabilities aij (the probability of accepting Hi when in
fact Hj is true), which also yields the vector of correct
probabilities aii (the probability of accepting Hi when in
fact Hi is true). Using equation (19), the above procedure
can control the whole matrix of error probabilities aij, as
well as the vector of correct decision probabilities aii. By
using sufficiently large Aijs, the probabilities of arriving
at the correct decision (when any one of the Hi is true)
can be made as large as desired.

Notice that in the multihypothesis damage identifi-
cation procedure, no baseline damage type modeling
for the considered damage structural states is involved,
as this approach employs just the healthy model of the
structure in order to obtain the residual sequences.
Hence, although multihypothesis testing is more elabo-
rate than binary hypothesis testing, the proposed
approach avoids the potentially involved task of dam-
age type model identification, which is necessary in the
case of the binary hypothesis testing method.

Nevertheless, it is possible that different damage
types exhibit a similar effect on the residual sequences
e[t] and thus on the residual standard deviation s. In
this case, the multihypothesis approach will not provide
clear classification results for the corresponding damage
types, as more than one hypothesis may be accepted by
the test. In case that a final decision on the type of the
‘‘actual’’ damage is needed, a second (additional) proce-
dure using binary SPRT tests among the candidate
damage types indicated by the multihypothesis testing
may be employed.

Damage quantification is treated simultaneously
with the damage identification task. Notice though that
only damage types of specific damage magnitude may
be considered. The predetermined residual standard
deviation values sA, sB, . under the corresponding
damage types constitute an indication of the damage
severity. This is due to the fact that as damage severity
increases, the current structural dynamics deviate from
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the nominal healthy behavior, thus the nominal model
of the healthy structure will not be able to accurately
represent them, leading to increased residuals and cor-
responding standard deviation values. Moreover, by
considering a nominal standard deviation so for the
healthy structure, damage detection may also be simul-
taneously considered. Nevertheless, in this case, the
advantages of the SPRT-based damage detection
approach (predetermined strength (a, b), analytical
comparison of candidate sampling plans via the OC
and ASN functions) will be neglected.

The experimental setup

The structure

The truss structure is suspended through a set of cords
and consists of 28 elements with rectangular cross sec-
tions (15 3 15 mm2) jointed together via steel elbow
plates and bolts (Figure 4). All parts are constructed
from standard aluminum with the overall dimensions
being 1400 3 700 3 800 mm3.

The force excitation is a random Gaussian signal
applied vertically at Point X (Figure 4) via an electro-
mechanical shaker (MB Dynamics Modal 50A, maxi-
mum load 225 N) equipped with a stinger and
measured via an impedance head (PCB 288D01, sensi-
tivity 98.41 mV/lb). The vibration responses are mea-
sured at different points via dynamic strain gauges
(PCB ICP 740B02, 0.005–100 kHz, 50 mV/me;
sampling frequency fs = 256 Hz, signal bandwidth
0.5–100 Hz). The force and strain signals are driven
through a signal conditioning device (PCB 481A02)
into the data acquisition system (SigLab 20–42). In this
study, the damage detection, identification, and quanti-
fication results are obtained based on each one of the
three vibration response signals (Points Y1, Y2, and
Y3—Figure 4). This allows the examination and assess-
ment of the proposed framework’s ability to achieve
damage detection, identification, and quantification
with respect to the vibration response measurement
positions employed. For this reason, damage is charac-
terized as ‘‘local’’ or ‘‘remote’’ with respect to the sen-
sor used.

The damage types and the experiments

The damages considered correspond to the complete
loosening of various bolts at different joints of the
structure. Five distinct types are specifically considered
(Figure 4): The first damage type, referred to as damage
type A, corresponds to the loosening of bolt A1 joining
together a horizontal element with a vertical element.
The second damage type, referred to as damage type B,

corresponds to the loosening of bolts A1 and B1 joining
together an horizontal with a vertical element. Damage
type B affects the same elements as damage type A, but
is more severe, as loosening of two bolts is involved.
The third damage type, referred to as damage type C,
corresponds to the loosening of bolts C1 and C2 joining
together an horizontal with a diagonal element. The
fourth damage type, referred to as damage type D, cor-
responds to the loosening of bolt D1 joining together
an horizontal with a vertical element. Finally, the fifth
damage type, referred to as damage type E, corresponds
to the loosening of bolt E1 joining together a vertical
with a diagonal element. The considered damage types
are summarized in Table 1.

A significant number of test cases are considered in
the experimental assessment. In each test case, a spe-
cific experiment (out of a total of 1200 experiments for
the healthy structure and 900 experiments for each
damage state, with 100 from each category used in the
baseline phase—Table 1) and a specific vibration
response measurement position (Points Y1–Y3,
Figure 4) are employed. Hence, the numbers of test
cases correspond to the number of experiments men-
tioned in Table 1 times the number of measured
response positions. Experimental details are presented
in Table 1—worth noting is the very low/limited band-
width used, which does not favor SHM but is presently
used to comply to those situations where higher/wider
bandwidths cannot be employed (for instance, when
only natural or other low/limited bandwidth excitation
is available). Notice that the sample mean is subtracted
from each signal and scaling by the signal’s sample
standard deviation is implemented.

Damage detection, identification, and
quantification results

Damage detection, identification, and quantification
results are based on a single excitation–response signal
pair for each test case. The excitation force is always
measured at Point X, but the vibration response mea-
sured at one of Points Y1, Y2, or Y3 (Figure 4) is used
in each test case, thus the number of test cases is three
times the number of mentioned experiments.
Depending on the distance of the employed sensor
from the damage occurrence location, the damage is
characterized either as local or remote. Of course, the
interesting point being presently investigated is whether
the proximity of a sensor to the damage location seems
to provide a significant advantage in the damage detec-
tion robustness and the identification accuracy. The
considered damage types, experiments, and other
details are summarized in Table 1.
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Baseline phase: structural identification under the
healthy structural state

Non-parametric identification. Non-parametric structural
identification is based on 30,720 (’120 s) sample-long
excitation–response signals. A 2048 sample-long

Hamming data window with zero overlap is used (15
segments) for the FRF Welch-based estimation
(MATLAB function tfestimate.m). Indicative FRF
magnitude estimates for the healthy and damage struc-
tural states (Point X–Point Y1 and Point X–Point Y3
transfer functions) are depicted in Figure 5. As it may

Figure 4. The aluminum truss structure and the experimental setup: the force excitation (Point X), the vibration measurement
positions (Points Y1–Y3), and the considered damage types (A, B, C, D, and E).

Table 1. The considered damage types, numbers of experiments, and vibration signal details.

Structural state Description Total number of experiments

Healthy – 1200 (100 baseline)
Damage type A Loosening of bolt A1 900 (100 baseline)
Damage type B Loosening of bolts A1 and B1 900 (100 baseline)
Damage type C Loosening of bolts C1 and C2 900 (100 baseline)
Damage type D Loosening of bolt D1 900 (100 baseline)
Damage type E Loosening of bolt E1 900 (100 baseline)
Sampling frequency: fs = 256 Hz, signal bandwidth: [0.5–100] Hz
Signal length in samples (s): non-parametric analysis: 30,720 (120 s); parametric analysis: 1000 (3.9 s)
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be observed, the healthy and damage curves are rather
similar for both transfer functions in the 0.5–30 Hz
range, where the first 12 modes are included. In the
case of Point X–Point Y3 transfer function, significant
deviations between the healthy and damage types C, D,
and E curves are seen in the 30–58 Hz range, where the
next three modes are included. Finally, in the
58–100 Hz range where the next eight modes are
included, the Point X–Point Y1 FRF magnitude curves
are quite similar except for the damage type E curve,
while discrepancies are more evident for damage types
C and E in the Point X–Point Y3 transfer function case.

Parametric identification. Parametric identification of the
structural dynamics is based on 10,000 (’39 s) sample-
long excitation and single response signals that are used
for estimating ARX models (MATLAB function
arx.m). The modeling strategy consists of the successive
fitting of ARX(na, nb) models (with na, nb designating
the AR and X orders, respectively; in this study, na =
nb = n) until a suitable model is selected. Model para-
meter estimation is achieved by minimizing a quadratic
PE criterion leading to a least squares (LS) estima-
tor.15,16 Model order selection is based on the BIC
(Figure 6) and RSS/SSS criteria15,16 and the use of fre-
quency stabilization diagrams (Figure 7).15,16

Stabilization diagrams depict the estimated modal
parameters (usually frequencies) as a function of
increasing model order n. Based upon them, model ade-
quacy is considered attained as soon as the estimated

parameters cease to change (‘‘stabilize’’) with increasing
model order.

An approximate plateau in the BIC sequences is
achieved for model order n . 100 (Figure 6).
Furthermore, as indicated in the frequency stabilization
diagrams of Figure 7, model orders of n . 90 are ade-
quate for most natural frequencies to get stabilized.
Notice the color bars in Figure 7, which demonstrate
the damping ratios for each frequency for increasing
model order. In the 0.5–50 Hz range, higher damping
ratios for model order n \ 100 are observed for certain
structural modes.

The above procedure leads to the selection of an
ARX(112, 112), ARX(136, 136), and ARX(103, 103)
model for vibration measurement positions Y1, Y2,
and Y3, respectively. The selected ARX models as well
as their estimation details and the corresponding num-
bers of the estimated parameters, samples per para-
meter (SPP—refers to signal samples per estimated
parameter), BIC, and RSS/SSS values are summarized
in Table 2. Note that the identification procedure gen-
erally leads to different ARX models (including some-
what different model orders) for each vibration
measurement position.

Inspection phase

It is worth mentioning that in each test case within the
inspection phase, the approach operates in an online
fashion, with each signal sample being processed at a
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Figure 5. Frequency response function (FRF) magnitude estimates for the healthy and damage structural states: (a) Point X–Point
Y1 and (b) Point X–Point Y3 transfer functions.
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time. The approach is interrupted when a test case is
finished and re-started as soon as a new one is initiated.

Damage detection. Damage detection is based on the
binary SPRT presented in section ‘‘Damage detection.’’
Prior to implementing the SPRT for tackling damage
detection, an appropriate sampling plan should be
selected. The selection of the sampling plan involves
the determination of the following three aspects: (1) the

nominal residual standard deviation so under which
the structure is considered to be in its healthy state; (2)
the standard deviation ratio q = s1/so, which constitu-
tes the standard deviation increase under which the
structure is determined to be damaged; and (3) the
SPRT strength (a, b).

The determination of the nominal residual standard
deviation so under which the structure is considered to
be healthy is based on the available 100 baseline experi-
ments obtained from the healthy structure (Table 1).
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Figure 6. BIC order selection criterion for ARX(n, n) type parametric models in the healthy case for all vibration response
measurement positions.
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For each considered vibration measurement position
(Figure 4, Points Y1, Y2, and Y3), the corresponding

identified ARX model, as presented in section
‘‘Parametric identification’’ and Table 2, is employed in
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Figure 7. Frequency stabilization diagram for ARX(n, n) type models in the healthy case for all vibration response measurement
positions. The dashed red lines indicate the selected model orders in each case.

Table 2. Selected models and estimation details.

Response Selected model No. of estimated parameters SPP BIC RSS/SSS (%)

Y1 ARX(112, 112) 225 parameters 44.4 25.19 0.43
Y2 ARX(136, 136) 273 parameters 36.6 25.83 0.22
Y3 ARX(103, 103) 207 parameters 48.3 24.31 1.07

Parameter estimation method: WLS, QR implementation; signal length: 10,000 samples.
SPP: samples per parameter; BIC: Bayesian information criterion; RSS/SSS: residual sum of squares/signal sum of squares; WLS: weighted least
squares.

Table 3. Selected nominal residual standard deviation so values for the damage detection SPRT.

Response Y1 Response Y2 Response Y3

Nominal so 0.0866 0.0660 0.1168
so obtained as Efŝg+ 1:96 # stdfŝg out of 100 baseline residual sequences
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order to obtain the 100 baseline residual sequences. A
typical selection for the nominal residual standard
deviation value so would be such that the probability
of s < so is equal to 95% (P(s < so) = 0.95). The
selected nominal so values for all three vibration
responses are presented in Table 3.

The determination of the residual standard deviation
ratio q may be based on the OC and ASN functions of
the SPRT (section ‘‘Damage detection’’) for various q
ratios, along with the use of the baseline healthy data
records. Figure 8(a) and (b) presents, for vibration
response Y2, the OC and ASN functions, respectively,
for various candidate ratios q and constant SPRT
strength (a, b) = 0.01. In both figures, the so value is
shown as gray vertical dashed line, while the s1 values
corresponding to the considered q = s1/so ratios are
shown in colored vertical dashed lines. Along with the
OC and ASN function curves, the standard deviation
values obtained from the 100 baseline residual
sequences are depicted in vertical cyan dashed lines.

In Figure 8(a), the intersections of the vertical lines,
belonging to the residual standard deviation values,
with the OC function curves for the various q ratios
correspond to the probabilities of acceptance of the
null hypothesis Ho (healthy structure) for each ratio. In
Figure 8(b), the intersections of the vertical lines with
the ASN function correspond to the expected number
of residual samples required to reach a decision. The
OC function (Figure 8(a)) is considered more favor-
able; the higher the value of L(s) for s consistent with
Ho and the lower the value of L(s) for s not consistent
with Ho. Thus, by plotting the OC and ASN functions,

not only an indication of the probability of acceptance
for various residual standard deviations s is provided,
but also an approximation to the number of residual
samples required for reaching a terminal decision is
given.

In order to design a robust, yet effective in detecting
small damages, SPRT for damage detection, the lowest
q ratio with the highest probabilities of acceptance of
the null hypothesis Ho for the plotted baseline residual
standard deviations should be selected. In a second
stage, the expected number of residual samples required
to reach a decision should be checked in order to assure
that its value is in accordance with the experimental
specifications and the potential online implementation
requirements. Notice that the lower the selected ratio q,
the greater the expected number of the required samples
to reach a terminal decision. Moreover, notice that the
largest amount of residual samples required to reach a
decision arises when the value of the current standard
deviation s lies in the middle of the (so, s1) range. This
is due to the fact that in this case, the standard devia-
tion s favors neither the null Ho (healthy structure) nor
the alternative H1 (damaged structure) hypothesis. For
tackling damage detection in the aluminum truss struc-
ture, a standard deviation ratio q = s1/so equal to 1.1
is selected as adequate for the implementation of the
SPRT.

After the selection of the residual standard deviation
ratio q, the final SPRT strength (a, b) should be deter-
mined as well. Similarly to the q selection procedure,
Figure 9(a) and (b) depicts the OC and ASN functions,
respectively, for various test strengths (a, b) and
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Figure 8. Healthy structure: (a) operating characteristic (OC) and (b) average sample number (ASN) functions for various residual
standard deviation ratios q = s1/so and constant strength (a, b) = 0.01 (vibration response Y2). The vertical colored dashed lines
designate the s1 values for the corresponding ratios q. The vertical cyan dashed lines represent the residual standard deviation
values obtained from the 100 baseline healthy experiments.
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constant ratio q = 1.1. Again, the standard deviation
values for the baseline residual sequences are shown in
vertical cyan dashed lines. Based on the standard devia-
tion acceptance probabilities under the null hypothesis
Ho (Figure 9(a)) and the corresponding expected num-
ber of the required residual samples to reach a decision
(Figure 9(b)), the user may select an appropriate
strength (a, b). Notice that the lower the selected a, b
values, the greater the expected number of required
samples to reach a terminal decision. For tackling dam-
age detection in the aluminum truss structure, an
SPRT strength equal to (a, b) = 0.01 is selected as
adequate.

Figure 10(a) and (b) depicts the OC and ASN func-
tion curves (response Y3), respectively, for various can-
didate ratios q and constant SPRT strength
(a, b) = 0.01, along with the standard deviation values
(vertical cyan dashed lines) obtained from the 100 base-
line residual sequences that belong to damage type A
(see Table 1). In the case where baseline data from vari-
ous potential damage types are available, either by cor-
responding experiments or tuned FE models, Figure
10(a) constitutes an additional means of validation of
the determined SPRT sampling plan for damage detec-
tion. If for the selected sampling plan the probability of
acceptance of damage type A standard deviation values
is considerably high (vertical axis of Figure 10(a)), then
there is an increased probability of missed damage
occurrence, as the adopted sampling plan will not be
able to clearly distinguish the standard deviation values
between the healthy and the damage structural state.
Furthermore, Figure 10(b) depicts the expected number

of residual samples that are required to reach a termi-
nal decision versus the damage type A standard devia-
tion values. As it may observed, all the plotted baseline
standard deviation values require less than 200 samples
in order to accept the underlying alternative hypothesis
H1 (damaged structure).

Indicative damage detection results for vibration
response Point Y1 based on the SPRT sampling plan
of standard deviation ratio q = 1.1 and strength
(a, b) = 0.01 are presented in Figure 11. A damage is
detected when its test statistic (vertical axis) exceeds the
upper critical point (dashed horizontal lines), while the
structure is determined to be in a healthy state when
the test statistic exceeds the lower critical point. After a
critical point is exceeded, a decision is made, while the
test statistic is reset to 0 and the test continues. Hence,
during testing, multiple decisions are made, as each
inspection residual sequence contains 1000 samples.
Evidently, correct detection (Figure 11) is obtained in
each test case, as the test statistic is shown to exceed
multiple times (multiple correct detections) the lower
critical point in the healthy case, while it also exceeds
multiple times the upper critical point (multiple correct
damage detections) in the damage test cases. Inside
each subplot of Figure 11 is indicated whether the cor-
responding damage type is ‘‘local’’ or ‘‘remote’’ with
respect to the vibration sensor employed. Thus, dam-
age types A and B are characterized as ‘‘local’’ with
respect to sensor Y2, while damage types C, D, and E
are characterized as ‘‘remote.’’ Observe that damage
type A (Table 1) appears harder to detect, as the num-
ber of detections in this case is the smallest one among
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Figure 11. Indicative damage detection results for response Y2 at the a = b = 0.01 risk levels (q = s1/so = 1.1). The actual
structural state is shown above each plot.
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all the damage test cases, while damage types C and E
appear easier to detect. This is in agreement with the
remarks made in subsection ‘‘Non-parametric identifi-
cation’’ and Figure 5.

Figure 12 depicts the average number of correct
detections under the healthy structural state versus the
residual standard deviation ratio q for various SPRT
strengths (a, b). The dashed blue lines correspond to
the experimental correct detection point estimates
obtained from the 1100 healthy inspection experiments
of 1000 samples each, while the gray shaded areas cor-
respond to the 61.96 standard deviation confidence
intervals. The dashed red lines correspond to the theo-
retical number of correct detections as approximated
via the ASN function under the null hypothesis Ho

(healthy structure). Notice that the greater the a, b
error probabilities, the larger the number of correct
detections per data set. Nevertheless, keep in mind that
increased values of type I and II error probabilities

may lead to increased false alarm and missed damage
rates.

Moreover, notice that the theoretical numbers of cor-
rect detections for the various test strengths in Figure 12
are smaller than the corresponding experimental ones in
all test cases. This is due to the fact that in ‘‘real-life’’
applications, the experimental data often heavily favor
either the null (Ho) or the alternative (H1) hypothesis. In
this case, the experimental inspection data sets were
obtained under the healthy structural state, thus the cor-
responding residual samples strongly favor the null
hypothesis of the healthy structure. This constitutes a
strong indication that the proposed approach may actu-
ally perform effectively in ‘‘real-life’’ applications.

Figure 13 presents the false alarm percentages for all
three vibration measurement locations versus the resi-
dual standard deviation ratio q for various SPRT
strengths (a, b). These rates have been extracted from
the 1100 healthy inspection experiments and the
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Figure 12. Average number of correct detections for the healthy structure (response Y2): experimental (dashed blue lines 61.96
standard deviation confidence intervals from 1100 inspection healthy experiments of 1000 samples each) and theoretical (dashed red
lines) point estimates for various SPRT strengths (a, b) versus residual standard deviation ratio q = s1/so. The actual strength is
shown above each plot.
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corresponding residual sequences. As the ratio q
increases, the false alarm percentages slightly increase
too. This may seem awkward at first, as one would
expect that as the standard deviation q increases the
false alarm rates would decrease. Nevertheless, this is
not the case, as by increasing the ratio q the number of
correct detections largely increases (see Figure 12), and
as a result, as the SPRT becomes more ‘‘sensitive,’’
there is a slight increase in the false alarms.

Notice that the false alarm percentages of Figure 13
are practically 0, a fact that demonstrates the effective-
ness and robustness of the designed test.

Finally, Figure 14 depicts the average number of
correct detections for the three vibration responses and
various test strengths (a, b) under damage type A ver-
sus the residual standard deviation ratio q. The lowest
mean correct detection values are obtained for vibra-
tion response Y1, while the largest values are obtained
for vibration response Y3. This implies that damage
type A, which is the least severe among all considered
damages, is easily detected via vibration response Y3

and harder via response Y1. Nevertheless, it is obvious
from Figure 14 that the SPRT is capable of accurately
detecting the least severe damage type via all the con-
sidered vibration measurement locations.

The summarized damage detection results for all
vibration responses are presented in Table 4. The
healthy detections and false alarm numbers are mean
estimates per data set, as they are extracted from the
1100 healthy inspection experiments of 1000 samples
each. For all the considered vibration responses, the
mean false alarm values are extremely low, as well as
the mean missed damage values which are 0, except for
the case of the less severe damage type A (see Figures 4
and 5 and Table 1), which exhibits its maximum mean
value of false alarms for response Y1 equal to 0.39.

Overall, the approach exhibits excellent performance
in tackling damage detection.

Damage identification and quantification. Damage identifi-
cation and quantification are based on the multihypoth-
esis SPRT presented in section ‘‘Damage identification
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Figure 13. False alarm percentage for all vibration response measurement positions and various SPRT strengths (a, b) versus
residual standard deviation ratio q = s1/so; 1100 healthy inspection experiments are used.
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and quantification.’’ Prior to implementing the multihy-
pothesis test for tackling damage identification and
quantification, an appropriate sampling plan should be
selected, similarly to the damage detection task. The
selection of the sampling plan involves the

determination of the following two aspects: (1) the
nominal residual standard deviation values sA, ., sE

under which the structure is considered to be in the cor-
responding damage types A, ., E state, respectively,
and (2) the matrix of error probabilities aij and the
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Figure 14. Average number of correct damage detections under damage type A for all vibration response measurement locations
and various SPRT strengths (a, b) versus residual standard deviation ratio q = s1/so; 800 damage type A inspection experiments are
used.

Table 4. Damage detection summary results for the three vibration responses (Y1, Y2, and Y3).

Response Damage detection

Mean healthy detections Mean false alarms Mean missed damage values

Damage A Damage B Damage C Damage D Damage E

Y1 4.40 0.011 0.390 0 0 0 0
Y2 4.34 0.005 0.048 0 0 0 0
Y3 3.61 0.005 0 0 0 0 0

Test strength (a, b) = 0.01; residual standard deviation ratio q = s1/so = 1.1.
Mean healthy detections and false alarms per data set out of 1100 healthy inspection experiments.
Mean missed damage values per data set out of 900 damage inspection experiments.
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vector of correct decision probabilities aii (see equation
(19)).

The determination of the nominal residual standard
deviation values sA, ., sE under which the structure is
considered to be under the corresponding damage type
is based on the available 100 baseline experiments
obtained from the structure under each damage state
(Table 1). For each considered vibration measurement
position (Figure 4; Points Y1, Y2, and Y3), the corre-
sponding identified ARX model, as presented in section
‘‘Parametric identification’’ and Table 2, is employed in
order to obtain the 100 baseline residual sequences for
each damage type. In the damage identification and
quantification case, the nominal residual standard
deviation values sA, ., sE that are needed to imple-
ment the multihypothesis test are selected as the mean
values of the 100 baseline residual standard deviations
under each damage type. The selected nominal sA, .,
sE values for all three vibration responses are presented
in Table 5.

As it may be observed from Table 5, the nominal
residual standard deviation values sB and sD, that
belong to damage types B and D, respectively, are quite
similar for all three vibration response positions. This is
due to the fact that these two damage types have a simi-
lar effect on the residual sequences obtained by driving
the baseline data under each damage type through the
nominal models of the healthy structure (see Table 2).

Indicative damage identification results for vibration
response Y1 at the aij = 0.01 error probabilities level
are presented in Figure 15, with the actual damage
being of type C. Inside each subplot of Figure 15 is
indicated whether the considered damage type is
‘‘local’’ or ‘‘remote’’ with respect to the vibration sensor
employed (sensor Y1), hence damage type C is charac-
terized as ‘‘local,’’ whereas damage types A, B, D, and
E are characterized as ‘‘remote.’’ The vertical axis in
each subplot designates whether the corresponding
hypothesis is accepted or rejected, while the horizontal
axes indicate the residual samples. Once the multihy-
pothesis test reaches a terminal decision the corre-
sponding damage type hypothesis is accepted; thus, the
sample for which this terminal decision is made consti-
tutes the stopping time of the test (see equations (17)

and (18)). In Figure 15, the hypotheses belonging to
damage types A, B, D, and E are correctly rejected,
while the hypothesis that belongs to damage type C is
correctly accepted. Moreover, notice that the stopping
time for the terminal decision of hypothesis C accep-
tance is reached before 50 samples (’0.19 s), which
demonstrates the ability of the multihypothesis test to
arrive at an early decision.

Summary identification results for all vibration
responses are presented in Table 6. The correct damage
classification rates are presented for all damage type
inspection sets, along with the corresponding mean
stopping times. As it may be observed, the multihy-
pothesis test’s damage classification results obtained
for all vibration responses are very accurate for damage
types A, C, and E, as the percentages of correct classifi-
cation are very high. Nevertheless, the approach faces
difficulties in accurately classifying damage types B and
D. As already mentioned, this is due to the fact that
these damage types have a similar effect on their corre-
sponding residual standard deviation values obtained
through the healthy models (see Tables 2 and 5).

In this case, the user may apply the binary SPRT for
the candidate damage types. Nevertheless, this proce-
dure would require the baseline modeling of at least one
of these types.

Indicative damage identification results for damage
types B and D via the binary SPRT at the a = b =
0.01 risk levels and q = s1/so = 1.1 are presented in
Figure 16 for vibration response Y2. The model orders
that were employed for the ARX modeling of damage
types B and D are the same that are used for the mod-
eling of the healthy structure (Table 2). As it may be
observed from Figure 16, although the multihypothesis
approach faces difficulties in correctly classifying these
damage types, the binary SPRT is capable of accurately
identifying the actual damage type as current, while the
summarized results exhibit zero misclassification num-
bers. Nevertheless, this approach requires the baseline
modeling of the potential damage structural states, a
procedure that is avoided by the multihypothesis
approach.

Damage quantification is indirectly treated via the
damage identification task. The nominal residual

Table 5. Nominal residual standard deviation values sA, ., sE for damage identification.

Response Nominal residual standard deviations

sA sB sC sD sE

Y1 0.1056 0.1617 0.2304 0.1492 0.3259
Y2 0.0991 0.1361 0.2672 0.1211 0.2806
Y3 0.1633 0.3377 1.7264 0.3475 0.4857

sA, ., sE mean values out of 100 baseline damage data sets each.
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standard deviation values sA, ., sE, as determined in
the multihypothesis damage identification approach,
constitute an indication of damage severity for the cor-
responding damage types. This is due to the fact that as
damage severity increases, the current structural
dynamics deviate from the nominal healthy behavior,
thus the nominal model belonging to the healthy struc-
ture will not be able to accurately represent them, lead-
ing to increased residual sequence values and
corresponding standard deviations.

Table 5 presents the selected nominal standard
deviation values for all damage types (see also Figure
4). For vibration responses of Points Y1 and Y2, dam-
age type E is the most severe followed by damage type
C. Damage types B and D are of the same severity
level, which justifies the misclassification issues for
these types, while damage type A is the least severe and
thus hardest to detect. For the vibration response of
Point Y3, damage type C is the most severe, followed
by damage type E. Again, damage types B and D are
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Figure 15. Indicative damage identification results for response Y1 at the aij = 0.01 error probabilities’ level, with the actual
damage being of type C. The hypothesized structural state is shown above each plot.

Table 6. Damage identification summary results for the three vibration responses (Y1, Y2, and Y3).

Actual damage Damage identification (correct damage classification rates (%))

Damage
A hypothesis

Damage
B hypothesis

Damage
C hypothesis

Damage
D hypothesis

Damage E hypothesis

Type A 99.33/98.22/100 0.11/0/0 0/0/0 0.55/1.78/0 0/0/0
Type B 0/0/0 45.65/69.77/66.55 2.33/0/0 52/30.22/33.44 0/0/0
Type C 0/0/0 0/0/0 98.32/95.10/100 0/0/0 0.66/4.89/0
Type D 0/0/0 46.33/11.22/49.99 0/0/0 53.55/88.77/51.01 0/0/0
Type E 0/0/0 0/0/0 0.11/1.11/0.77 0/0/0 99.88/98.88/97.65
Mean stop. time 15.68/22.84/8.76 174.35/172.32/176.26 36.18/117.99/3.81 200.08/167.34/231.98 18.54/90.33/27.21

Correct damage classification rate for points Y1/Y2/Y3 out of 800 inspection experiments; aij = 0.01.
Mean stopping time in samples for points Y1/Y2/Y3 out of 800 inspection experiments each providing 1000–sample long signals.
Bold values indicate the results in which the damage hypothesis corresponds to the actual damage type.
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of the same severity level, while damage type A is the
least severe. The above conclusions are in agreement
with the parametric FRF curves presented in Figure 5
and the remarks of subsection ‘‘Non-parametric
identification.’’

Concluding remarks

An SPRT framework for vibration-based SHM was
postulated. This framework, which is based on binary
and multihypothesis versions of the statistically optimal
SPRT, was shown to be capable of achieving effective
and early damage detection and identification. The main
conclusions drawn may be summarized as follows:

( The proposed framework was shown to effectively
tackle damage detection and identification, achiev-
ing excellent performance with practically zero false
alarms and missed damage rates.

( An optimal sampling plan was determined a priori
via the use of the OC and ASN functions, selected
type I (false alarm) and II (missed damage) error
probabilities, and available baseline data records of
the structure under various potential health states.

( The framework was shown to achieve early damage
detection and identification (\0.19 s) as it required
a minimum number of residual samples in order to
reach a decision. In addition, it was shown to have
global and robust damage detection capabilities, as
it was able to detect damage using sensors that were
either ‘‘local’’ or ‘‘remote’’ to the damage location.

( The multihypothesis damage identification proce-
dure faced some difficulties in classifying two dam-
age types with similar effects on the residual series.
Yet, this issue was effectively tackled via the base-
line modeling of these damage types and sequential
binary hypothesis testing.

( The availability of baseline data records corre-
sponding to various potential damage scenarios is
necessary in order to treat damage identification.
This may not always be possible with the actual
structure itself, but laboratory scale models or ana-
lytical (FE) models may be used for this purpose.

( The approach uses simple time series models (ARX,
ARMAX, state space, etc.) and is characterized by
computational simplicity; features that enhance its
attractiveness for online application.
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