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ABSTRACT 
 

This paper concerns a reflection on a new decision boundary technique devoted 
for baseline-free damage detection purpose. Its scope focuses in studying analytically 
the impact of an unknown disturbance on the behavior of a monitored structure, 
through linear and nonlinear perturbation models. These perturbation models are 
introduced to interpret how an unknown disturbance away linearly and nonlinearly a 
monitored structure from its initial state, which is a healthy one, to its current state, 
which can be damaged or a healthy one that has undergone environmental/operational 
variations. To quantify the amount of that unknown disturbance effect, matrix 
perturbation theory is addressed to define two analytical bounds. The gap between 
them gives the decision regarding the monitored structure current state. The 
effectiveness of the proposed approach is demonstrated through an experimental setup 
of a test coupon aluminum plate, which has undergone varying loads and temperatures 
conditions, and crack damage cases. 
 
 
INTRODUCTION 
 

The big concern in reference-free damage detection is to build without any 
reference database, a decision making (threshold) able to separate between 
disturbances that come from environmental/operational variations of the healthy state 
and that come from damaged sate. 

The development of this essay was motivated by this challenge, i.e. establishing a 
decision making devoted for reference-free. It focuses on studying the disturbances 
that a monitored structure undergoes using tools of linear algebra, mainly matrix 
perturbation theory (MPT). 

Pioneering works have addressed the MPT for matrix computation purpose. Based 
on an additive perturbation model, Davis and Kahan [1] have defined an upper bound 
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to the rotation of eigenvectors. Based on that model, Wedin [2] has extended 
Davis and Khan work for the singular subspaces deflection. While Li [3] has 
conducted studies in MPT through a multiplicative perturbation model.  

Regarding SHM, the tool of MPT was introduced by Hajrya and Mechbal [4;5], 
where the purpose of their works was the development of an analytical threshold 
based on an additive perturbation model without any assumption of a probabilistic 
model, but necessitating a reference database. 

 
The reflection that we are seeking to construct in that essay is: how can we guide 

matrix perturbation theory (MPT) for reference-free decision making? 
 
The word perturbation sounds good in online SHM. It is a disturbance that can 

comes from two types: (i) the environmental/operational variations of the healthy 
state, such as temperature and loads variations, (ii) the presence of damage. 
Furthermore, as we are in a reference-free context, the aforementioned disturbances 
are a priori unknown. This implies that there is no reason to stipulate that an unknown 
disturbance has a linear or a nonlinear impact on the behavior of a monitored 
structure. However, there is a reason to assume blindly that an unknown disturbance 
has a linear and a nonlinear impact on the monitored structure. This assumption means 
that a disturbance causes the behavior of a monitored structure to jump from an initial 
sate to a new one following a linear and a nonlinear perturbation model. In other 
words, an unknown disturbance can away linearly (AL) and nonlinearly (ANL) a 
monitored structure from an initial behavior to a new one. 

MPT comes into play to offer us the tools needed to evaluate the AL and ANL 
concepts. Indeed, MPT allows us to define two analytical bounds that quantify the 
disturbance effect with well-defined values. These bounds are driven by establishing 
linear and nonlinear perturbation models of a feature in matrix form. The gap between 
these bounds gives the decision regarding the current state of the structure, i.e. 
damaged state or a healthy one that has undergone environmental/operational 
variations. 

The layout of this essay is as follows: in section 2, matrix perturbation theory is 
addressed to drive the SHM decision making in a reference-free context. In section 3, 
the experimental setup is presented. Section 4 explores the proposed approach on these 
data. Summary and future research directions are drawn in section 5. 
 
 
MATRIX PERTURBATION THEORY FOR SHM DECISION MAKING  
 
Problem Statement  
 

Let ! ∈ ℝ!!×!! be a feature in matrix form, obtained from !! data sensors of a 
monitored structure. 

For instance, let us assume that we can obtain a second feature ! ∈ ℝ!!×!! from 
the same sate. These matrices are extracted from a Blind Separation Source (BSS) 
technique. For more details about the extraction technique, the reader is invited to read 
[4]. 

Based on the same state condition, the presence of a disturbance is seen as a 
change in the intrepid matrix ! (which reflects the initial behavior of the structure) to 



matrix ! (which reflects the new behavior). Accordingly, the singular subspaces of ! 
are deflected to those of !. To quantify this deflection, an index of perturbation is 
proposed, and it is based from the so-called sin! theorem, attributed to Davis and 
Kahan [1] in its classical form, and extended by Wedin [2]. 

To drive the proposed index of perturbation (noted IP), we follow the work of [2], 
where a singular value decomposition (SVD) is used: 

 

! = !"# = !! !! !! !
! !! !! !! ! = !! + !! (1) 

! = !!! = !! !!
!! !
! !!

!! !! ! = !! + !! (2) 

 
Let: 
! !! ,!! !!!  be the ranges of matrix !!, and ! !!  and ! !!!  be the ranges of 
matrix !!. 
!! !! , !! !!

! , !! !!  and !! !!!  be the orthogonal projection on theses ranges, 

defined as: 
 

!! !! = !!!!!, !! !!
! = !!!!! (3) 

!! !! = !!!!!, !! !!! = !!!!! (4) 
 
sin! ! !! ,! !! !" be the sinus angle between the range ! !!  and ! !! , 
sin! ! !!! ,! !!! !" be the sinus angle between the range ! !!!  and 
! !!! . 
In this paper, . !" denotes a general unitarily invariant norm, and the Frobenius 
norm . ! is used for the calculus. 
The sinus angle norm of the aforementioned ranges is defined as [4]: 
 

IP! = sin! ! !! ,! !! ! = !!! − !! !! !! !! ! (5) 

IP! = sin! ! !!! ,! !!! ! = !!! − !! !!! !! !!
! ! ! (6) 

 
Proposal: Index of perturbation 
Consider an unknown disturbance that drives the behavior of a monitored structure 
from an initial behavior to a new one. The change occurred is quantified by the 
following index of perturbation:  
 

IP = IP! + IP!
!!

 (7) 

where !! is the number of principal components retained in the studied matrices.  
 
The villain disturbance has let our intrepid matrix ! to !, and the occurred change 

has been quantified by the index of perturbation IP. As we are in a reference-free 



context, the IP is not sufficient to assert the perturbation source, i.e. presence of 
damage or just environmental/operational variations of the healthy state. However, the 
context of reference-free offers us the possibility to assume blindly that an unknown 
disturbance causes the behavior of the monitored structure to jump from an initial sate 
(reflected by matrix !) to a new one (reflected by matrix !), following a linear and a 
nonlinear perturbation models. In other words, an unknown disturbance can away 
linearly (AL) and nonlinearly (ANL) a monitored structure from an initial behavior to 
a new one.  

The following subsections focuse on quantifying the concepts AL and ANL, by 
introducing perturbation models and analytical bounds to IP. 
 
Analytical Bound Models  
 

Defining a bound begins by establishing a model that relates matrix ! to !. The 
first way to address that model is to see the relation between ! and ! as linear: 

 
! = !+ δ! (8) 

 
where the matrix δ! describes the variation that matrix ! is subjected due to an 
unknown disturbance, and the relation defined in Eq. (8) is called the additive 
perturbation model [4]. 

The second way is to relate ! to ! by a nonlinear model, and one of nonlinear 
model is the so-called multiplicative perturbation model [3]: 
 

! = !!!!! (9) 
 
Analytical Bound using Additive Perturbation Model 
 

The first proposed analytical bound is based on an additive perturbation model, 
and it is driving from the following: 
Recall that the SVD of matrix ! and ! can be written as follow: 
 

! = !"# = !! !! !! !
! !! !! !! ! = !! + !! (10) 

! = !!! = !! !!
!! !
! !!

!! !! ! = !! + !!! (11) 

 
Following these decompositions, define the following residual matrices: 
 

!! = !!! − !!!! = −δ!!! (12) 
!! = !!!! − !!!!! = − δ! !!!! (13) 

 
and evaluate their norms, i.e.: 
 

!! ! = δ!!! ! (14) 
!! ! = δ! !!! ! ! (15) 



Assume now, that there exist a scalar ! > 0!, such that: 
 

! = min
!∈!!
!∈!!

! − !  
(16) 

 
Wedin [2] has proved through a theorem that the index of perturbation defined in 
Eq.(7) satisfies the following: 
 

IP ≤ !! ! + !! !
!  (17) 

where the quantity !! !! !! !
!  is the upper bound of IP.  

For easy reading, that bound is noted as: 
 

!! =
!! ! + !! !

!  (18) 

This bound indicates the amount that a disturbance away linearly (AL) a monitored 
structure from an initial behavior to a new one. The second proposed analytical bound 
is based on nonlinear perturbation model. 
 
Analytical Bound Based on Multiplicative Perturbation Model 
 

Following the nonlinear perturbation model, Li [3] has proved that the index of 
perturbation satisfies the following: 

 

IP ≤ !!! − !!! !! !

!
+ !!! − !!! !! !

!

+
!! − !!! ! !! !

! + !!! − !!! ! !! !
!

!  

(19) 

 
where ! is defined as: 
 

! = min
!∈!!
!∈!!

! − !
!  (20) 

For easy reading, we note: 
 

!! = !!! − !!! !! !

!
+ !!! − !!! !! !

!

+
!! − !!! !!! !

! + !!! − !!! !!! !
!

!  

(21) 

where . !! denotes the inverse of a matrix  



To obtain the matrices !!, !! in practice, the relation defined in Eq. (10) is rewritten 
as follow: 

! = !+ δ!!!!! = ! !!! + δ!!!!  (22) 
 
By identifying Eq. (22) to Eq. (9), we obtain: 

 
!! = !!!, !! = !!! + δ!!!! (23) 

 
The bound !! evaluates the amount that a disturbance away nonlinearly (ANL) a 

monitored structure from an initial behavior to a new one. 
 
 

EXPERIMETAL SETUP  
 
The test bench used in this study was realized in [6, 7] and the presented section is 

based on the experimental data obtained from these studies. Figure 1.a shows the 
experimental setup of an aluminum plate 14×12×O. 078!mm! , loaded in an 
uniaxial testing machine. The testing machine is equipped with an environmental 
chamber to collect sensor signals under varying temperature conditions. In figure 1.b, 
the schematic of the coupon is presented. It is surface mounted with a 2×3 of 
piezoelectric transducers, actuated using standard tone-burst signal (5-cycle Gaussian 
with Hanning window) at center frequency of 250kHZ, and sensed using a 64-channel 
data acquisition system provided by Acellent Technologies Inc. Sampling frequency 
for data collection was set at 12MHZ, and the signals were collected in pitch-catch 
mode, wherein one transducer acts as an actuator while the others act as sensors. 
Through that mode, a total of 9 sensors were recorded !! = 9, with samples number 
! = 1400. 

Sensor data of the healthy state were collected under different loading: from 
0.0!kips to 7.0!kips and varying temperature conditions: from 22°C to 70°C. Once 
the healthy state data collected, accelerated fatiguing of the coupon was carried out 
resulting in a crack of size of 5mm, located at a preexisting notch at the center of the 
coupon (Figure 1. b). For this damaged state, different loading: from 0.0!kips to 
7.0!kips and varying temperature conditions: from 22°C to 70°C were realized. 
 

 
 

Figure 1: a) Experimental set up of a test coupon loaded in the MTS uniaxial testing machine with 
environmental chamber, and b) schematic of the same test coupon with attached array of piezoelectric 

transducers; Details on the experimental set up in [6, 7]. 



TEST RESULTS 
 

In this section, the bases of matrix perturbation theory are interpreted through the 
presented experimental test bench. It is to be noted that the data used in our work 
were obtained in [6, 7] for purpose of damage detection methodology with a 
reference database. To exploit that database in our concern, we have set the initial 
behavior of the monitored structure (noted R) as the healthy state condition 
corresponding to: unloaded and temperature 22°C. Accordingly, matrix ! is that 
obtained from BSS technique on the data of R, matrix ! reflects the new behavior 
of the monitored structure, and it is calculated for each tested data. Figure 2.a 
illustrates the results of the described quantities: index of perturbation IP, the 
bounds !! and !! defined respectively in Eqs. (7), (18) and (21), an those for 
different healthy state conditions and damage case 1: crack of 5mm.  

For each label, there is a well-defined value for IP, !! and !!. On a first finding, 
one can see that the IP is higher to the presence of damage case of 5mm crack than 
the disturbance occurred in the healthy state conditions. Indeed, the IP calculated 
for the highest studied disturbance occurred in the healthy state: load of 7!!"#$, 
temperature 70°! is less than that obtained from the lowest disturbance occurred 
for damage case 1, i.e. loads of 0.0, temperature 30°C.  

Now, the analytical bounds !! and !! come to play. The first one is based on 
the multiplicative perturbation model defined in Eq. (9), and it quantifies the 
amount of how much a disturbance away nonlinearly a monitored structure from an 
initial behavior to a new one. Referring still to figure 2.a, one can see that for labels 
41 to 80, there is a significant disparity between IP and !!: the nonlinearly trend is 
sharper for theses labels. Hence, the occurred disturbance is suspected to be a 
damaged state. 

To confirm that, the gap between !! and !! is evaluated by calculating the 
quantity ! = !!! − !!, and it is illustrated in figure 2.b. One can see that there is a 
significant gap for labels 41 to 80: disturbance attracts the monitored structure to a 
nonlinearity trend, i.e. the structure is in damaged state. While there is a small gap 
for labels 1 to 40: the monitored structure is in a healthy state, subjected to 
environmental/operational conditions. 

 

! !
 

(a)!
 

(b)!
 

Figure 2: Comparison between the healthy state and damage case of 5mm crack: 



(a) Evolution of the index of perturbation & additive/multiplicative bounds through the studied cases 
(b) Evolution of the index of perturbation and the gap between the bounds for each studied cases 

Labels used in figure 2 
• From i=1 to 40: label i is defined by comparing the reference ! versus the tested data of the 

healthy state !! 0.0!kips to 7.0!kips and varying temperature conditions: from 22°C to 70°C 
• From i=41 to 80: label i is defined by comparing the reference R versus the tested data of the 

damaged case 1 (5mm)!
 
 
CONCLUSION  

 
This work has dealt an essay for the baseline free damage detection. Specifically, 

we have proposed two antagonists concepts that assume respectively that unknown 
disturbance can away linearly (AL) and nonlinearly (ANL) a monitored structure from 
an initial behavior to a new one. The introduced concepts have been demonstrated 
through an experimental setup of a test coupon aluminum plate, which has undergone 
varying loads and temperatures conditions, and crack damage. 

The results described here are initial attempts for a complete online SHM 
technique. For the work under progress, we are investigating a methodology to track 
the crack damage cases. 
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