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ABSTRACT 
 

An investigation was performed to assess the sensitivity of an acousto-ultrasound 
SHM system to changes in the configuration of the sensor network for the detection of 
fatigue cracks.  Two different sensor networks were selected for the study on a riveted 
aluminum plate subjected to cyclic loads.  The detection sensitivity of the system was 
quantified by the probability of detection (POD) approach that is used in traditional 
NDE but in this case modified for active SHM systems.  The objective of the present 
work is to propose a POD analysis framework for reliable quantification of SHM 
systems. The proposed framework takes into account environmental and operating 
uncertainties, including varying temperature and loading conditions. The main concept 
is outlined and its operational applicability is addressed for hotspot damage detection 
monitoring. The issues of proper data collection, both experimental and model-based 
using numerical models, are discussed, while a model-based temperature 
compensation method is employed to treat the environmental uncertainties. In addition, 
the active sensing diagnostics based on ultrasonic guided waves and signal processing 
techniques are presented. Finally, the overview of the statistical POD analysis 
methodology is outlined and discussed.  

The effectiveness of the proposed framework is experimentally assessed via its 
application to an aluminum coupon, with two distinct sensor network configurations 
attached, under varying temperatures and loading conditions. The POD results with 
respect to increasing crack length are extracted and the SHM system’s reliability for 
damage quantification for both configurations are compared and discussed. 
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INTRODUCTION 
 

SHM systems utilize distributed, permanently installed sensing networks at 
certain structural regions and apply diagnostic algorithms to gain meaningful health 
information from the sensing data. This data is subject to various sources of 
uncertainty associated with all aspects of the inspection environment and operating 
conditions. In contrast to traditional NDE procedures, where the factors due to 
operator pose the dominant uncertainty, SHM-based technology is mainly 
challenged by in-situ effects, such as changing environments (temperature, loads, 
humidity, and wind), operating conditions (ambient loading conditions, operational 
speed and mass loading), variation in coupling, aging, measurement noise etc., as 
well as the sensing network layout itself. Usually, the uncertainties due to 
environmental effects have the largest impact on the system performance [1-2]. An 
SHM system needs to be robust (insensitive) to uncertainties but sensitive enough 
to detect the required minimum damage even when the sensor data is affected by 
these uncertainties. More specifically, the sensor layout in an SHM system 
significantly affects the sensitivity to damage detection. Although, this is an 
extremely important issue, only a limited number of studies exist to demonstrate such 
an effect in the literature. 

Typically, the capability of an SHM system can be characterized into four levels: 
a) Level I: Detection of an occurrence of an event exceeding a threshold, 
b) Level II: Identification of the location of the event if not known prior to 

inspection, 
c) Level III: Determination of the magnitude or extent of the event such as 

impact force or crack size, and  
d) Level IV: Estimation of the influence of the event on the structure such as 

residual stiffness and strength. 
At a minimum, an SHM system must be able to detect the occurrence of an event 

exceeding a prescribed threshold.  The outputs depend upon the sensor types, the 
number of sensors and their positions on the structure, as well as the 
software/algorithms used in the SHM system. Therefore, the SHM system outputs 
must be evaluated at these levels in terms of the sensitivity, accuracy, and reliability 
required for various intended functions. The validation activities should include the 
evaluation of sufficient quantitative measures to cover these attributes.  Further details 
can be found in [1]. 

Performance quantification of an SHM system [1-4] at its Level I is of utmost 
importance for the evaluation of its sensitivity regarding event detection. In order to 
quantify such an event, the POD analysis is a potential approach and has been 
adopted for an investigation in this study. Therefore, this work will solely focus on 
the performance quantification of an SHM system at Level I for two different 
sensor network configurations. In general, POD=POD(a) curves relate the size a of 
a damage (such as cracks, delamination) to its probability of detection under the 
specified conditions and procedures [5-6].  

For SHM systems, a similar interpretation of POD analysis is not readily 
apparent since there is no human factor involved as in traditional NDE. Therefore, 
the transfer of the traditional POD concept to SHM systems implies a different 
interpretation. A meaningful SHM POD analysis must incorporate uncertainties 
from all relevant sources of in-situ conditions as mentioned above. 



The main goal of this work is to systematically study the effect of the sensor 
network layout to the sensitivity of an active sensing SHM system to detect damage 
(Level I). For this purpose, a “global” network POD framework applicable to SHM 
systems for both hotspot (damage location is known a priori) and large area (damage 
location is unknown) monitoring is introduced and evaluated using an experimental 
application whose main elements remain valid for both above cases.  However, the 
experimental application presented herein focuses primarily on the case of hotspot 
monitoring.  

In order to capture the typical SHM-inherent effects, in-situ uncertainties in terms 
of varying temperature and loads are applied to the experimental setup. Therefore, 
the system’s performance is investigated for two different configurations of sensing 
networks using experimental data under varying environmental (temperature) and 
operating (loads) conditions with respect to increasing damage (crack length). For 
this purpose, along with the experimental data, model-based temperature data are 
also generated, while the diagnostic algorithms are extended to include appropriate 
compensation strategies in order to mitigate the corrupting effects of the ambient 
conditions. 

 
 
PROBLEM STATEMENT 

 
An acousto-ultrasonic SHM system for hotspot monitoring is considered with 

two different sensor network configurations. The system sensitivity is defined and 
assessed for two configurations with respect to the SHM system’s capability to 
detect cracks (Level I) of increasing size a and under a broad variety of load and 
temperature conditions. 

 
 
THE POD FRAMEWORK FOR ACTIVE SHM SYSTEMS 
 

POD analyses for traditional NDE and SHM systems have several fundamental 
differences [1-4], with one of the major differences being the source of uncertainty. 
Human dependent operator conditions constitute the most significant source of 
uncertainty for traditional NDE inspection systems, whereas varying environmental 
and operating conditions constitute the major sources of uncertainty in SHM systems. 
In order to estimate the POD for a traditional NDE inspection system, several 
calibration samples (identical to actual sample under test) with different damage sizes 
are manufactured and tested by several operators. On the other hand, the POD for 
SHM systems is estimated based on one structure with its attached or embedded 
sensor network configuration, as it is impractical or in some cases even impossible to 
have many identical structures just for testing purposes. More specifically, the POD in 
SHM systems is often referred to as a network POD, since it explicitly depends on the 
employed sensor network, the data acquisition hardware, and the diagnostic algorithm 
used for damage detection. A modification to any of these subsystems necessitates the 
conduction of an updated network POD analysis. A major challenge in network POD 
estimation is the number of coupons (only one) available for testing. In addition, the 
larger the number of data available for each damage size the higher will be the 



accuracy of the POD analysis. The final question that is raised is “how to quantify the 
damage detection reliability of a SHM system with the existing POD formulation?” 

In this work, Acellent Technologies Inc. in collaboration with the Structures and 
Composites Laboratory (SACL) at Stanford University systematically investigate the 
effect of sensor layout on the sensitivity of an active sensing SHM system with respect 
to damage detection. For this reason, a network POD framework is introduced.  A 
preliminary evaluation and assessment of the framework for an SHM system with two 
different sensor network configurations is investigated and discussed.  

The proposed framework consists of: (i) collecting several independent data sets at 
different environmental (temperature) and operating (loads) conditions the structure 
might undergo, (ii) compensating the effect of changing environment on sensor data, 
(iii) calculating damage indices for each data set based on appropriate diagnostic 
algorithms, and (iv) conducting the POD analysis using the existing formulation [6].  

The overall approach of the proposed network POD analysis framework is 
presented in Figure 1. 

 

 
Figure 1: The proposed network POD framework for SHM systems. 

 
 
SYSTEM DESCRIPTION AND DATA COLLECTION 
 
The Experimental Setup 
 

The experimental application and assessment of the proposed network POD 
framework is based on fatigue induced damage (crack of increasing length) data 
collected via two different sensor network configurations, as shown in Figure 2.  

The coupon structure (1/16” thick Aluminum 6061) used in the experiments was 
designed to simulate a hotspot monitoring application such as a tail boom section on a 
rotorcraft. On each side of the coupon, a distinct sensor network configuration is 
attached so that the corresponding POD analysis will represent and evaluate two 
similar SHM systems with different sensing capabilities. Regarding sensor network-1 
(Figure 2(a)), it was assumed that the sensor space is limited to the top left corner of 
the coupon, while for sensor network-2 (Figure 2(b)) it was assumed that the network 
can cover the entire hotspot area. Based on the selected network locations, damage 
was located outside its signal paths for nework-1, whereas for network-2 damage was 
located within the network’s signal paths (see Figure 2). 

Acellent Technologies manufactured sensor network-1 (Figure 2(a)) with a single 
SMART layer that was originally designed for an OH58 helicopter tail-boom study [7].  
The layer was attached on the front side of the coupon. Sensor network-2, which 
consists of six individual SMART layers [8], was attached on the back side of the 

model-based 
temperature 
compensation and 
diagnostics 



coupon. Three of the layers are dedicated for actuation and the other three are used for 
sensing (Figure 2(b)). 

Fatigue tests [8] were performed to initiate damage in the form of crack. Once a 
crack of specific length was observed, the load cycling was stopped and the diagnostic 
data was taken while under static condition.  This was then followed by additional 
fatigue cycles in order to further increase the crack length.  Figure 3 presents the 
general approach for the POD analysis of the two sensor configurations. The work 
presented herein has widespread applicability to any critical structure and is not 
limited to a specific sensor configuration. 
 

  
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data Collection for POD Estimation 
 

Acellent Technologies’ ScanGenie data acquisition hardware, along with its data 
acquisition and diagnostic software (SmartPatch) were used as shown in Figure 4(a). 
In addition, the MTS fatigue testing machine used in the experiments is depicted in 
Figure 4(b). A two-step testing procedure was implemented where the coupon was 
first fatigue tested for “n” number of cycles followed by a second single-cycle static 
test. During the static test, Acousto-Ultrasound sensor data was collected at different 
loads and temperatures. For the control of the ambient temperature during the static 
test, an appropriate environmental chamber was employed.  

Multiple independent data sets for each considered damage size, as required by the 
network POD estimation approach, were obtained by collecting sensor data over a 
range of loads and temperatures. The actuation frequency used by the active sensing 
SHM system was selected at 250 kHz. In the case of fatigue testing, pristine (baseline) 
and damage (current) active diagnostic data was collected under eight different loads 
(0, 1, 2, 3, 4, 5, 6, and 7 kips) and three different temperatures (30 °C, 45 °C, and 
60 °C). Table I provides a summary of the experimental details. Damage data was 
collected at eight different loads, as above, but at five different temperatures (30 °C, 

Figure 3: overall idea of POD estimation for 
two different types of sensor networks. 

Figure 2: Schematic of coupon with sensor 
networks (a) Front side: sensor network-1 and 

(b) Back side: sensor network-2. 
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40 °C, 50 °C, 60 °C, and 70 °C). The mismatch in the availability of temperature data 
was created intentionally in order to evaluate the model-based temperature generation 
and compensation algorithms developed by the authors. Active diagnostic data was 
collected for five different damage sizes in the form of increasing length cracks (5 mm, 
7 mm, 8 mm, 11 mm, and 17 mm). Based on the different combinations of 
consecutive data sets, additional damage indices were calculated for several other 
damage sizes as well. For example, a 3 mm crack length was obtained from a pair of 
data sets (5 mm pristine vs 8 mm damaged). 

 
 
 
 
 
 
 
 
 
Figure 4: (a) Acellent’s ScanGenie data acquisition system with smartpatch software, and (b) MTS 

testing machine used for the fatigue and loads testing. 
 

TABLE I: EXPERIMENTAL DETAILS 

#Coupon Actual damage 
size (mm) 

No of loading 
conditions 

No of 
temperatures 

Total No of  

test cases 
Coupon 1 0 (Baseline) 8 3 24 
Coupon 1 5 8 3 24 
Coupon 1 7 8 3 24 
Coupon 1 8 8 3 24 
Coupon 1 11 8 3 24 
Coupon 1 17 8 3 24 

Total data sets collected for the POD analysis 144 
Actuation frequency: 250 kHz 

 
 

EXPERIMENTAL APPLICATION OF THE SHM POD FRAMEWORK  
 
Temperature Signal Generation and Compensation 
 

The influence of varying environments on piezoelectric sensor signals poses a 
significant challenge for structural damage detection. The effects of varying ambient 
conditions need to be compensated or filtered out from signals to avoid the possibility 
of raising false alarms from damage detection algorithms. As baseline and current data 
are collected at different temperature conditions, the data needs to be compensated 
before applying the damage diagnostic algorithm. Numerical compensation models 
are used to generate baseline signals at desired ambient temperatures. The data 
collected using sensor network-1 and sensor network-2 is however compensated using 
two different approaches. The signal lengths required for these two sensor networks 
are different due to the location of damage with respect to these networks. Specifically, 
damage is outside sensor network-1 which means that the scatter due to damage is 



present in the later part of the signals (reflections). On the other hand, scatter due to 
damage is within or close to the first two arrival wave packets for sensor network-2, as 
damage is located within the network. A physics based temperature compensation 
algorithm [9] was used to accurately reconstruct the first two wave packets in the 
sensor data. The later part of the sensor response is often mixed with edge/boundary 
reflections which result in fictitious change in the signal energy content. This change 
caused by the different interference patterns is difficult to be physically related to the 
change in material properties, which is the case for physics-based compensation 
models. For the data collected using sensor network-1, both first arrival signal and 
later parts involving different reflections are considered for damage detection and 
hence, both parts are to be compensated. Data collected using sensor network-1 was 
thus compensated using this baseline manipulation approach [10]. 
 
Damage Diagnostics 
 

The baseline subtraction technique [8] has been widely accepted by the SHM 
community for damage detection, localization and quantification. The damage 
detection approach depends on the damage index (DI) values estimated from each 
sensing signal path [8, 11]. Sensor data compensated for environmental effects were 
used for damage diagnostics. In this work, the damage indices were estimated for each 
path by normalizing the baseline (pristine) and current (damage) data as shown in Eq. 
(1). Normalization was implemented to eliminate the effect of amplitude difference in 
the signals. The overall DI for the complete data set (all signal paths included) of the 
specific sensor network was estimated as the mean of the DIs of all the paths (See Eq. 
(1)). The SHM system detects damage if the overall DI is above a detection threshold. 
Currently, the selection of a detection threshold for most inspection/monitoring 
systems depends on the experience of the user. However, it is important to note that 
this threshold depends on several parameters and is affected by the experimental, 
environmental, and operating uncertainties, while it also varies with the aging of the 
structure. For the experimental application currently presented, the detection threshold 
was determined following a statistical approach and is set to 0.1 which corresponds to 
the detection of a crack size. 
 
 

 
 
 

(1) 
 
 

 
where x(n), y(n) are the baseline and current signals, respectively, x'(n), y'(n) the 
normalized baseline and current signals, n, N the sample index and the sample length, 
and p, P the path index and the total number of paths. Note that for two sensor 
networks, different signal lengths (windows) were used for the DI calculation. 
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Active SHM POD Results 
 

The standard “a versus â” method presented in the Department of Defense NDE 
system reliability assessment handbook [6] was used for the POD analysis. Essentially, 
this method requires data including the real size of damage and the corresponding 
damage indices as estimated by the diagnostic algorithm. Moreover, it requires the 
values of the upper and lower bounds of the calculated damage indices, along with an 
appropriate damage detection threshold as determined by the diagnostic algorithm. 
Then, these parameters are used to perform a linear regression during the POD 
analysis [6]. For each damage size, the data obtained under the different loads and 
temperatures were used to generate a matrix including damage size versus damage 
index. Finally, these values (actual damage size, damage indices, lower and upper 
bounds of damage indices, and detection threshold) were passed as inputs into the 
POD software [6] which enables the POD analysis and estimates the corresponding 
damage detection confidence levels. 

As mentioned, fatigue data was collected using two distinct sensor networks for 
five different crack lengths. For each crack length, data was collected at three different 
temperatures and eight different loading levels. Based on this data, twenty four 
damage indices were estimated for each crack size. Figure 5 shows the calculated 
damage indices at 4 kips static loading for different temperatures and damage sizes. In 
addition, Figure 6 presents the damage indices estimated at 45 °C temperature for 
different loading levels and damage sizes. From Figures 5 and 6, it is observed that the 
DI profiles for sensor network-2 are slightly more scattered when compared to the 
corresponding results for sensor network-1. Furthermore, it is evident that the DIs 
obtained for sensor network-2, in which damage is located within its signal paths, 
show larger values compared to those of sensor network-1. This is due to the fact that 
sensor network-2 is more sensitive to damage, as the crack is located within the signal 
paths. On the other hand, the increased sensitivity results in a higher DI scatter, as the 
crack may open and close under the different loads and thus resulting in higher DI 
fluctuations. It is also shown that the DI is not linearly proportional with respect to the 
crack length, which is speculated due to the location of the crack with respect to the 
actuator-sensor signal paths [12, 13]. More detailed DI trend analysis is underway. 

 

 
Figure 5: Indicative damage index profiles at 4 kips loading for different temperature and damage 

sizes (a) Sensor network-1, and (b) Sensor network-2. 
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In order to accurately assess the performance of the two sensor networks, 
appropriate selection of the input parameters is required. Figure 7(a) presents the 
estimated POD curve for sensor network-1. In this case, where damage is located 
outside the signal paths, it was estimated that a 3.807 mm crack has 90% POD with 
95% confidence level (POD90/95). On the other hand, Figure 7(b) depicts the POD 
curve for sensor network-2, where damage lies within its signal paths. In this case, the 
estimated value of the POD90/95 is 3.092 mm, which is lower than the corresponding 
value for sensor network-1. As expected, for the specific SHM system, sensor 
network-2 has an increased effectiveness with respect to damage detection, as it can 
detect a smaller crack compared to sensor network-1, which for the same POD level 
can detect a larger crack (almost 19% larger crack size).  
 

 
Figure 6: Indicative damage index profiles estimated at 45 °C temperature for different loads and 

damage sizes (a) Sensor network-1, and (b) Sensor network-2. 
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Figure 7: Estimated POD curves for active diagnostic data collected using (a) sensor network-1, and 

(b) sensor network-2. 
 
 
CONCLUSIONS 
    

Performance quantification of an SHM system at Level-I is of utmost 
importance in order to evaluate the system’s sensitivity with respect to event 
detection. The configuration of the sensor network strongly affects the entire system’s 
sensitivity to damage detection. In this paper, Acellent Technologies in collaboration 
with Stanford University proposed a global network POD analysis framework and 
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compared two distinct types of sensor networks where damage (in the form of crack) 
was located both outside and inside these sensor networks. The global network POD 
framework consists of: (i) data collection under varying environmental (temperature) 
and operating (loading) conditions, (ii) model-based temperature signal generation and 
compensation, (iii) advanced ultrasonic wave based diagnostic algorithms, and (iv) 
POD analysis using the existing formulation.  

Its experimental application for an active sensing SHM hotspot monitoring system 
was demonstrated via fatigue testing data collected under varying temperature and 
loading conditions. The obtained results confirm the effectiveness of the proposed 
framework with respect to the performance quantification of the considered SHM 
systems. As expected, the sensor network in which damage was within its signal paths 
resulted in detecting a crack of the 19% smaller size (higher POD) compared to the 
network in which damage was outside its paths with the same probability (90%) and 
statistical confidence level (95%). To further verify the reliability of the proposed 
POD result from a single coupon, the identical coupons with the same sensor layout 
are currently under testing. 
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