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ABSTRACT

The goal of this study is the introduction and experimental assessment of a Sequential
Probability Ratio Test (SPRT) framework for vibration based Structural Health Monitor-
ing (SHM). This employs the residual sequences obtained using a single stochastic time
series model of the healthy structure and is based on a combination of binary and mul-
tihypothesis versions of the SPRT. The framework’s performance is predetermined via
the use of the Operating Characteristic (OC) and Average Sample Number (ASN) func-
tions in combination with baseline experiments, while it requires on average a minimum
number of samples in order to reach a decision compared to Fixed Sample Size (FSS)
most powerful tests. The effectiveness of the proposed approach is validated and exper-
imentally assessed via its application to a lightweight aluminum truss structure.

INTRODUCTION

Statistical time series methods form an important, rapidly evolving class, within the
broader vibration based family of Structural Health Monitoring (SHM) methods [1–4].
Their main elements are: (i) random excitation and/or vibration response signals (time
series), (ii) statistical model building, and (iii) statistical decision making for inferring
the health state of a structure. They offer a number of potential advantages, including
no requirement for physics based or finite element models as they are data based (in-
verse type) methods, no requirement for complete modal models, effective treatment
of uncertainties, and statistical decision making with specified performance characteris-
tics [1, 2, 5].

The vast majority of statistical time series SHM methods is based on Fixed Sam-
ple Size (FSS) hypothesis testing used for the statistical decision making. On the other
hand, sequential methods have the feature that the number of observations required is
not determined in advance, but depends, at each stage, on the results of the observations
previously made. Thus, the number of observations required by the test is not predeter-
mined, but a random variable. A merit of the sequential approach is that test procedures
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Figure 1. Schematic representation of the sequential framework.

can be constructed which require, on average, a substantially smaller number of obser-
vations than equally reliable test procedures based on a predetermined (fixed) number of
observations and thus leading to a earlier decision [6]. Moreover, a potential advantage
of a SHM method based on sequential procedures is its straightforward extension for
online implementation, which is of high interest with respect to current SHM applica-
tion requirements. In this context, preliminary – with respect to the use of a Sequential
Probability Ratio Test (SPRT) scheme – studies include [7, 8], where the binary form
of the SPRT based on AR-ARX model residuals has been applied for damage detection
in a laboratory three-story building model and an eight-degree-of-freedom mass-spring
system, respectively.

The goal of the present study is the introduction and experimental assessment of
a model residual based sequential framework for SHM capable of achieving early and
robust damage detection and identification (classification) under experimental uncertain-
ties. This framework is based on the statistically optimal SPRT (both its binary and mul-
tihypothesis versions [9, 10]), while taking advantage – for the first time in the context
of vibration based SHM – of its properties and capabilities. The basis of the proposed
framework consists of the residual sequences obtained through a single stochastic time
series model of the healthy structural dynamics.

The effectiveness of the framework is validated and experimentally assessed via its
application to a lightweight aluminum truss structure. The results presented for three
distinct vibration response measurement positions, with a single measurement used at a
time, confirm its ability to operate based even on a single pair of measured excitation–
response signals. The damage cases correspond to the loosening of various bolts con-
necting certain of the truss elements. The main features and operational characteristics
are discussed, while the effectiveness is demonstrated via various test cases correspond-
ing to different experiments, damage types, and vibration measurement positions.

THE MODEL RESIDUAL BASED SEQUENTIAL FRAMEWORK

The postulated framework consists of two phases: (a) An initial baseline phase,
which includes the modeling of the healthy structure, and (b) the inspection phase, which
is performed during the structure’s service cycle or continuously (online), and includes
the functions of damage detection and identification. A schematic representation of the
sequential framework is presented in Figure 1.

Baseline Phase

Data records from the healthy structure are employed for the identification of an
appropriate parametric time series model. Specifically a scalar (univariate) model is
needed in case of a single vibration response measurement location, or a vector (multi-



variate) model (or suboptimally an array of scalar models) is needed in case that more
vibration response measurement locations are to be simultaneously used. In the linear
excitation–response case, AutoRegressive (AR) or AutoRegressive with eXogenous ex-
citation (ARX) models may be employed [11]. In the present study a single measurement
location, and a corresponding scalar ARX model, is used at a time.

Inspection Phase

Damage detection and identification are based on the binary and multihypothesis
versions of the SPRT, respectively [9, 10], which are used in order to detect a change in
the standard deviation σ of the model residual sequence obtained by driving the current
(unknown) excitation (x[t]) and response (y[t]) signals through a single baseline healthy
time series model. The SPRT allows for the specification of two values σo and σ1 for the
standard deviation, so that the structure is determined healthy iff σ ≤ σo, and damaged
iff σ ≥ σ1. The zone between σo and σ1 constitutes an uncertainty zone, thus for σ lying
in it the decision is postponed and data collection continues. The values of σo and σ1 are
user defined and express the increase of the standard deviation ratio q = σ1/σo for which
the structure is considered to be damaged. For example, a ratio of q = 1.1 means that
the structure is considered damaged whenever there is an increase of 10% in the standard
deviation σ of the current residual sequence compared to a threshold value σo.

Damage detection is based on the binary hypothesis testing problem implemented
via the SPRT of strength (α, β), with α, β designating the type I (false alarm) and II
(missed damage) error probabilities, respectively:

Ho : σ ≤ σo (null hypothesis – healthy structure)
H1 : σ ≥ σ1 (alternative hypothesis – damaged structure) (1)

with σ designating the standard deviation of a scalar model residual signal e[t] obtained
by driving the current response signal through the healthy structural model, and σo, σ1

user defined values. Under the null hypothesis of a healthy structure the residuals e[t]
are iid zero mean Gaussian with variance σ2, hence e[t] ∼ iid N (0, σ2).

The basis of the SPRT is the logarithm of the likelihood ratio function which is
computed at data sample t (presently coinciding with discrete time) as follows:

Λ[t] = log f(e[1],...,e[t]|H1)
f(e[1],...,e[t]|Ho)

=
∑t

l=1 log
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σ1
+ σ2

1
−σ2
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2σ2
o
σ2
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·
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l=1 e
2[t], t = 1, 2, . . .

(2)

with Λ[t] designating the decision parameter of the method and f(e[t]|Hi) the probability
density function (normal distribution) of the residual sequence under hypothesis Hi (i =
0, 1).

Decision making is then based on the test (of strength (α, β)):

Λ[t] ≤ logB accept Ho (healthy structure)
Λ[t] ≥ logA accept H1 (damaged structure)

logB < Λ[t] ≤ logA no decision is made (continue the test)
(3)

with A = (1 − β)/α and B = β/(1− α). Following a decision at a stopping sample
(time) T̂ , it is possible to continue the test by resetting Λ[T̂ + 1] to zero and continuing
by collecting additional residual samples.



For any value of the residual standard deviation σ, the Operating Characteristic (OC)
function of the SPRT denotes the probability that the test will terminate with the ac-
ceptance of the null hypothesis Ho [9]. Similarly, the Average Sample Number (ASN)
function represents the average number of inspection samples required by the SPRT to
reach a decision [9]. The ASN is an approximation of the expected value Eσ{T} of the
number of residual samples required by a sampling plan of strength (α, β) and standard
deviations σo, σ1 in order to reach a terminal decision.

Damage identification is based on the multihypothesis sequential test, which is based
on the Armitage test [9,10]. Then, considering k hypotheses (k potential damage states),
the multihypothesis test to be implemented may be expressed as follows:

HA : σ = σA Hypothesis A – damage is of type A
HB : σ = σB Hypothesis B – damage is of type B

... ... ...
(4)

The standard deviation values σA, σB, . . . are user defined and may be determined based
on available baseline data obtained from the structure under damage types A,B, . . ., re-
spectively. A typical selection of σA, σB, . . . could be as the mean values of the residual
standard deviations estimated from the available baseline data records under the corre-
sponding damage structural states. By denoting the log likelihood under hypothesis Hi

(Hi is true, i = A,B, . . .) as Li there are 1
2k(k − 1) log likelihood ratios for the various

pairs of hypotheses, with each one expressed in terms of k − 1 independent likelihood
ratios [10, 12]:

Λij[t] =
Li[t]

Lj[t]
= t · log

σj

σi

+
σ2
i − σ2

j

2σ2
jσ

2
i

·
t∑

l=1

e2[t] i, j = A,B, . . . and i ̸= j. (5)

Then, the multihypothesis test termination is defined by the pair (T, δ), with T indicating
the stopping time and δ the final decision [12, pp. 237–238]:

T̂ = min
j

inf
{
t : Λij[t] ≥ logAij ∀ i ̸= j, i < j, t = 1, 2, . . .

}
, δ̂ = arg min

j=1,...,k
T. (6)

Let aij the probability of accepting Hi when in fact Hj is true (error probabilities), that
is αij = P (δ = Hi/Hj), i ̸= j, and let aii the probability of accepting Hi when in
fact Hi is true (correct decision probabilities), that is αii = P (δ = Hi/Hi). The error
probabilities aij may be controlled via suitable selection of the Aij’s [9, 10].

It is possible that different damage types may have a similar effect on the residual
sequences and thus in the residual standard deviation. Thus, the multihypothesis method
will not provide clear classification results for the corresponding damage types, but an
indication of the potential types. In this case the user may apply, in a second stage, the
binary SPRT between the damage types indicated by the multihypothesis testing.

THE STRUCTURE AND THE EXPERIMENTAL SET-UP

The truss structure is suspended through a set of cords and consists of twenty eight
elements with rectangular cross sections (15 × 15 mm) jointed together via steel elbow
plates and bolts (Figure 2). All parts are constructed from standard aluminum with the



Figure 2. The aluminum truss structure and the experimental set-up: The force excitation (Point
X), the vibration measurement positions (Points Y1–Y3), and the considered damage types.

overall dimensions being 1400×700×800 mm. The force excitation is a random Gaus-
sian signal applied vertically at Point X via an electromechanical shaker (MB Dynamics
Modal 50A, max load 225 N) equipped with a stinger, and measured via an impedance
head (PCB 288D01, sensitivity 98.41 mV/lb). The vibration responses are measured
at different points via dynamic strain gauges (PCB ICP 740B02, 0.005 − 100 kHz, 50
mV/µε; sampling frequency fs = 256 Hz, signal bandwidth 0.5 − 100 Hz). The force
and strain signals are driven through a signal conditioning device (PCB 481A02) into the
data acquisition system (SigLab 20–42). In this study the damage detection and identifi-
cation results are obtained based on each one of three vibration response signals (Points
Y1, Y2 and Y3 – Figure 2). This allows the examination and assessment of the pro-
posed framework’s ability to achieve damage detection and identification with respect
to the vibration response measurement positions employed. For this reason, damage is
characterized as “local” or “remote” with respect to the sensor used.

1200 and 900 experiments for the healthy and damaged structural states, respectively,
are undertaken, 100 of which are employed in the baseline phase – the rest are used in the
inspection phase; see Table I). In each experiment vibration measurements are collected
at Points Y1, Y2, Y3 (Figure 2). Further experimental details are provided in Table I
– worth noting is the very low/limited bandwidth used. The sample mean is subtracted
from each signal and scaling by the signal’s sample standard deviation is implemented.

TABLE I. THE DAMAGE TYPES AND EXPERIMENTAL DETAILS.
Structural State Description Total Number of Experiments
Healthy — 1200 (100 baseline )
Damage type A loosening of bolt A1 900 (100 baseline )
Damage type B loosening of bolts A1 and B1 900 (100 baseline )
Damage type C loosening of bolts C1 and C2 900 (100 baseline )
Damage type D loosening of bolt D1 900 (100 baseline )
Damage type E loosening of bolt E1 900 (100 baseline )
Sampling frequency: fs = 256 Hz, Signal bandwidth: [0.5− 100] Hz
Signal length N in samples (s): Non-parametric analysis: N = 30 720 (120 s)

Parametric analysis: N = 1 000 (3.9 s)



DAMAGE DETECTION AND IDENTIFICATION RESULTS

Baseline Phase: Structural Identification Under the Healthy Structural State

Parametric identification of the structural dynamics is based on N = 10 000 (≈ 39
s) sample-long excitation and single response signals which are used for estimating Au-
toRegressive with eXogenous excitation (ARX) models (MATLAB function arx.m). The
modeling strategy consists of the successive fitting of ARX(na, nb) models (with na, nb
designating the AR and X orders, respectively; in this study na = nb = n) until a
suitable model is selected. Model parameter estimation is achieved by minimizing a
quadratic Prediction Error (PE) criterion leading to a Least Squares (LS) estimator [11,
p. 206]. Model order selection is based on the BIC and RSS/SSS (Residual Sum of
Squares / Signal Sum of Squares) criteria, and the use of frequency stabilization dia-
grams [11]. This procedure leads to the selection of an ARX(112, 112), ARX(136, 136)
and ARX(103, 103) model for vibration measurement positions Y1, Y2 and Y3, respec-
tively. The selected models are summarized in Table II. Note that the identification pro-
cedure generally leads to different ARX models (including somewhat different model
orders) for each vibration measurement position.

Inspection Phase

Prior to implementing the SPRT, an appropriate sampling plan should be selected.
The selection of the sampling plan involves the determination of the following three
aspects: (i) the nominal residual standard deviation σo under which the structure is con-
sidered to be in its healthy state, (ii) the standard deviation ratio q = σ1/σo, which
constitutes the standard deviation increase under which the structure is determined to be
damaged, and (iii) the SPRT strength (α, β),

The determination of the residual standard deviation σo under which the structure
is considered healthy is based on the available 100 baseline data records obtained from
the healthy structure (Table I). The value σo is chosen in order for the probability of
σ ≤ σo to be equal to 95% (P (σ ≤ σo) = 0.95). The determination of the residual
standard deviation ratio q may be based on the OC and ASN functions of the SPRT [9]
for various q ratios, along with the use of the baseline data records. Figures 3a and 3b
present, for vibration response Y1, the OC and ASN functions, respectively, for various
candidate ratios q and constant SPRT strength (α, β) = (0.01, 0.01). In both figures,
the σo value is shown as gray vertical dashed line, while the σ1 values corresponding to
the considered q = σ1/σo ratios are shown in colored vertical dashed lines. Along with
the OC and ASN function curves, the standard deviation values obtained from the 100
baseline residual sequences are depicted in vertical cyan dashed lines.

In Figure 3a the intersections of the dashed vertical lines, belonging to the residual
standard deviation values, with the OC function curves for the various q ratios corre-

TABLE II. SELECTED MODELS AND ESTIMATION DETAILS.
Response Selected Model No of estimated parameters SPP BIC RSS/SSS (%)

Y1 ARX(112, 112) 225 parameters 44.4 −5.19 0.43
Y2 ARX(136, 136) 273 parameters 36.6 −5.83 0.22
Y3 ARX(103, 103) 207 parameters 48.3 −4.31 1.07
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Figure 3. Healthy structure: (a) Operating Characteristic (OC) and (b) Average Sample Number
(ASN) functions for various residual standard deviation ratios q = σ1/σo and constant strength
(α,β) = 0.01. The vertical colored dashed lines designate the σ1 values for the corresponding

ratios q. The dashed vertical cyan lines represent the residual standard deviation values for each
of the 100 baseline healthy data sets.

spond to the probabilities of acceptance of the null hypothesis Ho (healthy structure) for
each ratio, while in Figure 3b correspond to the expected number of residual samples
required to reach a decision. The OC function (Figure 3a) is considered more favorable
the higher the value of L(σ) for σ consistent with Ho and the lower the value of L(σ)
for σ not consistent with Ho. Thus, by plotting the OC and ASN functions, not only one
may have an indication of the probability of acceptance for various residual standard de-
viations σ, but one may also obtain an approximation of the number of residual samples
that are required for reaching a terminal decision.

Indicative damage detection results for Point Y3 are presented in Figure 4. A damage
is detected when the test statistic (vertical axis) exceeds the upper critical point (dashed
horizontal lines), while the structure is determined as being in its healthy state when
the test statistic exceeds the lower critical point. After a critical point is exceeded a
decision is made, while the test statistic is reset to zero and the test continues. Hence,
during testing multiple decisions may be made. Evidently, correct detection is obtained
in each test case, as the test statistic is shown to exceed multiple times (multiple correct
decisions) the lower critical point in the healthy case, while it also exceeds multiple times
the upper critical point (multiple correct damage detections) in the damage test cases.

The summarized damage detection results are presented in Table III. The false alarm
rates are extremely low, as well as the mean missed damage rates which are zero, except
for damage type A which exhibits a somewhat increased number of missed damage rate
when the response Y1 is used. Summary identification results for all vibration responses
are presented in Table IV. The correct damage classification percentages are presented
for all damage type inspection sets, along with the corresponding mean stopping times.
As it may be observed the multihypothesis test damage classification results obtained for
all vibration responses are very accurate for damage types A, C and E, as the percentages
of correct classification are very high. Nevertheless, the method faces difficulties in ac-
curately classifying damage types B and D. As already mentioned, this is due to the fact
that these damage types have a similar effect on their corresponding residual standard
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Figure 4. Indicative damage detection results (response Y3) at the (α,β) = (0.01, 0.01) risk
levels (q = σ1/σo = 1.1). The actual structural state is shown above each plot.

deviation values obtained through the healthy models. In this case, the user may apply
the binary SPRT for the candidate damage types. Nevertheless, this procedure would
require the baseline modeling of at least one of these types.

CONCLUDING REMARKS

A model residual based sequential framework for SHM was introduced. Damage
detection and identification were effectively tackled, achieving high performance with
practically zero false alarms and missed damage rates. An optimal sampling plan was
determined a priori via the use of the Operating Characteristic (OC) and Average Sample
Number (ASN) functions, selected type I (false alarm) and II (missed damage) error
probabilities, and available baseline data records under various potential states. Early
(needing at maximum 0.9 s) and robust damage detection were achieved, and “local” and
“remote” damage with respect to the sensor position was detected. The multihypothesis

TABLE III. DAMAGE DETECTION SUMMARY RESULTS.
Damage Detection

Response Mean Mean Mean missed damage values
healthy false

detections alarms damage A damage B damage C damage D damage E
Y1 4.40 0.001 0.390 0 0 0 0
Y2 4.34 0.005 0.048 0 0 0 0
Y3 3.61 0.005 0 0 0 0 0

Test strength (α,β) = 0.01; Residual standard deviation ratio q = σ1/σo = 1.1.
Mean healthy detections and false alarms per data set out of 1100 healthy inspection experiments.
Mean missed damage values per data set out of 900 damage inspection experiments.



TABLE IV. DAMAGE IDENTIFICATION SUMMARY RESULTS.
Damage classification (%)

Actual Acceptance rate for each damage hypothesis when the actual damage is as indicated on the left column
damage damage A damage B damage C damage D damage E

hypothesis hypothesis hypothesis hypothesis hypothesis
Type A 99.33/98.22/100 0.11/0/0 0/0/0 0.55/1.78/0 0/0/0
Type B 0/0/0 45.65/69.77/66.55 2.33/0/0 52/30.22/33.44 0/0/0
Type C 0/0/0 0/0/0 98.32/95.10/100 0/0/0 0.66/4.89/0
Type D 0/0/0 46.33/11.22/49.99 0/0/0 53.55/88.77/51.01 0/0/0
Type E 0/0/0 0/0/0 0.11/1.11/0.77 0/0/0 99.88/98.88/97.65

Mean stop. time 15.68/22.84/8.76 174.35/172.32/176.26 36.18/117.99/3.81 200.08/167.34/231.98 18.54/90.33/27.21
Damage classification percentage for points Y1/Y2/Y3 out of 800 inspection experiments; αij = 0.01.
Mean stopping time in samples for points Y1/Y2/Y3 out of 800 inspection experiments of 1000 samples.

test based damage identification procedure faced some difficulties in classifying one
damage type, an issue that may be tackled via the baseline modeling of the specific
damage type followed by binary SPRT testing.
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