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Abstract—The general problem of conformance monitoring
with respect to preassigned 4-dimensional (4D) trajectories
equipped with corresponding 4D margins (4D contracts) is
considered within an adaptive statistical time series framework.
The specific issues tackled within this context are: (a) Present
conformance monitoring and quality of conformance evalua-
tion via statistical tools, which also leads to abnormal event
detection; (b) future conformance monitoring, in which the
conformance is predicted ahead of time, allowing for potentially
corrective or other actions. The performance of the developed
methods is assessed via simulations. In present conformance
monitoring, an alarm is shown to be issued instantaneously,
following the emergence of an abnormal event. In future
conformance monitoring, the comparison with a scheme based
on nominal probabilistic trajectory prediction demonstrates the
benefits of the adaptive statistical time series framework.

I. INTRODUCTION

The primary goal of navigation monitoring is to ensure
the safety, security and efficiency of air traffic operations
[1], [2]. In order to achieve these aims, flight plans are
issued for each aircraft, and clearances are created and
issued by air traffic controllers given the constraints of the
Air Traffic Control (ATC) system design. In future ATC
concepts, these clearances may be based on aircraft-preferred
conflict-free trajectories that are authorized by a centralized
ground unit. In any case, an ATC function is required to
ensure that the aircraft adhere to their assigned clearances
by detecting excessive deviations that could compromise
system operation, enabling corrective action to be initiated
when required. This function is referred to as conformance
monitoring [1]–[3].

General conformance monitoring has, in its current sense,
been typically performed by ATC, by comparing radar data
with assigned flight paths [1]. Significant delays often exist
before an aircraft non-conformance may be detected; this
is due to surveillance and workload limitations, as well as
the requirement to account for numerous, distinct, aircraft
tracking capabilities. The issue of present conformance mon-
itoring has been addressed in a number of studies [1]–[4].
Nevertheless, limited attention has been paid to the task of
future (predictive) conformance monitoring [5]. Although
several trajectory prediction methodologies – which play
a core role in this context – have been suggested [6],
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[7], very few studies treat the issue of future conformance
monitoring [5]. Trajectory prediction methodologies may
be generally divided into three categories: nominal, worst
case, and probabilistic [6]. Nominal methods predict the
aircraft position by propagating the aircraft states into the
future without taking into account uncertainties. Worst-case
methods assume that the aircraft will perform any of a set of
prescribed maneuvers and the worst case one is selected for
trajectory prediction. Probabilistic methods predict the future
trajectory by taking into account uncertainties. For a review
of the various methods the reader is referred to [6].

The 4D trajectory concept, that is being at a pre-assigned
specific position at a given time, has been recently refor-
mulated into the form of 4D contracts in [8]–[10]. First,
the ground segment of the system is in charge of generat-
ing conflict-free 4D trajectories with corresponding contract
margins (the 4D contracts) according to demand and airspace
capacity. Then, the aircraft are assigned the generated 4D
contracts and have the responsibility to comply with them.
Hence, conformance of each actually flown 4D trajectory
with respect to its assigned counterpart, needs to be continu-
ously monitored. For details the reader is referred to [8]–[10]
and references therein.

The focus of the present study is on the problem of
conformance monitoring with respect to preassigned 4D
contracts. Two specific issues are considered and correspond-
ing methods are developed within an adaptive statistical
time series framework: (a) Present conformance monitoring
(simply referred to as conformance monitoring) and quality
of conformance evaluation via statistical tools, which also
leads to the early detection of events that may potentially
lead to either lack of conformance or degraded quality of
conformance. (b) Future conformance monitoring, in which
the conformance is predicted ahead of time, potentially
allowing for the initiation of proper actions before unaccept-
able deviations from the planned trajectory and its assigned
margins actually occur. The performance of the developed
methods is assessed via simulation. The attained future
conformance is compared with that of a scheme based on
nominal probabilistic trajectory prediction [11], [12].

An advantage of the adaptive time series framework lies
with the fact that there may be no absolute need (although
improvements would be possible) for taking the aircraft
intent into account, nor for analytical expressions of the
aircraft kinematic equations, which necessitate the use of
elaborate techniques and time consuming algorithms for
prediction [3], [7]. On the contrary, it is based on relatively
simple time-varying adaptive time series models that are
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Fig. 1. Schematic representation of the contract bone trajectory and
the contract margins in the local navigation frame (no altitude shown);
instantaneous (time instant t2) along-track and cross-track sample deviations
are also depicted.

capable of modeling the along-track, cross-track, and altitude
deviations with respect to a preassigned contract.

The paper is organized as follows: Present conformance
monitoring is discussed in Section II. Future conformance
monitoring is presented in Section III, while simulation
results are presented in Section IV. Concluding remarks are
summarized in Section V.

II. PRESENT CONFORMANCE MONITORING

A. Preamble

A main element of a 4D contract is the bone trajectory,
which is the nominal trajectory and the element of the
contract that should be as close as possible to the actu-
ally flown 4D trajectory. The bone trajectory is formed by
successive 4D waypoints (WPs), which define its geometry.
The Contract Bubble (CB) is formed around the bone trajec-
tory, by defining contract margins in all directions as pairs
(i.e. early/late for along-track, left/right for cross-track, and
low/high for altitude). An aircraft complies with its contract
as long as it stays within a restricted part of its CB, which
is referred to as the Freedom Bubble (FB) and is produced
by eroding the CB by safety margins that ensure minimum
separation [this is done by defining a Safety Bubble (SB)
around the aircraft position]. See [8]–[10] and references
therein for details.

In the context of the present article, and for simplicity
of presentation, explicit reference is made only to the bone
trajectory and the CB. The latter is considered violated as
soon as its margins are, in any direction, exceeded.

A schematic representation of the contract bone trajectory
(in the local navigation frame – no altitude is shown)
and the corresponding along-track and cross-track contract
margins are presented in Fig. 1, along with an example of
instantaneous along-track and cross-track flown trajectory
deviations.

B. Conformance monitoring

In general, the aircraft position state vector is defined as1:

x[t] =
[
x1[t] x2[t] x3[t]

]T (1)

1Bold face upper/lower case symbols designate matrix/column-vector
quantities, respectively.

with x1[t] and x2[t] designating the coordinates in the local
navigation frame (the x1 axis pointing at the aircraft heading
direction), and x3[t] the altitude coordinate.

In the context of conformance monitoring, the aircraft
trajectory deviations from the contract bone trajectory are
referred to as the Conformance Residuals (CRs) [1], [2].
These represent the difference between the actual (observed)
aircraft 3D position, available through surveillance, and
the expected aircraft position as described by its assigned
contract bone trajectory at any time instant t (see Fig. 1).
Present conformance monitoring is then achieved via the
on-line monitoring of the CRs and their comparison to the
allowable margins.

C. Statistical quality of conformance monitoring

The problems of on-line monitoring of the quality of con-
formance and the early detection of abnormal (or hazardous)
events is treated via proper statistical tools. When an aircraft
experiences abnormal conditions, such as severe turbulence,
winds, or other hazardous events such as system failure,
the mean and/or variance of the trajectory deviations are
expected to change, leading to a decrease in conformance
quality. x̄ and S control charts [13] may be employed to
monitor the quality of conformance and also detect changes
which may be due to various events.

As the statistical tools referring to quality assurance re-
quire serially uncorrelated observations [13] – which is for
obvious reasons violated by the aircraft contract deviation
signals – proper pre-processing is necessary. The measured
contract deviation signals are thus modeled within a non-
stationary adaptive time series modeling framework using
Recursive AutoRegressive (RAR) models – for details the
reader is referred to section (III-B). This type of modeling is
necessary in order to properly account for serial correlation
and also for the non-stationarity present in each signal.
Following this, statistical quality assurance tools are applied
on the residual (one-step-head prediction error) signal which
fulfills the serial uncorrelatedness assumption.

Using the contract deviation residual signal e[t+ 1|t], its
standard deviation σe[t] is estimated via a sliding window of
length m. Then the sample standard deviation2 σ̂e[t] becomes
the charted value using an S control chart [13, p. 230]. The
average value of the standard deviation is designated as S̄.
The upper control limit (UCL), control limit (CL) and the
lower control limit (LCL) are defined as UCL = B4S̄,
CL = S̄ and LCL = B3S̄, respectively. The values of
B3, B4 are obtained based on the window length m by
the following relations, or else directly from statistical tables
[13]:

B3 = 1−
3

c4
√
2(m− 1)

, B4 = 1 +
3

c4
√
2(m− 1)

(2)

with c4 =
4(m− 1)

4m− 3
. (3)

2A hat designates estimator/estimate of the indicated quantity.



The S chart, with its limits, thus constitutes a statistical mea-
sure of the conformance quality which may be continuously
monitored. Abnormal deviations, beyond the established lim-
its, function as alarms for changes (for instance degradation)
in quality, and are, expectedly, associated with various root
events. It has been shown that the control limits based on the
normality assumption can often be successfully used unless
the population is extremely non-normal [13, p. 203].

III. FUTURE CONFORMANCE MONITORING

Future conformance monitoring is treated via the use of
two distinct trajectory prediction methods: A nominal prob-
abilistic method and an adaptive time series based method.

A. Method A: The nominal probabilistic prediction method
In [11], [14] a simple probabilistic description of the

global effects of the perturbations affecting the aircraft mo-
tion is described. The predicted aircraft position is calculated
by propagating the present aircraft states into the future along
a single trajectory. The predicted deviations are represented
by zero-mean Gaussian random variables.

The variance of the along-track component σ2
a(t) is con-

sidered growing quadratically with time t, while the variance
of the cross-track component σ2

c (t) is growing quadratically
with the travelled distance s(t), until it saturates to a fixed
value σ̄2

c . The along-track and cross-track components are
assumed to be mutually independent. The variance of the
vertical component is considered to remain constant [11],
[14]. Hence:

σ2
a(t) = r2a · t, σ2

c (t) = min{r2c · s
2(t), σ̄2

c}. (4)

The subscripts a, c refer to the along-track and cross-track
directions, respectively. In [11], it is argued that this model
is fairly accurate for predicting the position of an aircraft
over a mid-term horizon in the order of 20 min.

Presently the case of level flight is considered. This is done
primarily for ease of presentation, while the generalization to
the 3D case is straightforward. It is assumed that the aircraft
receives a 4D contract from the ATC in terms of a sequence
of n+ 1 waypoints {WPj}j=0,...,n, WPj ∈ R2, that are to
be reached at specific times.

Following [14], it is assumed that the predicted (at time t
for the future time t+h; hence prediction horizon h) aircraft
position x̂[t + h|t] may be modeled as a Gaussian random
vector:

x̂[t+ h|t] = [x̂1[t+ h|t] x̂2[t+ h|t]] ∈ R
2 (5)

x̂[t+ h|t] ∼ N (x[t+ h],Σ(h)). (6)

with mean x[t+h] coinciding with the actual future position
of the aircraft and covariance matrix Σ(h). The expression
N (·, ·) designates Gaussian distribution with the indicated
mean and covariance.

Let θj designate the heading of the aircraft at time t+h ∈
[Tj−1, Tj), with Tj denoting the arrival time at the way point
WPj . Then, the covariance matrix Σ(h) is given by:

Σ(h) = R(θj)Σ̄(h)R(θj)
T , Σ̄(h) = diag(σ2

a(h),σ
2
c (h))

(7)

with Σ̄(h) designating the covariance matrix in the body
coordinate frame. R(θ) is the rotation matrix associated with
the aircraft heading θj [11], [14].

B. Method B: The adaptive time series prediction method
As already mentioned, the time-varying nature of the con-

tract deviation signal characteristics – due to the continuously
changing environmental (wind, gusts) and flying conditions –
necessitates the use of appropriate adaptive model structures
with parameters that continuously adapt to the changing
dynamics. An adaptive scheme that is based on Recursive
AutoRegressive (RAR) modeling of the contract deviations
is thus introduced. The RAR(na) model, with na designating
the AutoRegressive (AR) order, is of the form:

A(B, t) · y[t] = e[t], e[t] ∼ N (0,σ2
e [t]) (8)

A(B, t) = 1 + a1[t] · B + a2[t] · B
2 + . . .+ ana[t] · B

na (9)

with t referring to normalized discrete time (with the corre-
sponding actual time being (t−1)Ts, with Ts designating the
sampling period), y[t] the along-track or cross-track contract
deviation signal, and e[t] an (unobservable) uncorrelated
(white) innovations sequence with zero mean and variance
σ2
e [t]. B designates the backshift operator (Bi·y[t] = y[t−i]),

and ai[t] the i-th AR parameter at time t.
The estimation of the model parameter vector θ[t] =

[a1[t] . . . ana[t]]T is based on minimization of the weighted
least squares (WLS) criterion [15, pp. 363–368]:

θ̂[t] = argmin
θ[t]

t∑

τ=1

λt−τ · e2[τ, θτ−1] (10)

with:

e[t, θt−1] = A(B, t) · y[t] = y[t] +
na∑

i=1

ai[t] · y[t− i] (11)

designating the model’s one-step-ahead prediction error
(residual) e[t|t − 1]; the prediction is computed using the
model parameters at time instant t−1 as those corresponding
to t are not available at time t − 1. The term λt−τ is a
weighting function that, for λ ∈ (0, 1), assigns more weight
to more recent deviations. λ is referred to as the forgetting
factor.

The smaller the value of λ, the faster older values of
the error (and thus the signal) are forgotten, thus increasing
the estimator adaptability (its ability to track the evolution
of the dynamics). Yet, at the same time, the accuracy of
the estimator decreases, as its covariance increases [15, pp.
381–382]. Therefore, the selection of λ is crucial as it
represents the basic trade-off between tracking ability and
achievable parameter accuracy. The minimization of (10)
leads to the well-known Recursive Least Squares (RLS)
algorithm (Matlab function rarx.m) [15, pp. 363–369].

The innovations (residual) variance σ2
e [t] may be estimated

via a window of length m that slides over the prediction error
(residuals) sequence, that is:

σ̂2
e [t] =

1

m

t∑

t−m+1

ê2[t|t− 1]. (12)



At each time instant the corresponding estimated
RAR(na) model parameter vector θ̂[t] is employed for the
computation of the h-step-ahead prediction ŷ[t+ h|t] of the
contract deviations signal, with ŷ[t+h|t] ∼ N (y[t+h],σ2

y[t+
h|t]) [16, pp. 131–135]. For details on the computation of
ŷ[t + h|t] the reader is referred to [15, pp. 70–72]. Once
the predicted value of the signal ŷ[t + h|t] is available, the
prediction error variance is estimated as:

σ2
y[t+ h|t] = V ar

[
e[t+ h|t]

]
=

h−1∑

j=1

G2
j [t] · σ

2
e [t] (13)

where e[t + h|t] ≡ e[t + h] is the prediction error se-
quence and σ2

e [t] its time-varying variance estimated as in
(12). Gj [t] designates the j-th Green’s function coefficient.
It is important to mention that due to the time-varying
model parameters, the Green’s function coefficients are cal-
culated considering that the backshift operator obeys a non-
commutative (“skew”) multiplication algebra (“◦”), defined
such that Bi ◦ Bj = Bi+j , Bi ◦ y[t] = y[t − i] · Bi. For
details the reader is referred to [17] and references therein.
The interval predictions of y[t+ h] made at time t are then
(at the 1− α confidence level):

ŷ[t+ h|t]± Z1−α

2
· σ̂y[t+ h|t] (14)

with Z1−α

2
designating the normal distribution’s 1 − α

2
critical point.

C. Checking future conformance
Standing at time t, future (for time t + h) conformance

monitoring, taking uncertainties into account, is based on
statistical confirmation that the along-track and cross-track
contract future (at time t+h) deviations shall be smaller, in
magnitude, than the corresponding contract margins δi[t +
h] (> 0). This is accomplished by setting up a formal
statistical hypothesis testing problem of the form:

Ho : |yi[t+ h]| ≤ δi[t+ h] (conformance)
H1 : otherwise (non-conformance) (15)

with i = a, c for the along-track and cross-track deviations,
respectively. As the contract deviations yi[t+h] are of course
not available at the present time t, their corresponding h-
step-ahead predicted values ŷi[t + h|t] are employed, with
ŷi[t + h|t] ∼ N (yi[t + h],σ2

yi
[t + h|t]) [16, pp. 131–135].

The variance σ2
yi
[t + h|t] is generally unknown, but may

be also estimated via (13) using estimates of the involved
quantities. Assuming negligible variability of the estimated
variance σ̂2

yi
[t+h|t], leads to the following decision making

(conservative decision with maximum Type I error proba-
bility, that is probability of accepting the non-conformance
hypothesis when the conformance hypothesis is actually true,
equal to α):

ZA < Z1−α (when ŷi[t+ h|t] > 0) ⇒ Ho is accepted
ZB > Zα (when ŷi[t+ h|t] < 0) ⇒ Ho is accepted

Else ⇒ H1 is accepted
(16)

TABLE I
DETAILS ON THE SIMULATED 4D CONTRACT

Number of WPs 11
WP altitude FL300
WP interval distance 87.3 s (11 nmi)
Initial a/c heading 36.5o

Along-track margin δa = ±25 s (early/late margins)
Cross-track margin δc = ±1.49 nmi

TABLE II
SIMULATED FLIGHT DETAILS

Aircraft type Boeing 737–500 (JSBSim simulator)
Flight duration 868 s
Cruise speed 0.74 mach
Turbulence moderate
Heading deviation +3.5o at td = 436 s
Contract violation time tv = 650 s (cross-track violation)

with Z1−α, Zα designating the standard normal distribution’s
1−α, α critical points, respectively. ZA and ZB are defined
as:

ZA =
ŷi[t+ h|t]− δi[t+ h]

σ̂yi
[t+ h|t]

, ZB =
ŷi[t+ h|t] + δi[t+ h]

σ̂yi
[t+ h|t]

(17)
An alternative approach, perhaps more intuitive and ap-

propriate for informing the aircrew and ATC, would be to
estimate the future probability of non-conformance P (NC).

IV. SIMULATION RESULTS

A simulation scenario is conducted using the open source
JSBSim flight simulator [18]. The scenario involves a Boeing
737 aircraft during cruise flight which initially complies with
its contract. Then a heading deviation of 3.5o is introduced
at td = 436 s. This later results in non-conformance, as
the cross-track margin δc = 1.49 nmi is exceeded at time
tv = 650 s. The contract and simulation details are presented
in Tables I and II, respectively.

A. Adaptive time series modeling
For the selection of the AR order na and the forgetting

factor λ, the RSS/SSS (Residuals Sum of Squares/Signal
Sum of Squares) criterion, describing the predictive ability
of the model, is employed in an off-line procedure using
historical flight data. AR orders up to 20 and forgetting
factor values λ ∈ [0.93, 0.999] (incremental step of 0.001)
are considered. Table III presents the selected adaptive model
forms (for both the along-track and cross-track deviations)
and estimation details.

B. Present conformance monitoring
The S-chart based statistical quality control scheme em-

ploys an adaptive RAR(18) model for capturing the contract
deviation dynamics (see Table III). Fig. 2 demonstrates
the ability of the method to indicate that the quality of
conformance has been degraded once the heading deviation
is introduced at time td (vertical dashed line). The horizontal
dashed line indicates the upper control limit. Conformance
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Fig. 2. Statistical quality of conformance monitoring and event detection
via the S-chart. The horizontal dashed line designates the upper control
limit. The heading deviation is introduced at td = 436 s (dashed vertical
line).

TABLE III
ADAPTIVE MODEL ESTIMATION DETAILS

Sampling period Ts = 1 s (quality of conformance)
Ts = 5 s (future conformance)

Along-track adaptive model RAR(18), λ = 0.970
Cross-track adaptive model RAR(18), λ = 0.958
Residual variance estimation Moving window length m = 8
RLS estimation method [15, pp. 363–369].

quality, as monitored by the S̄ chart, almost instantly exceeds
the upper control limit as soon as the heading deviation is
introduced. This demonstrates that the method is capable
of providing an immediate alert for degraded quality of
conformance and detrimental event occurrence.

C. Future conformance monitoring
The predicted along-track and cross-track deviations,

along with the corresponding ±2 standard deviation con-
fidence intervals as obtained by the nominal probabilistic
method for a prediction horizon of 120 seconds, are depicted
in Fig. 3. The vertical dashed lines indicate the time instants
td and tv at which the heading deviation is introduced and
the contract is violated, respectively. The horizontal dashed
line designates the cross-track contract margin. It is evident
that the margin is exceeded at t = 650 s. Notice that the
along-track deviation remains less than 1 s throughout the
cruise duration, and that the deviation confidence intervals
remain constant during the flight as they depend only on the
employed prediction horizon.

Furthermore, Fig. 4 presents the adaptive time series
(RAR(18) model) based predicted contract deviations for a
prediction horizon of 120 seconds, while Fig. 5 demonstrates
the ability of the adaptive model to provide narrower confi-
dence intervals for the predicted contract deviations (compare
with Fig. 3). By comparing the resulting contract deviation
prediction errors obtained by both methods (Figs. 3–5), it
is evident that the along-track deviation prediction errors
obtained by the adaptive RAR model based method are
significantly smaller than their nominal probabilistic coun-
terparts. On the other hand, with respect to the cross-track
deviation prediction error, both methods perform equally
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Fig. 3. Nominal probabilistic method based contract deviation predictions
(prediction horizon of 120 s): actual versus predicted contract deviations
along with the corresponding ±2 standard deviation confidence intervals
(shaded areas). (a) Along-track deviation in seconds and (b) cross-track
deviation in nautical miles. The vertical dashed lines indicate the time
instants td and tv at which the heading deviation is introduced and the
contract is violated, respectively. The horizontal dashed line designates the
cross-track (lateral) contract margins.

well, as the obtained prediction errors are similar, with only
a slight prevalence of the adaptive model based method.

The probability of non-conformance for a prediction hori-
zon of 120 seconds is, for both methods, depicted in Fig. 6 as
a function of time. For the actual contract violation time tv =
650 s, the nominal probabilistic method yields a predicted
probability of cross-track non-conformance P (NC) = 0.51,
while the adaptive time series based method yields a re-
spective probability P (NC) = 0.55. Moreover, the nominal
probabilistic method achieves a cross-track non-conformance
probability P (NC) = 0.95 at flight time t0.95 = 736 s.
This probability is achieved by the adaptive time series based
method at time t0.95 = 719 s, which is 27 seconds earlier
than the nominal probabilistic method.

Finally, the CPU time for predicting 120 s ahead of
time is 0.0017 s for the nominal probabilistic method and
0.0055 s for the adaptive time series method. Thus, the
former (nominal probabilistic method) requires CPU time
equal to 30.9% of that of the letter (adaptive time series
method). Nevertheless, it is evident that both methods may
be effectively applied on-line.

V. CONCLUDING REMARKS

The problems of present and future conformance moni-
toring have been addressed via methods developed within
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Fig. 4. Adaptive RAR model method: Predicted (prediction horizon of 120
s) versus actual contract deviations. (a) Along–track; (b) cross–track (in this
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an adaptive statistical time series framework. The perfor-
mance of the methods has been assessed via simulation.
In present conformance monitoring, conformance quality
has been monitored via a statistical tool, and it has been
shown that an alarm is issued instantaneously following the
introduction of a detrimental (abnormal) event. In future con-
tract conformance monitoring, the adaptive statistical time
series method has been shown to provide an alarm of non-
compliance (with probability 0.95) 27 s before a correspond-
ing scheme based on a nominal probabilistic method. Current
research focuses on various improvements and extensions of
the adaptive statistical time series framework.
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