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Abstract. A comparative assessment of several vibration based statistical time series methods
for Structural Health Monitoring (SHM) is presented via their application to a scale aircraft
skeleton laboratory structure. A brief overview of the methods, which are either scalar
or vector type, non–parametric or parametric, and pertain to either the response–only or
excitation–response cases, is provided. Damage diagnosis, including both the detection and
identification subproblems, is tackled via scalar or vector vibration signals. The methods’
effectiveness is assessed via repeated experiments under various damage scenarios, with each
scenario corresponding to the loosening of one or more selected bolts. The results of the study
confirm the “global” damage detection capability and effectiveness of statistical time series
methods for SHM.

1. Introduction

Statistical time series methods for damage detection and identification (localization), collectively
referred to as damage diagnosis, utilize random excitation and/or vibration response signals,
along with statistical model building and decision making tools, for inferring the health state
of a structure (Structural Health Monitoring – SHM). They offer a number of advantages,
including no requirement for physics based or finite element models, no requirement for complete
modal models, effective treatment of uncertainties, and statistical decision making with specified
performance characteristics [1,2]. These methods form an important and useful category within
the broader family of vibration based methods for SHM [3,4].
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Statistical time series methods for SHM are based on scalar or vector stochastic vibration
signals, identification of suitable (parametric or non–parametric) time series models describing
the dynamics in each structural state, and extraction of a statistical characteristic quantity
Q characterizing the structural state in each case (baseline phase). Damage diagnosis is then
accomplished via statistical decision making consisting of comparing, in a statistical sense, the
current characteristic quantity Qu with that of each potential state as determined in the baseline
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phase (inspection phase). For an overview of the basic principles and the main statistical time
series methods for SHM the interested reader is referred to [1,2]. An experimental assessment of
several methods is provided in [5]. Non–parametric methods are those based on non–parametric
time series representations, such as the spectral density function [1,2], and have received limited
attention in the literature [5–7]. Parametric time series methods are those based on parametric
time series representations, such as the AutoRegressive Moving Average (ARMA) models [1,2].
This latter category has attracted increased attention recently [5, 8–11], with approaches for
accounting for varying environmental conditions being also considered [10,11].

The goal of the present study is the comparative assessment of several scalar (univariate)
and vector (multivariate) statistical time series methods for SHM, both of the non–parametric
and parametric types, via their application to an aircraft scale skeleton laboratory structure. A
related assessment of many methods may be found in a recent work by the authors [12]. The
present study is an extension that also presents results with an additional, statistically optimal,
method based on the Sequential Probability Ratio Test (SPRT) [13,14]. In this work four scalar
methods, namely a Power Spectral Density (PSD), a Frequency Response Function (FRF), a
model residual variance, and a Sequential Probability Ratio Test (SPRT) based method are
employed, along with two vector methods, namely a model parameter based and a likelihood
function based method. A large number of experiments are run and a number of damage
scenarios are considered, with each one corresponding to the loosening of one or more bolts at
various positions on the structure.

The main issues the study addresses include: (i) comparison of the performance of scalar and
vector statistical time series methods with regard to effective damage diagnosis – false alarms,
missed damage, and damage misclassification rates are investigated using many experiments; (ii)
assessment of the methods in terms of their detection and identification (localization) capabilities
under various scenarios with respect to single or multiple vibration signal measurements and
the use of “local” or “remote” (in relation to the damage position) sensors.

2. The structure and the experimental set–up

2.1. The structure
The scale aircraft skeleton laboratory structure was designed by ONERA in conjunction with
the GARTEUR SM–AG19 Group and manufactured at the University of Patras (figure 1).
It represents a typical, basic, aircraft skeleton design and consists of six solid beams with
rectangular cross sections representing the fuselage (1500×150×50 mm), the wing (2000×100×10
mm), the horizontal (300× 100× 10 mm) and vertical stabilizers (400× 100× 10 mm), and the
right and left wing–tips (400×100×10 mm). All parts are constructed from standard aluminum
and are jointed together via steel plates and bolts. The total mass of the structure is 50 kg.

2.2. The damage types and the experiments
Damage detection and identification are based on vibration testing of the structure, which is
suspended through a set of bungee cords and hooks from a long rigid beam sustained by two
heavy–type stands (figure 1). The suspension is designed in a way as to exhibit a pendulum
rigid body mode below the frequency range of interest, as the boundary conditions are free–free.

The excitation is broadband random stationary Gaussian applied vertically at the right wing–
tip (Point X, figure 1) through an electromechanical shaker (MB Dynamics Modal 50A, max
load 225 N). The actual force exerted on the structure is measured via an impedance head
(PCB M288D01), while the resulting vertical acceleration responses at Points Y1–Y4 (figure 1)
are measured via lightweight accelerometers (PCB 352A10). The force and acceleration signals
are driven through a conditioning charge amplifier (PCB 481A02) into the data acquisition
system based on SigLab 20–42 measurement modules. The damage scenarios used in the study



Figure 1. The aircraft scale skeleton structure and the experimental set-up: The force
excitation (Point X), the vibration measurement locations (Points Y1–Y4), and the bolts
connecting the various elements of the structure.

correspond to the complete loosening of one or more bolts at different joints of the structure
(figure 1). Six distinct types (designated as A, B,. . . , F) are considered and are summarized in
table 1.

The assessment of the methods with respect to the damage detection and identification
subproblems is based on 60 inspection experiments for the healthy state and 40 experiments for
each considered damage state (damage types A, B,. . . , F – see table 1). In each experiment four
vibration measurement locations (figure 1, Points Y1–Y4) are used in order to allow diagnosis
with one or more vibration response signals. For damage detection a single healthy data set
is used for establishing the baseline (reference) model. Similarly, for damage identification a
single data set for each damage scenario (damage types A, B,. . . , F) is used for establishing the
corresponding baseline (reference) model.

2.3. Identified structural dynamics for the healthy structure
Non–parametric identification is based on N = 46 080 (≈ 90 s) sample–long excitation–response
signals obtained from the four vibration measurement locations on the structure (figure 1). An
L = 2048 sample–long Hamming data window with zero overlap is used (number of segments

Table 1. The damage scenarios (types) and experimental details

Structural Description No of inspection
state experiments

Healthy — 60
Damage A loosening of bolts A1, A4, Z1, Z2 40
Damage B loosening of bolts D1, D2, D3 40
Damage C loosening of bolts K1 40
Damage D loosening of bolts D2, D3 40
Damage E loosening of bolts D3 40
Damage F loosening of bolts K1, K2 40

Sampling frequency: fs = 512 Hz, Signal bandwidth: [4− 200] Hz
Non–parametric methods: N = 46 080 samples (90 s); Parametric methods: N = 15 000 samples (29 s)
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Figure 2. Non–parametric Welch–based estimates of the frequency response function (FRF)
magnitude for the healthy and damage structural states (single experiment per case; Point X –
Point Y2 transfer function).

K = 22) for Welch–based PSD (MATLAB function pwelch.m) and FRF (MATLAB function
tfestimate.m) estimation (table 2). The obtained FRF estimates, corresponding to the healthy
and damage states of the structure, for the Point X – Point Y2 transfer function are depicted
in figure 2. Observe that discrepancies among the various cases are observed for some damage
cases, but seem to be rather small for certain of them.

Parametric identification of the structural dynamics is based on N = 15 000 (≈ 29 s) sample–
long excitation and response signals which are used for estimating Vector AutoRegressive with
eXogenous excitation (VARX(na, nb)) models (MATLAB function arx.m). Model parameter
estimation is achieved by minimizing a quadratic Prediction Error (PE) criterion leading to
a Least Squares (LS) type estimator [15], [16, p. 206]. Model order selection is based on a
combination of tools, including the Bayesian Information Criterion (BIC) [15], [16, pp. 505–507]
and “stabilization diagrams” (which depict the estimated modal parameters, usually frequencies,
as a function of increasing model order [15]). In this case, BIC minimization is achieved for orders
na = nb = 80, thus a 4–variate VARX(80, 80) model is presently selected as adequate (Samples
Per Parameter (SPP) ratio 37.4).

Table 2. Non–parametric estimation details

Data length N = 46 080 samples (≈ 90 s)
Method Welch
Segment length L = 2 048 samples
No of non–overlapping segments K = 22
Window type Hamming
Frequency resolution ∆f = 0.25 Hz



3. Statistical time series methods for SHM

Statistical time series methods for SHM employ scalar (univariate) or vector (multivariate)
random excitation and/or response signals. Despite their phenomenal resemblance to
their univariate counterparts, multivariate models have a much richer structure while the
corresponding methods require multivariate statistical decision making procedures [2], [17,
Chapters 3, 4].

3.1. Scalar methods
Two non–parametric, namely a Power Spectral Density (PSD) and a Frequency Response
Function (FRF) based method, and two parametric, namely a residual variance, and a Sequential
Probability Ratio Test (SPRT) based method, scalar methods are briefly reviewed. Their main
characteristics are summarized in table 3.

3.1.1. Power Spectral Density (PSD) based method. Damage detection and identification is
in this case tackled via changes in the PSD of the measured vibration response signals (non–
parametric method). The excitation is assumed unavailable (response–only case). The method’s
characteristic quantity is the PSD function Q = S(ω) (ω designating frequency – table 3).
Damage detection is based on confirmation of statistically significant deviations from the nominal
healthy case at some frequency [1, 2]. Damage identification may be achieved by performing
hypothesis tests comparing the current PSD to those corresponding to different damage types
and obtained in the baseline phase.

3.1.2. Frequency Response Function (FRF) based method. This is similar to the PSD method,
except that it requires the availability of both the excitation and response signals (excitation–
response case) and uses the FRF magnitude as its characteristic quantity (non–parametric
method), thus Q = |H(jω)| (table 3). The main idea is the comparison of the FRF magnitude
of the current structural state to that of the healthy structure. Damage detection is based
on confirmation of statistically significant deviations from the nominal healthy case at some
frequency [1, 2]. Damage identification may be achieved similarly to the previous case.

3.1.3. Residual variance based method. In this method the characteristic quantity is the residual
variance (table 3). The main idea is based on the fact that the model (parametric method)
matching the current state of the structure should generate a residual sequence characterized
by minimal variance [1, 2]. Thus damage detection may be achieved by examining whether or
not the residual variance is minimal [1, 2]. The method uses classical tests on the residuals and
offers simplicity and no need for model estimation in the inspection phase.

3.1.4. Sequential Probability Ratio Test (SPRT) based method. This method employs the
Sequential Probability Ratio Test (SPRT) [13] [14, Chapter 3] in order to detect a change in the
standard deviation σ of the model (parametric method) residual sequence (e[t] ∼ N (0, σ2), t =
1, . . . , N). An SPRT of strength (α, β), with α, β the type I (false alarm) and II (missed damage)
error probabilities, respectively, is used for the following hypothesis testing problem:

Ho : σou ≤ σo (null hypothesis – healthy structure)
H1 : σou ≥ σ1 (alternative hypothesis – damaged structure)

(1)

with σo, σ1 designating user defined values. The basis of the SPRT is the logarithm of the
likelihood ratio function based on n samples:

L(n) = log
f(e[1], . . . , e[n]|H1)

f(e[1], . . . , e[n]|Ho)
=

n∑

t=1

log
f(e[t]|H1)

f(e[t]|Ho)
= n · log

σo
σ1

+
σ2
1 − σ2

o

2σ2
oσ

2
1

·
n∑

t=1

e2[t] (2)



Table 3. Characteristics of the employed statistical time series methods for SHM

Method Principle Test Statistic Type

PSD based Su(ω)
?
= So(ω) F = Ŝo(ω)/Ŝu(ω) ∼ F (2K, 2K) scalar

FRF based δ|H(jω)| = |Ho(jω)| − |Hu(jω)|
?
= 0 Z = |δ|Ĥ(jω)||/

√
2σ̂2

H
(ω) ∼ N(0, 1) scalar

Residual variance σ2

ou

?

≤ σ2

oo F = σ̂2

ou/σ̂
2

oo ∼ F (N,N − d) scalar

SPRT based σou

?

≤ σo or σou

?

≥ σ1 L(n) = n · log σo

σ1

+
σ
2

1
−σ

2

o

2σ2
o
σ2

1

·
∑

n

t=1
e2[t] scalar

Model parameter δθ = θo − θu

?
= 0 χ2

θ = δθ̂
T

(2P̂ θ)
−1δθ̂ ∼ χ2(d) vector

Residual likelihood θo

?
= θu

∑
N

t=1
(eT

u [t,θo] ·Σo · eu[t,θo]) ≤ l vector

S(ω): Power Spectral Density (PSD) function; |H(jω)|: Frequency Response Function (FRF) magnitude

σ2

H(ω) = var [|Ĥo(jω)|]; θ: model parameter vector; d: parameter vector dimensionality; P θ: covariance of θo

σ2

oo: variance of residual signal obtained by driving the healthy structure signals through the healthy model

σ2

ou: variance of residual signal obtained by driving the current structure signals through the healthy model

σo, σ1: user defined values for the residual standard deviation under healthy and damage states, respectively

e: k–variate residual sequence; Σ: residual covariance matrix; l: user defined threshold

The subscripts “o” and “u” designate the healthy and current (unknown) structural states, respectively.

with L(n) designating the decision parameter of the method and f(e[t]|Hi) the probability
density function (normal distribution) of the residual sequence under Hi (i = 0, 1).

The following test is then constructed at the (α, β) risk levels:

L(n) ≤ B =⇒ Ho is accepted (healthy structure)
L(n) ≥ A =⇒ H1 is accepted (damaged structure)

B < L(n) < A =⇒ no decision is made (continue the test)
(3)

with B = β/(1 − α) and A = (1− β)/α. Following a decision, L(n) is reset to zero.
Damage identification may be achieved by performing SPRTs similar to the above separately

for damages of each potential type.

3.2. Vector methods
Two vector (multivariate) parametric time series methods for SHM, namely a model parameter
based method and a residual likelihood function based method, are briefly reviewed. The main
characteristics of the methods are also summarized in table 3.

3.2.1. A model parameter based method. This method bases damage detection and
identification on a characteristic quantity Q which is a function of the parameter vector θ

of a parametric time series model (parametric method – see table 3) [1, 2]. The model has to
be re-estimated in the inspection phase based on signals from the current (unknown) state of
the structure. Damage detection is based on testing for statistically significant changes in the
parameter vector θ between the nominal and current structures through a hypothesis testing
problem. Damage identification may be based on multiple hypothesis testing comparing the
current parameter vector to those corresponding to different damage types.

3.2.2. Residual likelihood function based method. Damage detection is based on the likelihood
function evaluated for the current signal(s) under each one of the considered structural states
[1,2]. The hypothesis corresponding to the largest likelihood is selected as that representing the
current structural state (table 3).
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Figure 3. PSD based method: Indicative
damage detection results (sensor Y1) at the
α = 10−4 risk level. The actual structural
state is shown above each plot.
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Figure 4. FRF based method: Indicative
damage detection results (sensor Y4) at the
α = 10−6 risk level. The actual structural
state is shown above each plot.

4. Experimental damage detection and identification results

4.1. Scalar methods
4.1.1. Power Spectral Density (PSD) based method. Typical damage detection results, obtained
from response (sensor) Y1 are presented in figure 3. Evidently, correct detection at the α = 10−4

risk level is obtained in each case, as the test statistic is shown not to exceed the critical points
(dashed horizontal lines) in the healthy case, while it exceeds them in each damage case. Observe
that damage types A, B and C (see figure 1 and table 1) appear easier to detect, while damage
types D and E harder. Summary damage detection and identification results for all four vibration
measurement locations are presented in table 4. The PSD based method achieves accurate
damage detection as no false alarms are exhibited, while the number of missed damage cases
is zero for all damage scenarios. The method is also capable of identifying the actual damage
type; zero damage misclassification errors are reported for damage types A, C, D and F, several
are reported for damage type B, and a few for damage type E. The misclassification problem is
more intense for damage type B when the Y3 and Y4 vibration measurement locations (sensors)
are used.

4.1.2. Frequency Response Function (FRF) based method. Figure 4 presents typical damage
detection results with the FRF based method and response (sensor) Y4. Correct detection at the
α = 10−6 risk level is achieved in each case, as the test statistic is shown not to exceed the critical
point (dashed horizontal line) in the healthy case, while it exceeds it in all damage cases. Again,
damage types A, B and C appear easier to detect (note the logarithmic scale at the vertical axis
in figure 4), while damage types D and E appear harder. The summarized damage detection
and identification results for all vibration measurement locations are presented in table 4. The
method achieves effective damage detection, as no false alarms or missed damages are reported,
but has problems with damage identification as several misclassification errors are reported for
damage types B, C, and D.

4.1.3. Residual variance based method. The residual variance based method is based on the
identified 4–variate VARX(80, 80) models obtained in the baseline phase, as well as on the
current (unknown) data records. Damage detection and identification is achieved via statistical
comparison of the two residual variances (each one of the scalar responses is considered
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Figure 5. Residual variance based method:
Damage detection results (sensor Y2) – each
mark represents an experiment (60 healthy
experiments; 200 damage experiments). A
damage is detected if the test statistic exceeds
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plot.

separately). Typical damage detection results are shown in figure 5. Correct detection is
obtained in each considered case, as the test statistic is shown not to exceed the critical point
in the healthy case, while it exceeds it in all of the damage cases. Summary damage detection
and identification results for the considered vibration measurement locations are presented in
table 4. The method achieves effective damage detection and identification as no false alarms,
missed damages, or damage misclassification errors cases are observed.

4.1.4. Sequential Probability Ratio Test (SPRT) based method. The SPRT based method
employs the identified 4–variate VARX(80, 80) models obtained in the baseline phase, as well
as the current (unknown) data records. Damage detection and identification is achieved via
statistical comparison of the two residual standard deviations using the SPRT (each one of the
scalar responses is considered separately). The nominal residual standard deviation σo is selected
as the mean standard deviation of the residuals obtained from the 60 healthy data sets driven
through the baseline healthy VARX(80, 80) model. The residual standard deviation ratio σ1/σo
is chosen equal to 1.1 (see equations 1 and 2).

Typical damage detection results at the α = β = 0.01 risk levels obtained via the SPRT based
method for vibration response (sensor) Y1 are shown in figure 6. A damage is detected when
the test statistic exceeds the upper critical point (dashed horizontal lines), while the structure
is determined to be in its healthy state when the test statistic lies below the lower critical point.
After a decision is made, the test statistic is reset to zero and the test continues, thus during
testing multiple decisions are made. Evidently, correct detection (figure 6) is obtained in each
considered case, as the test statistic is shown to lie below the lower critical point in the healthy
case, while it exceeds the upper critical point in the damage test cases. Observe that damage
types A and B (table 1) appear easier to detect, while damage types C and E appear harder.
Summary results for all vibration measurement locations are presented in table 4. The method
exhibits excellent performance in damage detection and identification as no false alarms, missed
damages, or damage misclassification errors are observed.
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Figure 8. Residual likelihood function based
method: Damage detection results. Each
mark represents an experiment (60 healthy
experiments; 200 damage experiments). A
damage is detected if the test statistic exceeds
the critical point.

4.2. Vector methods
4.2.1. Model parameter based method. This method also employs the identified in the baseline
phase 4–variate VARX(80, 80) models, as well as an identified VARX(80, 80) model for each
current data record (all measured response signals are simultaneously employed). Figure 7
presents typical damage detection results. The healthy test statistics are shown in circles (60
experiments), while the “least severe” damage types D and E are presented with asterisks and
diamonds, respectively (one for each one of the 40 experiments). Evidently, correct detection
is obtained in each case, as the test statistic is shown not to exceed the critical point in the
healthy cases, while it exceeds it in the damage cases. As table 5 indicates, the method achieves
accurate damage detection and identification, as no false alarm, missed damage, or damage
misclassification errors are reported.

4.2.2. Residual likelihood function based method. The residual likelihood function based method
is based on the identified in the baseline phase 4–variate VARX(80, 80) models. Figure 8 presents
typical damage detection results. Correct detection is obtained in each case, as the test statistic
is shown not to exceed the critical point in the healthy cases, while it exceeds it in all damage
cases. The method achieves accurate damage detection and identification, as no false alarm,
missed damage, or damage misclassification errors are reported (summary results in table 5).

5. Concluding remarks

Both scalar and vector statistical time series methods for SHM were shown to effectively tackle
damage detection and identification, with the vector methods achieving excellent performance
with zero false alarm, missed damage, and damage misclassification rates. Moreover, both types
of methods have “global” damage detection capability, as they are able to detect “local” and
“remote” damage with respect to the sensor location being used, while they are also able to
correctly identify the actual damage type. A notable exception has been the FRF based method
which exhibited an increased number of damage misclassification errors for three damage types.
Vector parametric time series methods are more elaborate and require higher user expertise, yet



Table 4. Scalar methods: damage detection and identification summary results

Damage Detection

Method False Missed damage

alarms damage A damage B damage C damage D damage E damage F

PSD based 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0

FRF based 1/0/0/35 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/0 0/1/0/0 0/0/0/0

Res. variance† 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0

SPRT based 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0

False alarms for response points Y1/Y2/Y3/Y4 out of 60 test cases per point.

Missed damages for response points Y1/Y2/Y3/Y4 out of 40 test cases per point; †adjusted α.

Damage Identification

Method Damage misclassification

damage A damage B damage C damage D damage E damage F

PSD based 0/0/0/0 0/0/21/21 0/0/0/0 0/0/0/0 0/0/1/2 0/0/0/0

FRF based 0/0/0/0 10/4/7/8 6/10/2/0 5/22/9/8 2/9/5/2 0/3/1/0

Res. variance† 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0

SPRT based 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0

Damage misclassification for response points Y1/Y2/Y3/Y4 out of 40 test cases per point; †adjusted α.

Table 5. Vector methods: damage detection and identification summary results

Damage Detection Damage Identification

Method False Missed damage Damage misclassification

alarms dam A dam B dam C dam D dam E dam F dam A dam B dam C dam D dam E dam F

Mod. par.† 0 0 0 0 0 0 0 0 0 0 0 0 0

Res. lik.† 0 0 0 0 0 0 0 0 0 0 0 0 0

False alarms out of 60 test cases. Missed damages out of 40 test cases.

Damage misclassification out of 40 test cases; †adjusted α.

they seem to offer potentially enhanced performance.
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