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Abstract— The problem of identifying stochastic systems
under multiple operating conditions, by using excitation –re-
sponse signals obtained from each condition, is addressed.Each
operating condition is characterized by several measurable
variables forming a vector operating parameter. The problem
is tackled within a novel framework consisting of postulated
Vector dependent Functionally Pooled ARX (VFP–ARX) mod-
els, proper data pooling techniques, and statistical parameter
estimation. Least Squares (LS) and Maximum Likelihood (ML)
estimation methods are developed. Their strong consistency is
established, and their performance characteristics are assessed
via a Monte Carlo study.

I. INTRODUCTION

In conventional system identification a mathematical
model representing a system at a specific operating condition
is identified based upon a single data record of excitation
– response signals. Yet, in many applications, a system
may operate under different operating conditions in differ-
ent intervals of time, maintaining one such condition in
each interval. These operating conditions affect the system
characteristics, and thus its dynamics. Typical examples
include physiological systems under different environmental
conditions, mechanical systems under different load or lu-
brication conditions, systems under different configurations,
hydraulic systems operating under different temperaturesor
fluid pressures, material and structures (civil–mechanical–
aerospace) under different environmental (such as temper-
ature and humidity) conditions, and so on.

In such cases it is of interest to identify a“global” model
describing the system underany operating condition, based
upon excitation – response data records available from each
condition.
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It could be, perhaps, argued that this may be handled
by using conventional mathematical models and customary
identification techniques that could artificially split theprob-
lem into a number of seemingly unrelated subproblems and
derive a model based upon a single data record at a time.
Nevertheless, such a solution would be both awkward and
statistically suboptimal. Awkwardness has to do with the
fact that a potentially large number of seemingly unrelated
models (one per operating condition) would be obtained.
Statistical suboptimality has to do with the fact that the set of
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identified models would be of suboptimal accuracy. This is
due to two reasons. The first is the violation of the principle
of statistical parsimony (model economy) as a large number
of models would be used for representing the system. This
would result in a large number of estimated parameters, and
thus reduced accuracy. The second is the ineffective use of
the information available in the totality of the data records.
Indeed, not all available information would be extracted,
as theinterrelationsamong the different records would be
ignored as a result of separating the problem into seemingly
unrelated subproblems.

This work aimsat the postulation of a proper framework
and methods for effectively tackling the problem of identify-
ing stochastic systems undermultiple operating conditions.
This is to be based upon three important entities:

(a) A novel, Functionally Pooled (FP), stochastic
model structure that explicitly allows for system
modelling undermultiple operating conditions via
a single mathematical representation. This repre-
sentation uses parameters thatfunctionallydepend
upon the operating condition. It also uses a stochas-
tic structure that accounts for thestatistical depen-
denciesamong the different data records.

(b) Data pooling techniques (see [1]) for combining
and optimally treating (as one entity) the data
obtained from the various experiments.

(c) Statistical techniques for model estimation.

The resulting framework is referred to as a statisticalFunc-
tional Pooling framework, and the corresponding models as
stochasticFunctionally Pooled (FP) models. A schematic
representation is provided in Fig. 1.

The only essential practical condition for using this frame-
work and identifying “global” system models is that each
operating condition corresponds to a specific value of a
measurable variable, henceforth referred to as theoperating
parameter. The case of ascalar operating parameter (for
instance operating temperature) is treated in a companion
paper [2]. The present paper focuses on the case of avector
operating parameter (consisting of two or more scalars, for
instance operating temperature and humidity).

It should be also noted that early versions of the Functional
Pooling framework, including certain simple models and
estimation methods, have been already applied to practical
fault diagnosis problems with very promising results. The
interested reader is referred to [3], [4] for details.
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Fig. 1. Schematic representation of the problem showing theoperating points on the(k1, k2) plane, an excitation–response data set corresponding to
one particular point, and the VFP-ARX model structure.

II. THE DATA SET

Excitation – response data records from different operat-
ing points corresponding to various values of the (vector)
operating parameter are used1:

ZNM1M2
∆
=

{
xk[t], yk[t] | k

∆
= [k1 k2]T , with t = 1, . . . , N,

k1 ∈ {k11 , . . . , k
1
M1

}, k2 ∈ {k21 , . . . , k
2
M2

}
}

In this expressiont designates normalized discrete time (the
corresponding analog time beingt · T with T standing
for the sampling period),k

∆
= [k1 k2]T the operating

parameter (without loss of generality assumed to be two-
dimensional), andxk[t], yk[t] the excitation and response
signals corresponding tok. N stands for the signal length
(in samples) corresponding to each single experiment (each
k).

A total of M1 ×M2 experiments (one for each element of
k) are performed, with the complete series covering the re-
quired range of each scalar parameter, say[k1min, k

1
max] and

[k2min, k
2
max], via the discretizationsk1 = k11 , k

1
2 , . . . , k

1
M1

and k2 = k21 , k
2
2 , . . . , k

2
M2

. Hence each experiment is char-
acterized by a specific value ofk, say k = [k1i , k

2
j ]. This

vector is, for simplicity of notation, also designated as the
dupletki,j = (k1i , k

2
j ) (the first subscript ofki,j designating

the value ofk1 and the second that ofk2).

III. THE VFP-ARX MODEL STRUCTURE

The Vector dependent Functionally Pooled AutoRegres-
sive with eXogenous excitation (VFP-ARX) model structure
postulated for treating this problem is of the form:

yk[t]+

na∑

i=1

ai(k)·yk[t−i] =

nb∑

i=0

bi(k)·xk [t−i]+wk[t] (1)

1Lower case/capital bold face symbols designate vector/matrix quantities,
respectively.

wk[t] ∼ iid N
(
0, σ2

w(k)
)

k ∈ R
2 (2)

ai(k)
∆
=

p∑

j=1

ai,j ·Gj(k), bi(k)
∆
=

p∑

j=1

bi,j ·Gj(k) (3)

E
{
wki,j

[t] · wkm,n
[t− τ ]

}
= γw[ki,j , km,n] · δ[τ ] (4)

with na, nb designating the AutoRegressive (AR) and eX-
ogenous (X) orders, respectively,xk[t], yk[t] the excitation
and response signals, respectively, andwk[t] the distur-
bance (innovations) signal that is a white (serially uncorre-
lated) zero-mean with varianceσ2

w(k) and potentially cross-
correlated with its counterparts corresponding to different
experiments. The symbolE{·} designates statistical expec-
tation,δ[τ ] the Kronecker delta (equal to unity forτ = 0 and
equal to zero forτ 6= 0), N (·, ·) Gaussian distribution with
the indicated mean and variance, and iid stands for identically
independently distributed.

As (3) indicates, the AR and X parametersαi(k), bi(k)
are modelled as explicit functions of the vectork belonging
to a p-dimensional functional subspace spanned by the
(mutually independent) functionsG1(k), G2(k), . . . , Gp(k)
(functional basis). The functional basis consists of polynomi-
als of two variables (vector polynomials) obtained as cross-
products from univariate polynomials (of the Chebyshev,
Legendre, Jacobi and other families [5]). The constants
ai,j , bi,j designate the AR and X, respectively, coefficients
of projection. Defining:

A[B,k]
∆
= 1 +

na∑

i=1

ai(k)B
i, B[B,k]

∆
=

nb∑

i=0

bi(k)B
i

where A[B,k], B[B,k] are the AutoRegressive (AR) and
eXogenous (X) polynomials in the backshift operatorB

(
Bj ·

uk[t]
∆
= uk[t − j]

)
, the VFP-ARX representation of (1) is



rewritten as:

A[B,k] · yk[t] = B[B,k] · xk [t] + wk [t]. (5)

As already mentioned, the innovations sequenceswk[t]
corresponding to different operating conditions may becon-
temporaneously correlated, that is E{wki,j

[t]wki,j
[t]} =

σ2
w([ki,j ] andE{wki,j

[t]wkm,n
[t]} = γw[ki,j , km,n]. Defin-

ing the VFP-ARX model’scross-section innovations vector
as:

w[t]
∆
=

[
wk1,1

[t]wk1,2
[t] . . . wk1,M2

[t] . . . wkM1,M2
[t]
]T

(6)
with covariance matrix:

Γw[t] = E
{

w[t]wT [t]
}

(7)

=







σ2
w[k1,1] . . . γw[k1,1, kM1,M2

]
...

. . .
...

γw[kM1,M2
, k1,1] . . . σ2

w[kM1,M2
]







then the covariance matrix corresponding to the time instants
t = 1, . . . , N is given by:

Γw = Γw[t] ⊗ IN (8)

with ⊗ designating Kronecker product [6, chap. 7].
In the case ofcross-sectionally uncorrelatedinnovations

sequences withdifferent variances(σ2
w [k1,1] 6= σ2

w [k1,2] 6=
. . . 6= σ2

w[kM1,M2
], groupwise heteroscedasticity), the covari-

ance matrix is given by:

Γw =




σ2
w[k1,1]IN . . . 0

...
. . .

...
0 . . . σ2

w[kM1,M2
]IN


 (9)

In the simpler case ofcross-sectionally uncorrelatedin-
novations sequences withequal variances(σ2

w[k1,1] =
σ2
w[k1,2] = . . . = σ2

w [kM1,M2
] = σ2

w, groupwise ho-
moscedasticity), the covariance matrix is given byΓw =
σ2
wINM1M2

with INM1M2
indicating the unity matrix.

The representation of equations (1) – (4) is referred to as a
VFP-ARX model of orders(na, nb) and functional subspace
dimensionalityp, or in short a VFP-ARX(na, nb)p model. It
is parameterized in terms of the parameter vector:

θ̄
∆
= [ αi,j

... bi,j
...γw[ki,j , km,n] ]

T ∀ i, j,m, n (10)

with γw[ki,j , ki,j ] = σ2
w[ki,j ].

The VFP-ARX representation is assumed to satisfy the
following conditions:

A1. Stability condition.The poles of the AR polynomial (see
(5)) lie inside the unit circle for all operating parametersk.
A2. Irreducibility condition The polynomials
A[B,k], B[B,k] are coprime (have no common factors)∀
k.
A3. The input signalxk[t] is stationary, ergodic and persis-
tently exciting withE

{
xki,j

[t]wkm,n
[t]
}
= 0 ∀ i, j,m, n.

IV. MODEL ESTIMATION

A VFP-ARX model corresponding to the true system of
(1) – (4) may be expressed as:

yk[t]+

na∑

i=1

ai(k)·yk[t−i] =

nb∑

i=0

bi(k)·xk [t−i]+ek[t] (11)

ek[t] ∼ iid N
(
0, σ2

e(k)
)

k ∈ R
2 (12)

ai(k)
∆
=

p∑

j=1

ai,j ·Gj(k), bi(k)
∆
=

p∑

j=1

bi,j ·Gj(k) (13)

E
{
eki,j

[t] · ekm,n
[t− τ ]

}
= γe[ki,j , km,n] · δ[τ ] (14)

with ek[t] designating the model’s one-step-ahead prediction
error or residual (corresponding towk[t]) with variance
σ2
e(k).
In the general case the model’s one-step-ahead pre-

diction error (residual) sequencesek[t] may be con-
temporaneously correlated, that isE{eki,j

[t]eki,j
[t]} =

σ2
e [ki,j ] and E{eki,j

[t]ekm,n
[t]} = γe[ki,j , km,n], with the

model residual cross-section vector defined ase[t]
∆
=[

ek1,1
[t] . . . ekM1,M2

[t]
]T

The cross-section vector covari-
ance then is:

Γe[t] = E
{

e[t]eT [t]
}

=







σ2
e [k1,1] . . . γe[k1,1, kM1,M2

]
...

. . .
...

γe[kM1,M2
, k1,1] . . . σ2

e [kM1,M2
]







and the covariance matrix for the time instantst = 1, . . . , N
is given as:

Γe = Γe[t] ⊗ IN .

The VFP-ARX model estimation problem may then
be stated as follows: “Given the excitation–response data
records select an elementM(θ̄) from the VFP-ARX model
set:

M
∆
=

{
M(θ̄) : A[B,k, θ̄]·yk[t] = B[B,k, θ̄]·xk [t]+ek[t, θ̄]|

γw[ki,j , km,n] = E{eki,j
[t, θ̄]ekm,n

[t, θ̄]}, ∀ i, j,m, n
}

that best fits the measured data.”
The model identification problem is usually distinguished

into two subproblems: the parameter estimation subproblem
and the model structure selection subproblem. The present
paper focuses on the parameter estimation part, while the
model structure selection subproblem is treated in a forth-
coming paper [7].

A. A Functionally Pooled Linear Regression Framework

The VFP-ARX model (11) may be rewritten as:

yk[t] =
[
ϕT

k[t]⊗gT (k)
]
·θ+ek[t] = φT

k[t] ·θ+ek[t] (15)

with:

ϕk[t]
∆
=

[

−yk[t− 1] . . . − yk[t− na]
...xk[t] . . . xk[t− nb]

]T

g(k)
∆
=

[

G1(k) . . . Gp(k)
]T

θ
∆
=

[

a1,1 . . . ana,p

... b0,1 . . . bnb,p

]T

.



Pooling together the expressions of the VFP-ARX model
[Equation (15)] corresponding to all operating parameters
k (k1,1, k1,2, . . . , kM1,M2

) considered in the experiments
(cross-sectional pooling) yields:



yk1,1
[t]

...
ykM1,M2

[t]


 =




φT
k1,1

[t]
...

φT
kM1,M2

[t]


·θ+




ek1,1
[t]

...
ekM1,M2

[t]


 =⇒

y[t] = Φ[t] · θ + e[t].

Then, following substitution of the data fort = 1, . . . , N the
following expression is obtained:

y = Φ · θ + e (16)

with:

y
∆
=




y[1]
...

y[N ]


 , Φ

∆
=




Φ[1]
...

Φ[N ]


 , e

∆
=




e[1]
...

e[N ]


 .

B. Least Squares (LS) Based Estimation Methods

Uning the above linear regression framework the simplest
possible approach to estimate the projection coefficients
vectorθ is based upon minimization of the Ordinary Least
Squares criterion:

JOLS(θ, ZNM1M2)
∆
=

1

N

N∑

t=1

eT [t]e[t]

which leads to theOrdinary Least Squares (OLS)estimator:

θ̂
OLS

=
[
Φ

T
Φ
]
−1[

Φ
Ty

]
. (17)

A more appropriate criterion for thecontemporaneously
correlated residualcase is (in view of the Gauss-Markov
theorem [8]) the Weighted Least Squares (WLS) criterion:

JWLS(θ, ZNM1M2)
∆
=

1

N

N∑

t=1

eT [t]Γ−1
w[t]e[t] =

1

N
eTΓ−1

w e

with Γw[t],Γw given by (7) and (8), respectively. This leads
to theWeighted Least Squares (WLS)estimator:

θ̂
WLS

=
[
Φ

T
Γ
−1
wΦ

]
−1[

Φ
T
Γ
−1
w y

]
. (18)

As the covariance matrixΓw is practically unavailable, it
may be consistently estimated by using the Ordinary Least
Squares (OLS) estimator, thus:

Γ̂
OLS
w[t] =

1

N

N∑

t=1

e[t, θ̂
OLS

]eT [t, θ̂
OLS

]

with e[t, θ̂
OLS

] designating the residualse[t] for θ = θ̂
OLS

.
Then:

Γ̂
OLS
w = Γ̂

OLS
w[t] ⊗ IN .

The estimator in (18) is then expressed as:

θ̂
WLS

=
[
Φ

T (Γ̂
OLS
w )−1

Φ
]
−1[

Φ
T (Γ̂

OLS
w )−1y

]
. (19)

while the final residual covariance matrix is estimated as:

Γ̂
WLS
w[t] =

1

N

N∑

t=1

e[t, θ̂
WLS

]eT [t, θ̂
WLS

].

In the case ofcross-sectionally uncorrelatedresidual se-
quences withdifferent variances(σ2

e [k1,1] 6= σ2
e [k1,2] 6=

. . . 6= σ2
e [kM1,M2

], groupwise heteroscedasticity) the residual
covariance matrixΓw for all k has the same form as (9).
As the variances are practically unavailable, they may be
consistently estimated as [9]:

σ̂2
e(k, θ̂

OLS
) =

1

N

N∑

t=1

e2k[t, θ̂
OLS

] (20)

for all k, with e2
k
[t, θ̂

OLS
] designating the residual sequences

obtained by applying OLS. Thêθ
WLS

estimator is then given
by (19). The final residual variance is estimated as:

σ̂2
w(k) = σ̂2

e(k, θ̂
WLS

) =
1

N

N∑

t=1

e2k[t, θ̂
WLS

]. (21)

In the simpler case ofcross-sectionally uncorrelatedresid-
ual sequences withequal variances(σ2

e [k1,1] = σ2
e [k1,2] =

. . . = σ2
e [kM1,M2

] = σ2
e , groupwise homoscedasticity) the

covariance matrix isΓw = σ2
wINM1M2

with INM1M2

designating the unit matrix. In this case the WLS estimator
coincides with its OLS counterpart. The residual variance is
estimated by (21).

C. The Maximum Likelihood (ML) Estimation Method

The complete parameter vectorθ̄ is estimated as:

ˆ̄θ
ML ∆

= argmax
θ̄

L(θ,Γw[t]/e)

with L(·) the natural logarithm of the conditional like-
lihood function [10], [11]. In the general case ofnor-
mally distributedand contemporaneously correlatedresid-
ualsek[t] ∀ k [10, p. 198] we have:

L(θ,Γw[t]/e[t1], . . . , e[tN ]) = ln
N∏

t=1

p(e[t]/θ,Γw[t])

= −
1

2

N∑

t=1

eT [t]Γ−1
w[t]e[t]−

NM1M2

2
ln 2π−

N

2
ln det{Γw[t]}

(22)
with p(·) designating the Gaussian probability density func-
tion. By setting:

Λ(θ)
∆
=

1

N

N∑

t=1

e[t, θ]eT [t, θ] (23)

(22) becomes:

L(θ,Γw[t]/e) = −
N

2
TrΛ(θ)Γ−1

w[t] −
N

2
ln det{Γw[t]}

−
NM1M2

2
ln 2π (24)



The first derivative of (24) with respect toΓw[t] leads to:

∂L(θ,Γw[t]/e)

∂Γw[t]
=

N

2
Γ
−1
w[t]Λ(θ)Γ−1

w[t] −
N

2
Γ
−1
w[t]

and equating it to zero yieldsΓw[t] = Λ(θ).
It is proven [10] thatL(θ,Γw[t]/e) is maximized with

respect toΓw[t] for Γw[t] = Λ(θ) and the maximum
likelihood estimate ofΛ(θ) is given by (23) for the optimum
value ofθ that has to be determined. By replacingΓw[t] with
Λ(θ) in (24) yields:

L(θ/e) = −
NM1M2

2
(ln 2π+1)−

N

2
ln det{Λ(θ)}. (25)

Maximizing equation (25) with respect toθ leads to theML
estimator:

θ̂
ML ∆

= argmin
θ

det{Λ(θ)} (26)

and Γ̂w[t] = Λ(θ̂
ML

) = 1
N

∑N

t=1 e[t, θ̂
ML

]eT [t, θ̂
ML

]. No-

tice that obtainingθ̂
ML

requires the use of iterative opti-
mization techniques [10].

In the heteroscedasticcase we have:

ln det{Λ(θ)} = ln
(
σ2
e [k1,1, θ] · . . . · σ

2
e [kM1,M2

, θ]
)

= lnσ2
e [k1,1, θ] + . . .+ lnσ2

e [kM1,M2
, θ]

=

k1

M1∑

k1=k1

1

k2

M2∑

k2=k2

1

lnσ2
e(k, θ). (27)

Maximizing (25) with respect toθ leads to the optimal value
of θ (as in (26)) and:

σ̂2
w(k) = σ̂2

e(k, θ̂
ML

) =
1

N

N∑

t=1

e2k[t, θ̂
ML

]. (28)

In the homoscedasticcase we have:

ln det{Λ(θ)} = ln
[
σ2
e(θ)

]M1M2

= M1M2 lnσ
2
e(θ) (29)

and the final residual variance is given by (28).

V. CONSISTENCY ANALYSIS

The consistency of the OLS, WLS and ML estimators of
the previous section is examined. For simplicity, the case
of cross-sectionally uncorrelated innovations sequenceswith
different variances (heteroscedastic case) is considered. The
estimated model is assumed to have the exact structure of
the true system, with the latter and the excitation signals
satisfying the assumptions A1, A2 and A3 of section III.
The proofs of the theorems are provided in [7].

For the Least Squares (LS) estimators of the previous
section we have the following theorem:

Theorem 1: Least Squares estimator consistency.Let θo

be the true projection coefficient vector,wk [t] a white zero
mean process withE{w2

k
[t]} = σ2

w(k) for every operating

point, andE{φk[t]φk
T [t]} a nonsingular matrix. Then:

θ̂
LS
N

a.s.
−→ θo (N −→ ∞)

with a.s. designating convergence in the almost sure sense
[9, pp. 18-19].

Note that, using the Kolmogorov theorem [9, p. 32], it is
easily seen that:

σ̂2
w(k, N)

a.s.
−→ σ2

w(k) (N −→ ∞)

as well.

Theorem 2: Maximum Likelihood estimator consistency.

Let θ̄o = [ θT
o

... γw[ki,j , km,n] ] be the true parameter
vector,wk[t] a normally distributed zero mean white process
with E{w2

k
[t]} = σ2

w(k) for every operating point, and

E{φk[t]φk
T [t]} a nonsingular matrix. Then:

ˆ̄θ
ML

N

a.s.
−→ θ̄o (N −→ ∞).

VI. MONTE CARLO STUDY

The effectiveness of the OLS, WLS and ML estimators
for VFP-ARX models is now examined via a Monte Carlo
study. It is noted that the ML estimator is initialized by the
WLS estimates, and makes use of the Gauss–Newton non-
linear optimization scheme [10] (maximum number of iter-
ations 500; maximum number of function evaluations 5000;
termination tolerance of the loss function10−2; termination
tolerance of the estimated parameters10−12).

The study is based upon a VFP–ARX(4,2)9 model with
zero delay (b0 6= 0 in the eXogenous polynomial) and AR, X
subspaces consisting of the cross-products of the first three
(hence functional dimensionalityp = 9) shifted Chebyshev
polynomials of the second kind [5]. It includes 500 runs,
in each one of which the first scalar operating parameter
takes 16 values (k1i ∈ [1, 16]) and the second scalar operating
parameter takes 20 values (k2j ∈ [1, 20]). Thus, each run
includes excitation–response signals (of length equal toN =
1024 samples) fromM1 ×M2 = 320 operating conditions.

Each response is corrupted by random noise at the10%
standard deviation level in accordance with the ARX struc-
ture expression (innovations standard deviation over the
noise–free response standard deviation equal to 0.10). The
innovations sequences corresponding to different operating
conditions are cross-sectionally uncorrelated, but character-
ized by different variances (groupwise heteroscedasticity).
Some of the true system coefficients of projection (out of a
total of 54) are indicated in the second column of Table I.

Monte Carlo partial estimation results by the Ordinary
Least Squares (OLS), the Weighted Least Squares (WLS)
and the Maximum Likelihood (ML) methods are presented
in Table I (mean estimates± standard deviations). Some of
these results are pictorially depicted in Fig. 2 (AR/X coeffi-
cient of projection estimates,95% confidence intervals). As
may be readily observed, the results are all very accurate.
All three methods provide essentially unbiased estimates,
with the WLS and ML methods expectedly providing better
accuracy for the coefficients of projection (smaller standard
deviations, thus narrower confidence intervals).



TABLE I

INDICATIVE MONTE CARLO ESTIMATION RESULTS FOR THEVFP-ARX(4,2)9 MODEL (SELECTED PARAMETERS; 500 RUNS PER METHOD; MEAN

ESTIMATE± STANDARD DEVIATION).

COEFF. TRUE OLS ESTIMATE WLS ESTIMATE ML ESTIMATE
a1,1 -0.0459 -0.04602± 0.00038 -0.04599± 0.00024 -0.04598± 0.00024
a1,7 -0.0058 -0.00579± 0.00018 -0.00578± 0.00012 -0.00579± 0.00012
a2,1 -0.3869 -0.38690± 0.00032 -0.38692± 0.00021 -0.38692± 0.00021
a2,5 0.0235 0.02356± 0.00022 0.02349± 0.00015 0.02349± 0.00015
a3,3 -0.0533 -0.05333± 0.00024 -0.05334± 0.00016 -0.05334± 0.00016
a3,8 0.0179 0.01790± 0.00018 0.01788± 0.00012 0.01788± 0.00012
a4,1 0.6046 0.60466± 0.00030 0.60467± 0.00022 0.60467± 0.00022
a4,9 -0.0013 -0.00133± 0.00015 -0.00135± 0.00011 -0.00135± 0.00011
b1,1 0.7453 0.74526± 0.00061 0.74527± 0.00042 0.74527± 0.00042
b1,8 0.2484 0.24843± 0.00079 0.24844± 0.00035 0.24844± 0.00035
b2,3 -0.1987 -0.19871± 0.00082 -0.19871± 0.00043 -0.19871± 0.00043
b2,6 0.1682 0.16815± 0.00084 0.16826± 0.00045 0.16827± 0.00045

Fig. 3 finally depicts the true system’s frequency response
magnitude versus frequency and the first scalar operating
parameterk1 (for set k2) along with their mean estimated
(by the OLS, WLS and ML methods) counterparts. The
agreement between each estimate and the true frequency
response magnitude is excellent.
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Fig. 2. VFP-ARX(4,2)9 true values of the coefficients of projection (dashed
lines) and Monte Carlo estimates (boxes indicate mean±1.96 standard
deviations) based upon the OLS, WLS and ML methods (500 runs per
method).

Fig. 3. VFP-ARX(4,2)9 based frequency response magnitude versus
frequency andk1 (k2 is set tok29): (a) true system, (b) mean OLS estimate,
(c) mean WLS estimate and (d) mean ML estimate (mean parameters over
500 runs).


